高佳,朱選風(fēng),張希龍,陸甘,劉劍南*
(1江蘇省老年醫(yī)院呼吸內(nèi)科,南京 210024;2南京醫(yī)科大學(xué)第一附屬人民醫(yī)院呼吸內(nèi)科,南京 210000)
慢性間歇性缺氧(chronic intermittent hypoxia, CIH)是阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea syndrome,OSAS)的重要特征。許多研究報(bào)道CIH和心血管損傷[1,2]、頦舌肌損傷、肝臟損傷[3]等有密切關(guān)系。最近研究結(jié)果顯示,在沒有糖尿病和高血壓的重癥OSAS患者中,慢性腎臟疾病的發(fā)病率較高[4]。Sim等[5]發(fā)現(xiàn),在早期腎病患者中,OSAS發(fā)病率較高[5]。因此,我們推測(cè)CIH可能會(huì)導(dǎo)致腎損傷。
內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)是細(xì)胞為了應(yīng)對(duì)過度刺激造成的內(nèi)質(zhì)網(wǎng)錯(cuò)誤折疊及未折疊而產(chǎn)生的保護(hù)性反應(yīng)。ERS通過IRE1、PERK、ATF6這三條通路調(diào)節(jié)。當(dāng)內(nèi)質(zhì)網(wǎng)發(fā)生應(yīng)激時(shí),三條通路被激活,過度的內(nèi)質(zhì)網(wǎng)應(yīng)激可以導(dǎo)致細(xì)胞凋亡[6-8]。X-框結(jié)合蛋白1(X-box binding protein 1)作為ER應(yīng)激的重要價(jià)質(zhì),其有防止氧化應(yīng)激的能力。同時(shí),在動(dòng)物和人的腎臟缺血再灌注過程中,ERS也被發(fā)現(xiàn)發(fā)揮重要作用[9,10]。
脂聯(lián)素(adiponectin, Ad)是一個(gè)重要的脂肪因子,在人體內(nèi)起到重要的保護(hù)作用。Cammisotto 等[11]發(fā)現(xiàn),在遠(yuǎn)端腎小管組織中,Ad通過結(jié)合脂肪受體激活腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)而抑制糖原合成。另外,Ad是尿蛋白的重要調(diào)控因子,它激活A(yù)MPK通路,減少腎小球足細(xì)胞中Nox4的生成,從而調(diào)節(jié)氧化應(yīng)激[12]。然而,Ad對(duì)CIH導(dǎo)致的腎臟損傷的保護(hù)作用目前并不清楚。本研究旨在觀察CIH對(duì)腎臟的影響以及Ad的保護(hù)作用及相關(guān)機(jī)制。
60只成年Wistar大鼠(上海Silake公司)隨機(jī)分為4組:正常對(duì)照(normal control, NC)組、NC+Ad組、CIH組和CIH+Ad組。依據(jù)參考文獻(xiàn)[13]建立CIH大鼠模型。大鼠被飼養(yǎng)在設(shè)有空氣控制器的特殊鼠籠里。2 min為1個(gè)循環(huán),第1 min時(shí)控制氧濃度從21%降低到5%~6%,持續(xù)15~20 s;再接下來的1 min,控制氧濃度恢復(fù)到正常水平(21%)。CIH組和CIH+Ad組大鼠接受間歇性缺氧處理。其余組大鼠接受正常空氣處理。同時(shí)NC+Ad 組和CIH+Ad組大鼠接受Ad(10 μg)尾靜脈注射,每周2次。其余組大鼠接受生理鹽水處理。間歇性低氧每天持續(xù)8 h,共4個(gè)月。
新鮮大鼠腎臟組織包埋于乙醇干冰中獲得最佳切割溫度,制成8 μm的切片。接下來將切片浸沒在10 μmol/L的超氧化物陰離子熒光探針(dihydroethidium,DHE)溶液中,37℃孵育30 min。在熒光顯微鏡下觀察活性氧(reactive oxygen species,ROS)的水平。
腎臟組織經(jīng)過多聚甲醛固定48 h后,脫水、浸蠟。制成5 μm的石蠟切片。切片脫蠟脫水,使用蛋白酶K室溫下孵育15 min。然后使用末端脫氧核苷酸轉(zhuǎn)移介導(dǎo)dUTP缺口末端標(biāo)記染色(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, TUNEL)反應(yīng)液在37℃下處理切片 60 min。使用TUNEL-POD處理30 min后,分別使用3,3’-二氨基聯(lián)苯胺(3,3’-diaminobenzidine,DAB)和蘇木素處理1 min。最后脫水封片,在光學(xué)顯微鏡下觀察。隨機(jī)選擇5張病理切片評(píng)價(jià)腎臟細(xì)胞凋亡情況。
為反映各組大鼠內(nèi)激網(wǎng)應(yīng)激情況,Western blotting檢測(cè)各組大鼠腎臟中GRP78、CHOP、IRE1、PERK、pro-ATF6蛋白的表達(dá)。取腎臟組織于裂解液(Thermo)中勻漿,10 000×g離心5 min,取上清使用BCA法進(jìn)行蛋白定量。取等量蛋白在含有十二烷基硫酸鈉的聚丙烯酰胺凝膠中電泳,電轉(zhuǎn)移至聚偏氟乙烯膜上。將膜在封閉液中封閉1 h,然后浸入一抗中4℃過夜孵育。再與辣根過氧化物酶標(biāo)記的二抗孵育。最后使用ECL顯色,X線放射自顯影,掃描,拍片。
