亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于時空分解的梯級泵站輸水系統(tǒng)運行效率計算方法與應(yīng)用

        2017-04-24 03:45:35桑國慶張雙虎宋淑馨
        農(nóng)業(yè)工程學報 2017年6期
        關(guān)鍵詞:泵站效率優(yōu)化

        桑國慶,張雙虎,張 林,宋淑馨

        ?

        基于時空分解的梯級泵站輸水系統(tǒng)運行效率計算方法與應(yīng)用

        桑國慶1,2,張雙虎2,張 林3,宋淑馨1

        (1. 濟南大學資源與環(huán)境學院,濟南 250061; 2. 中國水利水電科學研究院,北京 100038;3. 南水北調(diào)東線山東干線有限責任公司,濟南 250012)

        針對大型串并聯(lián)梯級泵站輸水系統(tǒng)存在組成復雜性和運行動態(tài)性,難以對實時運行狀態(tài)進行評價和優(yōu)化的問題,提出了一種基于時空分解的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算方法。在空間上將系統(tǒng)劃分為并聯(lián)系統(tǒng)、串聯(lián)系統(tǒng)、泵站和輸水子系統(tǒng)。在時間上將動態(tài)調(diào)度過程劃分為若干個平衡狀態(tài),定量計算水力、水量損失等影響因素?;谀芰總鬏敗⑥D(zhuǎn)化原理,將各變量進行歸一化處理,依次建立泵站、輸水子系統(tǒng)和串、并聯(lián)系統(tǒng)運行效率表達式,可對各子系統(tǒng)及整體實時運行效率進行計算,并為后期系統(tǒng)運行效率優(yōu)化提供了參考。結(jié)合2016年典型并聯(lián)梯級泵站輸水系統(tǒng)調(diào)度運行數(shù)據(jù),對該方法進行了實踐。結(jié)果表明,與傳統(tǒng)運行效率計算方法相比,該方法在效率計算的實時性和全面性上有明顯提升。不僅能夠直觀反映各級泵站實時運行情況,還可定量評估各輸水渠道以及系統(tǒng)整體運行情況,有助于發(fā)現(xiàn)影響系統(tǒng)運行效率的薄弱環(huán)節(jié),為實時調(diào)度提供參考。

        泵;優(yōu)化;效率;梯級泵站;輸水系統(tǒng)

        0 引 言

        大型串并聯(lián)梯級泵站輸水工程一般通過泵站提水,渠道、管道輸水,湖泊或水庫調(diào)蓄,是由泵站(攔污柵、水泵裝置、其他輔助裝置等)、節(jié)制閘和渠道等設(shè)備、設(shè)施組成的復雜輸水系統(tǒng),即串并聯(lián)梯級泵站輸水系統(tǒng)[1]。各級泵站是系統(tǒng)主要控制單元,泵站之間由渠道剛性、半剛性串聯(lián)或并聯(lián),調(diào)蓄能力較小。各站之間的流量、水位互相影響。系統(tǒng)運行過程中,受制于輸水工況動態(tài)變化和未知的外界擾動,往往處于動態(tài)變化中。綜上,由于系統(tǒng)組成復雜性和運行動態(tài)性,調(diào)度運行難度較大,如僅關(guān)注系統(tǒng)局部,而不對系統(tǒng)中各部分進行統(tǒng)一協(xié)調(diào),往往會造成顧此失彼,系統(tǒng)運行效率低下[2-5]。串并聯(lián)梯級泵站輸水系統(tǒng)運行效率代表系統(tǒng)中各設(shè)備、設(shè)施的整體運行狀態(tài),決定了輸水能耗及費用,是系統(tǒng)運行的重要評價指標,也是衡量調(diào)水工程是否成功的標準之一[6]。

        以往針對梯級泵站輸水系統(tǒng)效率的研究多集中于單級泵站效率,較少提出串并聯(lián)系統(tǒng)整體運行效率理念。在研究中,往往忽略梯級間水力、水量損失等因素。事實上,長距離梯級泵站輸水系統(tǒng)的水力、水量損失較大,往往對系統(tǒng)運行效率影響較大。近年來,部分學者開始注重滲漏、蒸發(fā)、水力損失等因素對系統(tǒng)整體效率的影響,提出了大型調(diào)水系統(tǒng)整體運行效率研究的內(nèi)容、途徑和方法[7-9]。此外,現(xiàn)有系統(tǒng)運行效率的計算方法多屬于完成效率、平均效率范疇[10-11],并不能反映實時或時段內(nèi)的系統(tǒng)運行狀態(tài)。綜上,目前尚未形成一整套能夠全面反映串并聯(lián)梯級泵站輸水系統(tǒng)實時整體運行狀態(tài)的理論體系,并在此基礎(chǔ)開展運行效率影響因素定量分析及優(yōu)化研究。

        本文針對串并聯(lián)梯級泵站輸水系統(tǒng)組成復雜性和運行動態(tài)性的難題,提出了基于時空分解的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算方法:一方面,在空間維度上將并聯(lián)系統(tǒng)劃分為若干串聯(lián)系統(tǒng),將串聯(lián)系統(tǒng)劃分為泵站和輸水子系統(tǒng);另一方面,從時間維度上提出動態(tài)平衡的理念,將調(diào)度過程分為若干個相對平衡時段,對時段內(nèi)水量、水力損失等參數(shù)進行定量計算;在此基礎(chǔ)上建立串并聯(lián)梯級泵站輸水系統(tǒng)運行效率表達式,并對系統(tǒng)運行效率的影響因素進行定量分析,為系統(tǒng)運行效率優(yōu)化提供理論基礎(chǔ)。同時本文結(jié)合典型梯級泵站輸水系統(tǒng)調(diào)度運行進行了實踐研究。

