崔鍵
【摘 要】控制理論經(jīng)過了三十年的發(fā)展,已經(jīng)成為了圖論研究中的一個(gè)重要領(lǐng)域,在實(shí)際問題中有著重要的應(yīng)用。正是由于這方面的研究和實(shí)際應(yīng)用之間有著緊密的聯(lián)系,本文將研究圖在關(guān)聯(lián)改變下的控制穩(wěn)定性,即使用關(guān)聯(lián)約束數(shù)考慮圖中關(guān)聯(lián)的改變對(duì)控制有何影響。首次給出了關(guān)聯(lián)約束數(shù)的概念,得到相關(guān)性質(zhì)。進(jìn)一步研究路、無向圈的關(guān)聯(lián)約束數(shù),并得到準(zhǔn)確值。
【關(guān)鍵詞】關(guān)聯(lián)控制;關(guān)聯(lián)約束數(shù);路;無向圈
【Abstract】With the development of thirty years,the control theory has become an important field in the study of graph theory, which has important applications in practical problems.It is because of the close connection between the research and practical application,This paper studies the control stability of graphs under incidence change.Consider the impact with the changes of incidence on the control use the incidence bondage number of graph.It gives the concept of incidence bondage number for the first time,Get related properties.Further study?the incidence bondage number of path and undirected cycles,and get accurate value.
【Key words】Incidence domination;Incidence bondage number;Path;Undirected cycles