亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        湘北某鎮(zhèn)農(nóng)田土壤―水稻系統(tǒng)重金屬累積和稻米食用安全研究*

        2017-04-19 01:50:40蔣逸駿胡雪峰舒
        土壤學(xué)報(bào) 2017年2期
        關(guān)鍵詞:糙米稻米根部

        蔣逸駿 胡雪峰舒 穎 蔣 穎 滕 青

        (上海大學(xué)環(huán)境與化學(xué)工程學(xué)院,上海 200444)

        湘北某鎮(zhèn)農(nóng)田土壤―水稻系統(tǒng)重金屬累積和稻米食用安全研究*

        蔣逸駿 胡雪峰?舒 穎 蔣 穎 滕 青

        (上海大學(xué)環(huán)境與化學(xué)工程學(xué)院,上海 200444)

        為研究采礦煉礦活動(dòng)對(duì)農(nóng)田和稻谷重金屬累積的影響,評(píng)估其對(duì)人體健康的潛在風(fēng)險(xiǎn),對(duì)湖南北部某鎮(zhèn)一硫鐵礦附近典型污染稻田土壤—水稻系統(tǒng)8種重金屬(錳(Mn)、銅(Cu)、鋅(Zn)、鈷(Co)、鎳(Ni)、鉻(Cr)、鎘(Cd)和鉛(Pb))含量進(jìn)行監(jiān)測(cè)。結(jié)果表明:該冶煉廠附近稻田土壤Cd污染最嚴(yán)重,單因素污染指數(shù)達(dá)12.85,為重度污染;Cu、Zn、Co和Ni為輕度污染。土壤重金屬綜合污染指數(shù)達(dá)重度污染。重金屬生物富集因子的研究表明:Cd和Mn極易從土壤中被水稻根系吸收,尤其Cd被水稻根系吸收的能力遠(yuǎn)超其他重金屬元素;而Cu、Pb、Co、Cr、Zn和Ni相對(duì)不易被水稻根系吸收。重金屬在植株組織的分配也表現(xiàn)出差異:Pb、Co、Cu、Cd和Cr被水稻根吸收后,主要蓄積于根部,在根部的濃度百分比分別為82.5%、70.6%、64.8%、59.4%和57.5%;Mn、Zn 和Ni被根系吸收后,會(huì)迅速向地上部組織遷移。研究區(qū)稻田出產(chǎn)的糙米Cd污染嚴(yán)重,Cd的超標(biāo)率達(dá)100%,“鎘米”的產(chǎn)出率達(dá)53.3%。糙米Cu和Ni的超標(biāo)率也分別達(dá)到了40%和86.7%。若居民食用研究區(qū)稻米,每人每日攝入Cd量高于FAO/WHO推薦的標(biāo)準(zhǔn)限值5.9倍,表明研究區(qū)稻米存在很大安全風(fēng)險(xiǎn)。

        采礦煉礦;稻田土壤;重金屬;鎘(Cd);糙米

        隨著工業(yè)發(fā)展,重金屬對(duì)農(nóng)田的污染愈發(fā)嚴(yán)重。據(jù)報(bào)道[1],中國(guó)有接近2.0×107hm2的農(nóng)田被重金屬污染,其中鎘(Cd)嚴(yán)重污染的土壤就有2.8×105hm2。湖南是“中國(guó)有色金屬之鄉(xiāng)”,每年從湖南省輸出的重金屬量十分巨大[2]。據(jù)報(bào)道,2005年,湖南省生產(chǎn)的鋅(Zn)和鉛(Pb)分別占中國(guó)Zn、Pb總產(chǎn)量的23.7%和16.9%。在湖南全省,由于采礦和冶煉活動(dòng)導(dǎo)致土壤污染面積約為2.8×106hm2,占全省面積的13%[3]。大規(guī)模的采礦和礦石加工,已經(jīng)導(dǎo)致湖南稻田土壤和水稻被Cd、砷(As)和Pb等重金屬嚴(yán)重污染[4]。