        1 基于時空分解的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算方法

        1.1 空間上的系統(tǒng)結(jié)構(gòu)分解

        圖1為串并聯(lián)梯級泵站輸水系統(tǒng)示意圖。根據(jù)系統(tǒng)工程理論,在空間維度上,將梯級泵站輸水系統(tǒng)中調(diào)蓄湖泊、各泵站、渠段等設(shè)備、設(shè)施作為統(tǒng)一的整體。首先將并聯(lián)梯級泵站輸水系統(tǒng)劃分為若干串聯(lián)系統(tǒng),在此基礎(chǔ)上將串聯(lián)梯級泵站輸水系統(tǒng)劃分為泵站、輸水子系統(tǒng)2個相互關(guān)聯(lián)的子系統(tǒng)[12],其系統(tǒng)結(jié)構(gòu)見圖2。其中,泵站子系統(tǒng)是整個系統(tǒng)的能量轉(zhuǎn)化核心,由多級泵站組成。泵站內(nèi)各機組運行狀態(tài)決定了能量轉(zhuǎn)化的效率,即泵站子系統(tǒng)的效率。

        輸水子系統(tǒng)是整個系統(tǒng)能量傳輸紐帶,由級間的渠道、管道、攔污柵等設(shè)施組成,其水流運動狀態(tài)決定了傳輸過程中的能量損耗率,即輸水子系統(tǒng)效率。泵站、輸水2個子系統(tǒng)通過級間水力(水位、流量)要素相互關(guān)聯(lián),2個子系統(tǒng)共同決定了系統(tǒng)運行效率。分別逐一明確串并聯(lián)梯級泵站輸水系統(tǒng)的邊界條件、狀態(tài)變量、決策變量,見表1。

        1.2 時間上平衡時段的分解

        受制于調(diào)度工況的動態(tài)變化和未知的外界擾動,串并聯(lián)梯級泵站輸水系統(tǒng)內(nèi)部往往處于動態(tài)變化中。系統(tǒng)的調(diào)度目標之一是通過合理的調(diào)度,使系統(tǒng)保持在一定的平衡狀態(tài),避免泵站頻繁開啟和調(diào)節(jié)。由此,系統(tǒng)的動態(tài)運行過程可劃分為若干個相對平衡狀態(tài)以及過渡狀態(tài),系統(tǒng)在不同相對平衡狀態(tài)之間轉(zhuǎn)化,即處于動態(tài)平衡中,見圖3。在相對平衡狀態(tài)下,可對時段內(nèi)泵站性能參數(shù)、水力和水量損失等參數(shù)進行定量計算,進而可對其整體運行效率進行計算和分析,為串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算提供了前提條件。

        表1 串并聯(lián)梯級泵站輸水系統(tǒng)變量分析

        1.3 串并聯(lián)梯級泵站輸水系統(tǒng)影響因素定量計算

        基于上述時空分解理論,可對一定時段內(nèi)的泵站效率、水力和水量損失等影響因素進行定量計算。其中,平衡時段內(nèi)水力損失、泵站效率等參數(shù)可直接取時段均值。對于水量損失,由于梯級水量損失包括滲漏、蒸發(fā)、支流回水等,難以用公式表示,可根據(jù)時段內(nèi)的損失總量[13],換算為單位輸水長度上的瞬時損失流量。時段劃分可根據(jù)渠段水量損失特性劃分,一般可劃分為輸水初期、中期和后期3個階段。

        式中(j?1, j)為時段Dt內(nèi),第(?1)和級泵站間,單位長度渠道上的流量損失值,m3/s;DDt為第(?1)和級泵站間渠道在輸水時段D內(nèi)的蓄量變化值,m3;W(j?1,j)為由于第(?1)和級泵站流量差引起的渠道蓄量變化值,m3;(j?1,j)為第(?1)和級泵站間渠道長度,km。

        綜上,針對串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算存在的復雜性和動態(tài)性難題,通過空間上的系統(tǒng)分解和時間上平衡狀態(tài)劃分,定量計算泵站性能、水力、水量損失等參數(shù),構(gòu)建了基于時空分解的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率的理論基礎(chǔ)。

        2 串并聯(lián)梯級泵站輸水系統(tǒng)運行效率表達式

        在基于時空分解的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算方法基礎(chǔ)上,分別提出泵站子系統(tǒng)和輸水子系統(tǒng)效率的定義和表達式,在此基礎(chǔ)上將兩者關(guān)聯(lián),依次提出串聯(lián)、并聯(lián)梯級泵站輸水系統(tǒng)運行效率定義及表達式。

        2.1 泵站子系統(tǒng)效率表達式

        泵站子系統(tǒng)效率是反映各級泵站運行狀態(tài)的綜合指標。泵站子系統(tǒng)效率可定義為水體經(jīng)各級泵站提升后,所獲得的能量之和與各級泵站所消耗能量之和的比值。在單機組、單級泵站效率計算的基礎(chǔ)上,綜合各泵站的效率,給出泵站子系統(tǒng)效率ps表達式

        (3)

        (4)