與NC組和NC+Ad組比較,CIH處理后,ROS水平明顯升高(P<0.05)。而給予Ad處理后,ROS水平明顯下降,但仍然高于NC組和NC+Ad組(P<0.05)。NC組和NC+Ad組ROS水平差異無統(tǒng)計(jì)學(xué)意義(P>0.05;圖1)。
圖1 四組腎臟組織ROS水平Figure 1 ROS levels of renal tissue in four groupsA: ROS fluorescence staining(×400); B: densitometric evaluation. n=5. Compared with NC group, *P<0.05; compared with NC+Ad group, #P<0.05;compared with CIH group, △P<0.05
TUNEL染色顯示,與NC組(0.5671%±0.1786%)和NC+Ad組(0.5207%±0.1589%)相比,CIH組(6.1510%±0.2797%)大鼠腎臟細(xì)胞凋亡明顯增加(P<0.05)。而給予脂聯(lián)素補(bǔ)充后,腎臟細(xì)胞凋亡明顯減少(4.0590%±0.2454%),但仍然高于NC組和NC+Ad組(P<0.05)。NC組和NC+Ad組之間差異無統(tǒng)計(jì)學(xué)意義(P>0.05;圖2A,2B)。與NC組和NC+Ad組相比,CIH組和CIH+Ad組caspase-12和caspase-3蛋白水平(圖2C,2D)明顯增加(均P<0.05)。而CIH組仍然高于CIH +Ad組(P<0.05)。NC組和NC+Ad組之間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
與NC組和NC+Ad組相比,CIH組大鼠腎臟組織的GRP78和CHOP蛋白水平明顯增加(P<0.05;圖3),而CIH組大鼠給予脂聯(lián)素補(bǔ)充后,GRP78和CHOP蛋白水平明顯減少,但仍然高于NC組和NC+Ad組(P<0.05)。NC和NC+Ad組間差異無統(tǒng)計(jì)意義(P>0.05)。與NC組和NC+Ad組相比,CIH組大鼠腎臟組織的IRE1(圖4)和PERK(圖5)通路蛋白水平明顯增加(P均<0.05),給予脂聯(lián)素補(bǔ)充后,IRE1和PERK通路蛋白水平明顯減少,但仍然高于NC組和NC+Ad組(P<0.05;圖6)。CIH組的pro-ATF6蛋白表達(dá)水平低于NC組、NC+Ad組和CIH+Ad組(P<0.05),而CIH組pro-ATF6蛋白表達(dá)水平則低于NC組和NC+Ad組,三條內(nèi)質(zhì)網(wǎng)應(yīng)激通路蛋白水平在NC組和NC+Ad組間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
OSAS是一種慢性全身性疾病。Fleischmann等[14]發(fā)現(xiàn)睡眠呼吸障礙患者高發(fā)慢性腎臟病3期。Kawakami等[9]研究也發(fā)現(xiàn)在睡眠呼吸障礙的病人中慢性腎臟病相對(duì)比較高。因此我們推測(cè)OSAS可能在慢性腎臟病的病程發(fā)展中起重要作用。在本研究中,我們發(fā)現(xiàn)長期的CIH雖然沒有導(dǎo)致腎臟功能的損傷,但是腎臟細(xì)胞凋亡明顯增加。經(jīng)過CIH處理,腎臟凋亡細(xì)胞及細(xì)胞凋亡生物標(biāo)志物caspase-3蛋白水平升高,這可能是CIH造成腎臟損害的機(jī)制之一。而給予脂聯(lián)素后,細(xì)胞凋亡明顯減少。因此,我們發(fā)現(xiàn)Ad對(duì)CIH導(dǎo)致的腎臟損傷具有保護(hù)功能。為了評(píng)估Ad在腎臟細(xì)胞凋亡時(shí)起保護(hù)作用的機(jī)制,我們研究了ERS的蛋白水平變化。在本實(shí)驗(yàn)中,ERS的兩種生物標(biāo)志物GRP78和CHOP水平均明顯升高,由此證實(shí)CIH激活了ERS。盡管ERS開始時(shí)是一種保護(hù)性反應(yīng),但是越來越多證據(jù)表明,過度的ERS會(huì)導(dǎo)致細(xì)胞凋亡[6,7,15-17]。
圖2 四組腎臟細(xì)胞凋亡情況檢測(cè)Figure 2 Renal cell apoptosis in four groups
A: TUNEL staining (× 400); B: densitometric evaluation; C: Western blotting; D: densitometric evaluation.n= 5. Compared with NC group,*P<0.05; compared with NC+Ad group,#P<0.05; compared with CIH group,△P<0.05