        式中ps為泵站子系統(tǒng)效率;Q為第級泵站流量,m3/s;為水的密度,kg/m3;為重力加速度,m/s2;為梯級泵站個數(shù);為泵站內(nèi)機組的個數(shù);TP為水體經(jīng)過第級泵站提升所獲得的能量,kW;TP′為第級泵站提水所需消耗的能量,kW;h′、h分別為第級泵站進、出水池水位,m;H為第級泵站的揚程,m,;為泵站流量為Q、揚程為H工況下,第級泵站內(nèi)各抽水裝置聯(lián)合運行的效率值,即單級泵站效率;為泵站內(nèi)抽水裝置編號;為泵站內(nèi)第個抽水裝置的流量,當揚程H一定時,其為水泵葉片安放角θ、機組轉(zhuǎn)速n的函數(shù);為第個抽水裝置的有效輸出功率;為第個抽水裝置的輸入功率;set,i為第個抽水裝置的效率,本文將泵站進、出水池的效率并入輸水子系統(tǒng)效率中;為水泵裝置效率,可通過裝置模型數(shù)據(jù)換算或?qū)嶋H運行測試得出[14-15],為傳動效率,為電機效率。

        2.2 輸水子系統(tǒng)效率表達式

        輸水子系統(tǒng)效率是反映梯級間渠道、攔污柵、閘門等整體輸水狀態(tài)的指標。輸水子系統(tǒng)效率定義為水體經(jīng)泵站提升后,經(jīng)過級間渠道、攔污柵、閘門等設(shè)備、設(shè)施輸送到目的地,最終獲得的凈能量與水體經(jīng)過各級泵站提水獲得的總能量的比值。水力、水量損失可理解為泵站能量損失的延伸,是影響輸水子系統(tǒng)效率的主要因素。根據(jù)是否考慮級間水力、水量損失,級間是否有分水任務(wù),可分為3種情況。

        1)計入級間水力損失,級間無分水情況。僅計入水力損失,不考慮輸水水量損失,且級間無分水任務(wù)情況下,系統(tǒng)末級泵站輸出水體的凈能量即系統(tǒng)最終獲得的凈能量,輸水子系統(tǒng)效率cs表達式為

        (6)

        式中cs為輸水子系統(tǒng)效率;TP為水體經(jīng)過泵站、渠道(管道)輸送到目的地(末級泵站出口)最終獲得的凈能量,kW;H為最末級泵站輸出水體獲得的有效揚程,即梯級間凈揚程;為第和(+1)級泵站間渠道的水力損失,主要與級間流量、泵站進、出水池水位、糙率等因素相關(guān),無實測資料時,可采用水力學模型進行預測。

        2)考慮級間水力及水量損失,級間無分水情況??紤]級間水力及水量損失,級間無分水情況下,扣除級間流量損失,末級泵站輸出水體的凈能量即為系統(tǒng)最終獲得的凈能量,輸水子系統(tǒng)效率cs表達式為

        (8)

        式中1為首級泵站的輸出流量,m3/s;Q為最末級泵站所輸出的流量,等于首級泵站的流量減去級間的水量損失,m3/s,見式(8);(j-1,j)為第(?1)和泵站間渠道長度,m;(j-1, j)為第(?1)和泵站間,單位長度渠道的流量損失值,m3/(s·m);Q為經(jīng)過第級泵站的流量,數(shù)值上等于首級泵站減去第1級至級間的流量損失,m3/s,。

        3)考慮級間水力、水量損失,級間分水情況。考慮級間水力、水量損失,級間有分水情況下,系統(tǒng)最終輸出水體的凈能量包括2部分:一部分為末級泵站輸出水體獲得的凈能量;另一部分為沿線分水口輸出水體獲得的凈能量。輸水子系統(tǒng)效率cs表達式為

        (10)

        (11)

        式中H為最末級泵站輸出水體獲得的有效揚程,m;Q為最末級泵站所輸出的流量,m3/s,等于首級泵站流量減去沿線水量損失和分水流量,見式(10);z為第(?1)和泵站間的分水口總個數(shù);k為第(?1)和泵站間分水口序號;為第(?1)和泵站間,第k個分水口的分水流量,m3/s;、分別為第k個分水口的高程、分水獲得的凈揚程,m;;Q為第級泵站的輸出流量,m3/s,等于首級泵站流量減去第級泵站前所有流量損失和分水流量,見式(11)。

        2.3 串聯(lián)梯級泵站輸水系統(tǒng)運行效率表達式

        串聯(lián)梯級泵站輸水系統(tǒng)運行效率可定義為在串聯(lián)線路上,水體經(jīng)過多級泵站(泵站子系統(tǒng))提升和渠道(輸水子系統(tǒng))傳輸,到達目的地后所獲得的凈能量與各級泵站消耗總能量的比值,等于泵站子系統(tǒng)效率與輸水子系統(tǒng)效率的乘積。根據(jù)輸水子系統(tǒng)效率的3種不同表達式,串聯(lián)梯級泵站輸水系統(tǒng)運行效率pcs的表達式分別為

        1)計入級間水力損失,沿線無分水情況

        2)計入級間水力及水量損失,級間無分水情況

        (13)

        3)計入級間水力、水量損失,級間有分水情況

        式中pcs為串聯(lián)梯級泵站輸水系統(tǒng)運行效率。

        2.4 并聯(lián)梯級泵站輸水系統(tǒng)運行效率表達式

        并聯(lián)梯級泵站輸水系統(tǒng)運行效率定義為:水體經(jīng)過各串聯(lián)線路,到達目的地后獲得的凈能量與各串聯(lián)梯級泵站輸水系統(tǒng)內(nèi)各級泵站消耗總能量的比值。假定并聯(lián)梯級泵站輸水系統(tǒng)包含條串聯(lián)線路,根據(jù)是否計入級間水力、水量損失,級間是否有分水任務(wù),3種工況下并聯(lián)梯級泵站輸水系統(tǒng)運行效率表達式分別見式(15)、(16)、(17)。當=1時,則等同于串聯(lián)梯級泵站輸水系統(tǒng)運行效率公式。