圖3 四組腎臟組織GRP78和CHOP蛋白表達(dá)水平Figure 3 Expression of GRP78 and CHOP of renal tissue in four groupsA: Western blotting; B: densitometry evaluation. n=3. Compared with NC group, *P<0.05; compared with NC+Ad group, #P<0.05; compared with CIH group, △P<0.05
圖4 四組腎臟組織IRE1通路蛋白表達(dá)水平Figure 4 Expression of IRE1 pathway proteins of renal tissue in four groupsA: Western blotting; B: densitometry evaluation. n=3. Compared with NC group, *P<0.05; compared with NC+Ad group, #P<0.05; compared with CIH group, △P<0.05
圖5 四組腎臟組織PERK通路蛋白表達(dá)水平Figure 5 Expression of PERK pathway proteins of renal tissue in four groupsA: Western blotting; B: densitometry evaluation. n=3. Compared with NC group, *P<0.05; compared with NC+Ad group, #P<0.05; compared with CIH group, △P<0.05
圖6 四組腎臟組織pro-ATF6蛋白表達(dá)水平Figure 6 Expression of pro-ATF6 protein of renal tissue in four groupsA: Western blotting; B: densitometry evaluation.n=3. Compared with NC group, *P<0.05; compared with NC+Ad group, #P<0.05; compared with CIH group, △P<0.05
ERS有3條通路:IRE1、PERK、ATF6。任何一條通路活化最終都能激活CHOP基因表達(dá)[18-20],最終導(dǎo)致細(xì)胞凋亡[21]。在本研究中,CIH組三條通路均被激活,IRE1、PERK蛋白水平升高,而pro-ATF6蛋白水平降低,CHOP的蛋白水平亦明顯升高。另外,caspase-12是ERS相關(guān)細(xì)胞凋亡的特異性分子[22]。CIH組的caspase-12蛋白水平明顯上升。本研究結(jié)果提示,ERS會(huì)導(dǎo)致腎臟細(xì)胞凋亡;給予Ad處理后,IRE1、PERK、CHOP、caspase-12蛋白水平降低,而pro-ATF6蛋白水平升高。最終發(fā)現(xiàn),脂聯(lián)素通過抑制ERS起到保護(hù)腎臟的作用。
目前,很多研究已證實(shí)CIH可以使ROS水平升高[23,24]。本研究也發(fā)現(xiàn)CIH組的ROS蛋白水平明顯升高。另外,越來越多的證據(jù)表明,ROS可引起ERS[25,26]。本研究亦發(fā)現(xiàn)ROS是CIH引起內(nèi)質(zhì)網(wǎng)應(yīng)激的一個(gè)重要中介物,給予Ad治療的CIH組,ROS的水平明顯降低,從而證實(shí)抑制ROS生成或許是Ad能夠保護(hù)腎臟的重要機(jī)制。
綜上所述,本研究發(fā)現(xiàn)脂聯(lián)素可通過抑制CIH導(dǎo)致的ROS,進(jìn)而抑制ERS相關(guān)的腎臟細(xì)胞凋亡。
【參考文獻(xiàn)】
[1] Inamoto S, Yoshioka T, Yamashita C,etal. Pitavastatin reduces oxidative stress and attenuates intermittent hypoxia-induced left ventricular remodeling in lean mice[J]. Hypertens Res, 2010, 33(6): 579-586. DOI: 10.1038/hr.2010.36.
[2] Zhou W, Li S, Wan N,etal. Effects of various degrees of oxidative stress induced by intermittent hypoxia in rat myocardial tissues[J]. Respirology, 2012, 17(5): 821-829. DOI: 10.1111/j.1440-1843.2012.02157.x.
[3] Hernandez-Guerra M, de Ganzo ZA, Gonzalez-Mendez Y,etal. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats [J]. Hepatology, 2013, 57(4): 1564-1574. DOI: 10.1002/hep.26152.
[4] Chou YT, Lee PH, Yang CT,etal. Obstructive sleep apnea: a stand-alone risk factor for chronic kidney disease[J]. Nephrol Dial Transplant, 2011, 26(7): 2244-2250. DOI: 10.1093/ndt/gfq821.
[5] Sim JJ, Rasgon SA, Kujubu DA,etal. Sleep apnea in early and advanced chronic kidney disease: Kaiser Permanente Southern California cohort[J]. Chest, 2009,135(3): 710-716. DOI: 10.1378/chest.08-2248.
[6] Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(2): 89-102. DOI: 10.1038/nrm3270.
[7] Grimm S. The ER-mitochondria interface: the social network of cell death[J].Biochim Biophys Acta, 2012, 1823(2): 327-334. DOI: 10.1016/j.bbamcr.2011.11.018.
[8] Bravo R, Gutierrez T, Paredes F,etal. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics[J]. Int J Biochem Cell Biol, 2012, 44(1): 16-20. DOI: 10.1016/j.biocel.2011.10.012.
[9] Kawakami T, Inagi R, Takano H,etal. Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells[J]. Nephrol Dial Transplant, 2009, 24(9): 2665-2672. DOI: 10.1093/ndt/gfp215.
[10] Mahfoudh-Boussaid A, Zaouali MA, Hadj-Ayed K,etal. Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1alpha in ischemic kidney: the role of nitric oxide[J]. J Biomed Sci, 2012, 19: 7. DOI: 10.1186/1423-0127-19-7.
[11] Cammisotto PG, Londono I, Gingras D,etal. Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats[J]. Am J Physiol Renal Physiol, 2008, 294(4): F881-F889. DOI: 10.1152/ajprenal.00373.2007.
[12] Sharma K, Ramachandrarao S, Qiu G,etal. Adiponectin regulates albuminuria and podocyte function in mice[J]. J Clin Invest, 2008, 118(5): 1645-1656. DOI: 10.1172/JCI32691.
[13] Ding W, Zhang X, Huang H,etal. Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injuryviainhibition of endoplasmic reticulum stress[J]. PLoS One, 2014, 9(4): e94545. DOI: 10.1371/journal.pone.0094545.
[14] Fleischmann G, Fillafer G, Matterer H,etal. Prevalence of chronic kidney disease in patients with suspected sleep apnea[J]. Nephrol Dial Transplant, 2010, 25(1): 181-186. DOI: 10.1093/ndt/gfp403.
[15] Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress[J]. Nat Cell Biol, 2011, 13(3): 184-190. DOI: 10.1038/ncb0311-184.
[16] Jing G, Wang JJ, Zhang SX. ER stress and apoptosis: a new mechanism for retinal cell death[J]. Exp Diabetes Res, 2012, 2012: 589589. DOI: 10.1155/2012/589589.
[17] Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response[J]. Curr Opin Cell Biol, 2011, 23(2): 143-149. DOI: 10.1016/j.ceb.2010.11.003.
[18] Rubio C, Pincus D, Korennykh A,etal. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity[J]. J Cell Biol, 2011, 193(1): 171-184. DOI: 10.1083/jcb.201007077.
[19] Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis[J]. Apoptosis, 2009, 14(8): 996-1007. DOI: 10.1007/s10495-009-0341-y.
[20] Schroder M. Endoplasmic reticulum stress responses[J]. Cell Mol Life Sci, 2008, 65(6): 862-894. DOI: 10.1007/s00018-007-7383-5.
[21] Marciniak SJ, Yun CY, Oyadomari S,etal. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum[J]. Genes Dev, 2004, 18(24): 3066-3077. DOI: 10.1101/gad.1250704.
[22] Nakagawa T, Zhu H, Morishima N,etal. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature, 2000, 403(6765): 98-103. DOI: 10.1038/47513.
[23] Chen L, Einbinder E, Zhang Q,etal. Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats[J]. Am J Respir Crit Care Med, 2005, 172(7): 915-920. DOI: 10.1164/rccm.200504-560OC.
[24] Wang Y, Zhang SX, Gozal D. Reactive oxygen species and the brain in sleep apnea[J]. Respir Physiol Neurobiol, 2010, 174(3): 307-316. DOI: 10.1016/j.resp.2010.09.001.
[25] Ding W, Yang L, Zhang M,etal. Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells[J]. Biochem Biophys Res Commun, 2012, 418(3): 451-456. DOI: 10.1016/j.bbrc.2012.01.037.
[26] Liu ZW, Zhu HT, Chen KL,etal. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy[J]. Cardiovasc Diabetol, 2013, 12: 158. DOI: 10.1186/1475-2840-12-158.