        1)計入級間水力損失,沿線無分水情況

        2)計入級間水力及水量損失,級間無分水情況

        (16)

        3)計入級間水力、水量損失,級間有分水情況

        式中bpcs為并聯(lián)梯級泵站輸水系統(tǒng)運行效率;為串聯(lián)線路序號;為串聯(lián)線路總數(shù)。由此可得,串并聯(lián)梯級泵站輸水系統(tǒng)運行效率均可轉(zhuǎn)化為以梯級間流量,各級泵站進、出水池水位,各級泵站效率為變量的函數(shù),在此基礎(chǔ)上可建立相應(yīng)的優(yōu)化模型[16-23],采用動態(tài)規(guī)劃、粒子群等方法求解[24-28]。

        3 典型并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算實例及分析

        3.1 典型并聯(lián)梯級泵站輸水系統(tǒng)

        以典型并聯(lián)梯級泵站輸水系統(tǒng)為研究對象,該系統(tǒng)上、下游邊界均為調(diào)蓄湖泊(S1、S2),系統(tǒng)包括3個梯級,6座低揚程、大流量的泵站,從上游至下游依次為A、A1,B、B1,C、C1;6段輸水河道S1-A、S1-A1,A-B、A1-B1,B-C、B1-C1。可分為2個串聯(lián)梯級泵站輸水系統(tǒng),其中串聯(lián)系統(tǒng)1為S1-A-B-C(S2)、串聯(lián)系統(tǒng)2為S1-A1-B1-C1(S2),2個串聯(lián)系統(tǒng)設(shè)計輸水流量分別為100、200 m3/s,見圖4。

        根據(jù)典型并聯(lián)梯級泵站輸水系統(tǒng)2016年1月-6月調(diào)度數(shù)據(jù),將整個調(diào)度過程可劃分為個平衡狀態(tài),從中選取1月18日-1月28日、5月6日-5月12日和6月14日-6月20日 3個典型時段平衡狀態(tài),在此基礎(chǔ)上分別計算各子系統(tǒng)效率和系統(tǒng)整體運行效率。

        3.2 泵站子系統(tǒng)運行效率計算及分析

        基于實測運行數(shù)據(jù),根據(jù)式(2)、(3)、(4),分別計算平衡狀態(tài)1~3各級泵站抽水裝置效率、泵站子系統(tǒng)效率。以串聯(lián)系統(tǒng)1為例,泵站子系統(tǒng)效率計算結(jié)果見表2,基本結(jié)論如下:泵站子系統(tǒng)效率與各泵站抽水裝置效率正相關(guān),泵站抽水裝置效率取決于各機組性能參數(shù)及流量、揚程組合。以平衡狀態(tài)1、3為例,兩者梯級凈揚程分別為7.10和7.30 m,單機組流量基本相同,但兩者運行效率分別為69%、74%,原因在于后者的各級泵站效率分布更為均衡。

        3.3 輸水子系統(tǒng)效率計算及分析

        根據(jù)式(7)計算輸水子系統(tǒng)效率,以串聯(lián)系統(tǒng)1為例,輸水子系統(tǒng)效率計算結(jié)果見表3,基本結(jié)論如下:1)輸水子系統(tǒng)效率與沿線水力、水量損失負相關(guān)。如平衡狀態(tài)2、3的水力損失分別為0.64、1.33 m,水量損失分別為5.92%、2.98%,輸水子系統(tǒng)效率分別為89%、84%;2)水力損失主要包括河道、引水渠、攔污柵等的水力損失。正常工況下,水力損失隨流量增加而增加。其中,平衡狀態(tài)3,S1—A渠段水力損失較正常工況偏大,主要原因在于A泵站攔污柵有輕微堵塞現(xiàn)象。對于渠道水力損失預測,可構(gòu)建渠道水力學模型[28-29],建立水力損失與上游水位、流量的相關(guān)關(guān)系;對冰期、攔污柵堵塞[30]等工況下水力損失需要進行單獨處理;3)水量(滲漏、蒸發(fā))損失與水位、天氣、地下水等因素相關(guān)??山Y(jié)合長期輸水規(guī)律,根據(jù)式(1),分時段計算S1-A、A-B、B-C(S2)各渠段水量損失,并換算為瞬時損失流量或比率。

        表2 泵站子系統(tǒng)效率計算結(jié)果

        表3 輸水子系統(tǒng)效率計算結(jié)果

        3.4 串聯(lián)梯級泵站輸水系統(tǒng)運行效率計算及分析

        根據(jù)式(13),可計算各串聯(lián)梯級泵站輸水系統(tǒng)運行效率,以串聯(lián)系統(tǒng)1為例,串聯(lián)梯級泵站輸水系統(tǒng)運行效率計算結(jié)果見表4,基本結(jié)論如下:1)一定梯級凈揚程情況下,串聯(lián)梯級泵站輸水系統(tǒng)運行效率取決于泵站、輸水子系統(tǒng)效率組合。2)不同平衡狀態(tài)下,系統(tǒng)運行效率區(qū)間為58.65%~62.16%。泵站子系統(tǒng)是系統(tǒng)優(yōu)化的核心,但不能忽視特殊工況下輸水子系統(tǒng)效率的影響。

        3.5 并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算及分析

        根據(jù)式(16),可計算并聯(lián)梯級泵站輸水系統(tǒng)運行效率,并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算結(jié)果見表5?;窘Y(jié)論如下:1)同一平衡狀態(tài)下,不同串聯(lián)系統(tǒng)運行效率有一定差異。平衡狀態(tài)1下串聯(lián)系統(tǒng)1和2運行效率分別為58.65%、54.62%;2)不同平衡狀態(tài)下,并聯(lián)系統(tǒng)效率區(qū)間為56.36~60.63%,尚有較大的優(yōu)化空間。2)梯級凈揚程和總輸水流量一定情況下,并聯(lián)梯級泵站輸水系統(tǒng)運行效率取決于不同串聯(lián)系統(tǒng)運行效率組合,以及對應(yīng)的輸水流量分配。3)可根據(jù)不同串聯(lián)系統(tǒng)效率特性,制定流量優(yōu)化分配方案,以提高并聯(lián)系統(tǒng)運行效率。

        表4 串聯(lián)梯級泵站輸水系統(tǒng)運行效率計算結(jié)果

        表5 并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算結(jié)果

        4 結(jié)論與討論

        1)針對串并聯(lián)梯級泵站輸水系統(tǒng)運行中存在的復雜性和動態(tài)性,難以對其效率定量評價難題,本文提出了一套串并聯(lián)梯級泵站輸水系統(tǒng)實時運行效率計算方法,該方法通過調(diào)度系統(tǒng)在時間和空間上的分解,基于能量傳輸、轉(zhuǎn)化原理,將系統(tǒng)中水力、水量損失等變量進行歸一化處理,依次建立泵站、輸水子系統(tǒng)和串、并聯(lián)系統(tǒng)實時運行效率表達式,可對各子系統(tǒng)和整體實時運行效率進行計算。

        2)該方法在典型并聯(lián)梯級泵站系統(tǒng)的應(yīng)用表明,與傳統(tǒng)單一泵站效率和完成效率計算方法相比,該方法在效率計算的實時性和全面性上有明顯提升。一方面,該方法可計算系統(tǒng)實時運行效率值,有利于發(fā)現(xiàn)影響系統(tǒng)運行效率的薄弱環(huán)節(jié)。另一方面,該方法不僅能夠直觀反映系統(tǒng)中各級泵站實時運行情況,還可定量評估各輸水渠道以及系統(tǒng)整體運行情況,為實時調(diào)度提供了有利支撐。

        本文建立的串并聯(lián)梯級泵站輸水系統(tǒng)運行效率計算方法為系統(tǒng)的優(yōu)化提供了參考,考慮一定約束條件,可建立運行效率優(yōu)化模型,求解優(yōu)化運行方案。其中梯級水位、流量是2個核心優(yōu)化變量,優(yōu)化包含單變量和雙變量2個層次的優(yōu)化。單變量優(yōu)化即水位(揚程)優(yōu)化:在一定流量和梯級凈揚程下,尋求一個優(yōu)化水位分配,使系統(tǒng)運行效率最優(yōu);雙變量優(yōu)化即水位優(yōu)化下的流量優(yōu)化:一定梯級凈揚程下,尋求一個最適宜流量值以及對應(yīng)的梯級水位最優(yōu)組合,使系統(tǒng)運行效率全局最優(yōu)。

        [1] 桑國慶,曹升樂,郭瑞,等. 基于分時電價的梯級泵站輸水系統(tǒng)日優(yōu)化運行[J]. 排灌機械工程學報,2013,31(8):688-695.

        Sang Guoqing, Cao Shengle, Guo Rui, et al. Optimization of cost per day of cascade pumping station water-delivery system[J]. Journal of irrigation and drainage engineering, 2013, 31(8): 688-695. (in Chinese with English abstract)

        [2] 馮曉莉,仇寶云. 考慮河道輸水損失的大型泵站系統(tǒng)運行優(yōu)化[J]. 農(nóng)業(yè)工程學報,2015,31(17):35-41.

        Feng Xiaoli, Qiu Baoyun. Optimal operation for large pumping station system based on water transferring losses of river[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 35-41. (in Chinese with English abstract)

        [3] 馮曉莉,仇寶云,楊興麗,等. 大型泵站運行優(yōu)化方法及其應(yīng)用[J]. 排灌機械工程學報,2011,29(2):127-132.

        Feng Xiaoli, Qiu Baoyun, Yang Xingli, et al. Optimal methods and its application of large pumping station operation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(2): 127-132. (in Chinese with English abstract)

        [4] 馮曉莉,仇寶云,王斐,等. 南水北調(diào)東線高港泵站優(yōu)化運行方案研究[J]. 水利學報,2010,41(4):412-418.

        Feng Xiaoli, Qiu Baoyun, Wang Fei, et al. Study on optimal operation schemes of Gao gang pumping station in eastern route of south-to-north water transfer project[J]. Journal of Hydraulic Engineering, 2010, 41(4): 412-418. (in Chinese with English abstract)

        [5] 馮曉莉,仇寶云. 大型泵站系統(tǒng)運行優(yōu)化模型與節(jié)能效果比較[J]. 農(nóng)業(yè)工程學報,2012,28(23):46-51.

        Feng Xiaoli, Qiu Baoyun. Optimal operation models and comparison of their energy-saving effects for large pumping station system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(23): 46-51. (in Chinese with English abstract)

        [6] 曹鳴,姚青云. 梯級泵站優(yōu)化調(diào)度研究進展[J]. 寧夏農(nóng)學院學報,2003,24(4):101-106.

        Cao Ming, Yao Qingyun. Progress of studies on optimization operation for multi stage pumping station[J]. Journal of Ningxia Agricultural College, 2003, 24(4): 101-106. (in Chinese with English abstract)

        [7] 黃海田,仇寶云,王斐. 泵站+渠道構(gòu)成的站渠系統(tǒng)調(diào)水效率概念的建立與計算[J]. 灌溉排水學報,2007,26(4B):16-17.

        Huang Haitian, Qiu Baoyun, Wang Fei. The establishment and calculation of pumping station-canal system water transfer efficiency concept[J].Journal of Irrigation and Drainage, 2007, 26(4B): 16-17. (in Chinese with English abstract)

        [8] 黃海田,仇寶云,馬倩,等. 基于系統(tǒng)理念對東線江蘇境內(nèi)一期工程進行調(diào)水效率研究的設(shè)想[J]. 南水北調(diào)與水利科技,2007,5(2):3-5.

        Huang Haitian, Qiu Baoyun, Ma Qian, et al. Preview on water diversion efficiency research in the first phase of the eastern route of south to north water diversion project in Jiangsu province based on system conception[J]. South to North Water Transfers and Water Science & Technology, 2007, 5(2): 3-5. (in Chinese with English abstract)

        [9] 黃海田,仇寶云,顏紅勤,等. 多級調(diào)水-供水-蓄水結(jié)合泵站-渠道-湖庫系統(tǒng)效率計算[J]. 水利水運工程學報,2007(4):21-26. Huang Haitian, Qiu Baoyun, Yan Hongqin, et al. Efficiency computation of multi-stage pumping station-canal-lake reservoir system for water transfer-supply-storage[J]. Hydro-Science and Engineering, 2007(4): 21-26. (in Chinese with English abstract)

        [10] 鄭世宗,賈宏偉,崔遠來. 區(qū)分工程狀況與管理水平影響的渠系水利用效率指標體系的構(gòu)建[J]. 農(nóng)業(yè)工程學報,2013,29(18):1-7.

        Zheng Shizong, Jia Hongwei, Cui Yuanlai. Structure of assessment indicator system of water use efficiency for distinguishing engineering conditions and management level of canal-system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 1-7. (in Chinese with English abstract)

        [11] 崔遠來,譚芳,鄭傳舉,等. 不同環(huán)節(jié)灌溉用水效率及節(jié)水潛力分析[J]. 水科學進展,2010,21(6):787-793.

        Cui Yuanlai, Tan Fang, Zheng Chuanju, et a1. Analysis of irrigation efficiency and water saving potential at different scales[J]. Advances in Water Science, 2010, 21(6): 787-793. (in Chinese with English abstract)

        [12] 桑國慶,曹升樂,郭瑞,等. 梯級泵站輸水系統(tǒng)運行效率優(yōu)化模型[J]. 系統(tǒng)工程理論與實踐,2014,34(8):2179-2185.

        Sang Guoqing, Cao Shengle, Guo Rui, et al. Research on optimization of whole efficiency of cascade pumping station water-delivery system[J]. Systems Engineering Theory & Practice, 2014, 34(8): 2179-2185. (in Chinese with English abstract)

        [13] 胡周漢,方國華,馬兆龍,等. 南水北調(diào)東線一期輸水工程水量損失計算方法及應(yīng)用[J]. 水電能源科學,2016,34(8):45-49.

        Hu Zhouhan, Fang Guohua, Ma Zhaolong, et al. Calculation and application of water losses in the first-phase in east route of south-to-north water diversion project[J]. Water Resources and Power, 2016, 34(8): 45-49. (in Chinese with English abstract)

        [14] 嚴登豐. 泵與泵裝置特性預測[J]. 排灌機械工程學報,2012,30(3):315-323.

        Yan Dengfeng. Performance prediction for pump and pumping system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(3): 315-323. (in Chinese with English abstract)

        [15] 龍新平,朱勁木,劉梅清,等. 基于性能曲面擬合的泵站優(yōu)化調(diào)度分析[J]. 水利學報,2004,35(11):27-31.

        Long Xinping, Zhu Jinmu, Liu Meiqing, et al. Optimized dispatch of pumping stations based on performance curve surface fitting[J]. Journal of Hydraulic Engineering, 2004, 35(11): 27-31. (in Chinese with English abstract)

        [16] 程吉林,張禮華,張仁田,等. 泵站葉片可調(diào)單機組日運行優(yōu)化方法研究[J]. 水利學報,2010,41(4):499-504.

        Cheng Jilin, Zhang Lihua, Zhang Rentian, et al. Study on optimal daily operation of single adjustable-blade pump unit in pumping station[J]. Journal of Hydraulic Engineering,2010, 41(4): 499-504. (in Chinese with English abstract)

        [17] 周龍才. 長渠道梯級供水泵站變頻轉(zhuǎn)速最優(yōu)匹配[J]. 武漢大學學報,2010,43(5):576-580.

        Zhou Longcai. Optimal matching of cascade water supply pumping stations with long channels by variable frequency speed control[J]. Engineering Journal of Wuhan University,2010, 43(5): 576-580. (in Chinese with English abstract)

        [18] 龔懿,程吉林,張仁田. 淮安-淮陰段梯級泵站群運行優(yōu)化[J]. 農(nóng)業(yè)工程學報,2013,29(22):59-67.

        Gong Yi, Cheng Jilin, Zhang Rentian. Operation optimization of Huai’an-Huaiyin multistage pumping stations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 59-67. (in Chinese with English abstract)

        [19] Mari?o M A, Moradi-Jalal M, Afshar A. Optimal design and operation of irrigation pumping stations[J]. Journal of Irrigation and Drainage Engineering, 2003, 129(3): 149-154.

        [20] Vieira F, Ramos H M. Optimization of operational planning for wind/hydro hybrid water supply systems[J]. Renewable Energy, 2009, 34(3): 928-936.

        [21] 張禮華. 南水北調(diào)提水泵站站內(nèi)優(yōu)化運行模式研究[D]. 揚州:揚州大學,2007.

        Zhang Lihua. Study on Optimal Function of the Lift Pump Stations in the South-to-North Water Transfer Project[D]. Yangzhou: Yangzhou University, 2007. (in Chinese with English abstract)

        [22] 專祥濤,李明龍. 基于移峰填谷的排水泵站優(yōu)化調(diào)度研究[J]. 武漢大學學報工學版,2011,44(6):773-778.

        Zhuan Xiangtao, Li Minglong. Optimal operation of pumping stations with load shifting[J]. Engineering Journal of University, 2011, 44(6): 773-778. (in Chinese with English abstract)

        [23] 梁興,劉梅清,劉志勇,等. 基于混合粒子群算法的梯級泵站優(yōu)化調(diào)度[J]. 武漢大學學報工學版,2013,46(4):536-539.

        Liang Xing, Liu Meiqing, Liu Zhiyong, et al. Optimum dispatching of multistage pumping station based on mixed particle swarm optimization[J]. Engineering Journal of Wuhan University, 2013, 46(4): 536-539. (in Chinese with English abstract)

        [24] 龔懿,程吉林,劉靜森. 揚程-水位逐次逼近策略優(yōu)化梯級泵站群級間河道水位[J]. 農(nóng)業(yè)工程學報,2014,30(22):120-129.

        Gong Yi, Cheng Jilin, Liu Jingsen. Water level optimization of water transferring channel in multi-stage pumping stations based on head-water level successive approximation optimization method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 120-129. (in Chinese with English abstract)

        [25] 陳曉楠,段春青,邱林,等. 基于粒子群的大系統(tǒng)優(yōu)化模型在灌區(qū)水資源優(yōu)化配置中應(yīng)用[J]. 農(nóng)業(yè)工程學報,2008,24(3):103-106.

        Chen Xiaonan, Duan Chunqing, Qiu Lin, et al. Application of large scale system model based on particle swarm optimization to optimal allocation of water resources in irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(3): 103-106. (in Chinese with English abstract)

        [26] 龔懿,程吉林,張仁田,等. 淮陰三站變頻變速優(yōu)化運行的分解-動態(tài)規(guī)劃聚合法[J]. 農(nóng)業(yè)工程學報,2011,27(3):79-83.

        Gong Yi, Cheng Jilin, Zhang Rentian, et al. Optimization on variable speed operation with VFD for No.3 Huaiyin pumping station based on decomposition-dynamic programming aggregation method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 79-83. (in Chinese with English abstract)

        [27] 張禮華,程吉林,張仁田,等. 基于試驗-整數(shù)規(guī)劃方法的泵站多機組變速優(yōu)化[J]. 農(nóng)業(yè)工程學報,2011,27(5):156-159.

        Zhang Lihua, Cheng Jilin, Zhang Rentian, et al. Research on optimal operation for multi-units with variable speed in one pumping station based on the theory of experimental and integer programming method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(5): 156-159. (in Chinese with English abstract)

        [28] 馬吉明,史哲. 南水北調(diào)典型寬淺渠道糙率系數(shù)研究[J]. 水力發(fā)電學報,2007,26(5):75-79.

        Ma Jiming, Shi Zhe. Research on the absolute roughness of the typical channel of the south-to-north water diversion project[J]. Journal of Hydroelectric Engineering, 2007, 26(5): 75-79. (in Chinese with English abstract)

        [29] 黃會勇,劉子慧,范杰,等. 南水北調(diào)中線工程總干渠水力學仿真模型研究[J]. 水利水電技術(shù),2013,44(12):111-115. Huang Huiyong, Liu Zihui, Fan Jie, et al. Study on hydraulic simulation model of main canal of Mid-route of South-to-North Water Transfer Project[J]. Water Resources and Hydropower Engineering, 2013, 44(12): 111-115. (in Chinese with English abstract)

        [30] 賀淑全. 攔污柵攔污流動數(shù)值模擬與阻力預測[D]. 揚州:揚州大學,2013.

        He Shuquan. Numerical Simulation of Trash-barriering Flow of Rack and Prediction of Trash-barriering Resistance[D]. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract)

        Calculation method and application on operation efficiency of water transfer system with cascade pumping station based on time and space scale

        Sang Guoqing1,2, Zhang Shuanghu2, Zhang Lin3, Song Shuxin1

        (1.250061; 2.100038; 3.250012,)

        Water resource is distributed unevenly in time and space in the world. With the development of society, water demand is increasing. In some places, water shortage is becoming the bottleneck of the development of social economy. In order to realize the rational allocation of water resources, lots of water diversion projects with cascade pumping stations have been carried out. Water is transferred from areas with plenty of water to areas with more water demand. For example, South-to-North Water Transfer Project is being built in China, which is the largest water transfer project in the world. There are 3 lines for this project, which are East line, Middle line and West line. East line is typical parallel and series cascade pump system, which is the largest pumping station system in the world. Water is pumped from Yangzi River in Yangzhou of Jiangsu Province to North areas including Jiangsu and Shandong Province. At some places old rivers are used for water transfer such as the Grand Canal between Beijing and Hangzhou. At other places new channels are built for water transfer. Some lakes used for storage are connected by these channels and rivers such as Hongze Lake, Nansi Lake and Dongping Lake. From Dongping Lake water flow becomes gravity flow to 2 directions. One route is north to Tianjin finally and the other is east to Jiaodong area. Water transferred to Jiaodong belongs to the first stage. Now the first stage of East line has been finished and is on operation period. It is typical cascade pumping station system for water transfer project. Large scale pumping station in parallel and series is a complex water transfer system. It consists of water pumps, controlling gates, channels or pipes and water lakes or reservoirs, and so on. Water is pumped from low area to high position or pressure pipes. Then it is transferred by channels or pressure pipes to water lakes or reservoirs. Lakes and reservoirs are used for storage and volume adjusting. In this system, pumping stations at different levels are control units. Channels or pipes between pumping station units limit the adjusting ability on water quantity. What’s more, discharge and water level interrelate. During the operation period, water flow is changing dynamically caused by different scenarios or unknown external disturbance. So this system has the characteristics of complexity and dynamic. It is difficult to evaluate and optimize the real-time operation state. So how to control the system accurately becomes a challenge. Normally operation efficiency is one of the important methods for checking the validity. The operation efficiency of cascade pumping stations for water transfer system reflects the operating results of the whole system. It determines the energy consumption and the cost of water transfer. So it is an important evaluation index of system operation. It can also be one of the criteria to measure the success of water transfer project. There are many methods which can be used to calculate out operation efficiency. But these methods are focusing on end efficiency or average efficiency, which cann’t reflect the accurate system running status in real time or a time interval. In order to solve these problems, with a series of research or experiments, the operation efficiency theory based on time and space is presented. In space scale, this system is divided into several subsystems, which are parallel subsystem, series subsystem, pumping station subsystem and water transfer subsystem.Pumping station subsystem consists of different pumping stations at different levels, which is the center of energy transfer of the whole system. Water transfer subsystem consists of different hydraulic structures such as channels, pipes, trash rack, and so on, which is the link of energy transfer. Different subsystems are connected by hydraulic factors such as water level or discharge. The operation efficiency of the whole system is decided by different subsystem. In time scale, it is divided into several parallel states, which are used to calculate pumping station performance, hydraulics loss and water quantity loss. A series of index system and formulas for operation efficiency of large scale pumping station are given out including pumping station subsystem and water transfer subsystem. Based on this, the related influence factors are studied with quantitative analysis. This research provides the theoretical basis for optimizing the operation efficiency of large scale pumping station system. Based on real operation datain 2016 of typical water transfer system with cascade pumping station in parallel, practice is carried out for this theory. Results show that this method can evaluate the operational efficiency accurately and find out the optimized potential factors and bottlenecks of the subsystems and the whole system. The operation efficiency of cascade pumping station system based on time and space scale is decided by different related factors such as water level, discharge and pumping unit power, and so on. So it is necessary to monitor these factors accurately. At the same time, summaries should be made in time about pumping station unit performance, hydraulics, discharge loss, and so on to find out the useful law. In one word, accurate operation efficiency comes from accurate raw data and detailed study. In addition, the operation efficiency can also provide the reference for route comparison and model selection of all-level pumping stations, and therefore, it can also be used for project planning.

        pumps; optimization; efficiency; cascade pumping stations; water transfer system

        10.11975/j.issn.1002-6819.2017.06.009

        TV675

        A

        1002-6819(2017)-06-0067-09

        2016-10-09

        2017-01-15

        國家科技支撐計劃項目課題(2015BAB07B02);國家青年基金(51409119);山東省省級水利科研與技術(shù)推廣項目(SDSLKY201404)

        桑國慶,男,山東省濟寧人,副教授,博士,主要從事梯級泵站優(yōu)化調(diào)度、山洪災害防治研究等。濟南 濟南大學資源與環(huán)境學院,250061。Email:sangguoqing@163.com

        猜你喜歡
        泵站效率優(yōu)化
        超限高層建筑結(jié)構(gòu)設(shè)計與優(yōu)化思考
        張家邊涌泵站建設(shè)難點及技術(shù)創(chuàng)新實踐
        民用建筑防煙排煙設(shè)計優(yōu)化探討
        關(guān)于優(yōu)化消防安全告知承諾的一些思考
        一道優(yōu)化題的幾何解法
        提升朗讀教學效率的幾點思考
        甘肅教育(2020年14期)2020-09-11 07:57:42
        2016年河南省己建成泵站數(shù)量
        全省已建成泵站數(shù)量
        河南省2014年已建成泵站數(shù)量
        跟蹤導練(一)2
        久久亚洲av无码精品色午夜| 亚洲AV永久无码精品表情包| 久久亚洲精品成人av观看| 一本色道久久88加勒比| 精品国偷自产在线视频九色| 台湾佬娱乐中文22vvvv| 婷婷色国产精品视频一区| 精品国产一区二区av麻豆不卡| 久久综合九色欧美综合狠狠| 双腿张开被9个男人调教| 囯产精品无码va一区二区| 成人在线视频自拍偷拍| 亚洲综合网国产精品一区| 香蕉人人超人人超碰超国产| 国产又色又爽又刺激视频| 国产在线播放免费人成视频播放| 日本不卡高字幕在线2019| 精品亚洲一区二区三区在线观看| 亚洲国产美女在线观看| 粗大挺进孕妇人妻在线| 在线人成视频播放午夜| 香蕉久久福利院| 国产熟女精品一区二区三区| 中文字幕熟女激情50路| 免费a级毛片在线播放不收费| 五十路熟妇高熟无码视频| 亚洲AV无码国产精品色午夜软件| 国产乱淫h侵犯在线观看| 国99久9在线 | 免费| 亚洲欧美成人a∨| 蜜桃av一区在线观看| 色狠狠一区二区三区中文| 日本做受高潮好舒服视频| 精品人妻少妇一区二区中文字幕| av网站免费观看入口| 情人伊人久久综合亚洲| 福利片福利一区二区三区| 成人偷拍自拍在线视频| 五月色婷婷丁香无码三级| 五十路熟妇高熟无码视频| 国产精品亚洲美女av网站|