        飲食是重金屬進(jìn)入人體的直接原因,世界上有超過半數(shù)的人口以稻米作為主食[5]。中國(guó)是世界上最大的水稻生產(chǎn)國(guó)和消費(fèi)國(guó)。土壤重金屬污染,不僅影響水稻生長(zhǎng)發(fā)育,導(dǎo)致產(chǎn)量下降[6],還會(huì)在稻谷內(nèi)大量積累,并沿食物鏈進(jìn)入人體,危害人體健康。稻谷重金屬含量的高低,直接決定是否會(huì)對(duì)人體健康產(chǎn)生危害。

        本文以湘北某鎮(zhèn)一硫鐵礦冶煉廠附近水稻田為例,研究稻田土壤錳(Mn)、銅(Cu)、Zn、鈷(Co)、鎳(Ni)、鉻(Cr)、Cd和Pb八種重金屬元素的含量及在水稻植株的積累情況,并對(duì)研究區(qū)稻田出產(chǎn)稻谷的重金屬累積和食用風(fēng)險(xiǎn)進(jìn)行評(píng)估。本研究對(duì)揭示礦業(yè)活動(dòng)重金屬污染元素進(jìn)入農(nóng)田生態(tài)系統(tǒng)的途徑和機(jī)理、修復(fù)污染土壤、阻止重金屬進(jìn)入食物鏈進(jìn)而減少人體健康風(fēng)險(xiǎn)均有重要參考意義。

        1 材料與方法

        1.1 研究區(qū)概況

        研究區(qū)位于湖南北部某鎮(zhèn),屬亞熱帶大陸性季風(fēng)濕潤(rùn)氣候,丘陵地貌。該鎮(zhèn)所在縣礦藏資源豐富,是著名的“有色金屬之鄉(xiāng)”。全縣已知的礦床、礦點(diǎn)有140多處,已探明的礦床、礦點(diǎn)40余處。全縣耕地總面積達(dá)6.53×104hm2,其中稻田面積5.51×104hm2,占總耕地面積的84.5%[7]。研究土壤為水稻土(水耕人為土),成土母質(zhì)為第四紀(jì)紅土[8],研究區(qū)土壤為肥沃型[9]。土壤pH、有機(jī)質(zhì)、全氮、全磷和鹽基離子濃度如表1所示。

        表1 研究區(qū)稻田土壤基本理化性狀Table 1 Physico-chemical properties of the paddy soils in the studied area

        1.2 樣品采集和分析

        該鎮(zhèn)有一硫鐵礦冶煉廠,由于冶煉廢水排入鄰近一灌溉溪流,使得溪流兩岸近千畝稻田均不同程度地受污染。野外調(diào)查表明,稻田的影響程度,與溪流污染狀況和距離有密切關(guān)系。

        距冶煉廠約5 km,受污溪流剛?cè)氲貏?shì)平緩的稻區(qū),兩岸稻田污染最重,有的稻田表土呈褐紅色。本文以此處20 hm2典型污染稻田為研究對(duì)象,對(duì)土壤—水稻植株系統(tǒng)重金屬含量作監(jiān)測(cè)。于2012年9月下旬湖南中季稻成熟季,采用GPS定位,對(duì)研究稻田進(jìn)行網(wǎng)格化采樣。每個(gè)網(wǎng)格單元均用十字交叉法采集耕作層(0 ~ 20 cm)的混合土樣約1 kg,裝入聚乙烯塑料袋中,送回實(shí)驗(yàn)室。土壤樣品共計(jì)15個(gè)(編號(hào):Y-1~Y-15)。同時(shí),在每個(gè)網(wǎng)格單元,用蛇形法采集對(duì)應(yīng)水稻成熟植株樣,共計(jì)15個(gè)(編號(hào):R-1~R-15)。

        土樣于實(shí)驗(yàn)室中自然風(fēng)干、磨碎,分別過2 mm 和0.149 mm篩,備用。

        水稻植株樣品帶回實(shí)驗(yàn)室后,去除雜物,用蒸餾水洗凈。每樣分為根、莖、葉、稻殼和稻米樣,烘干至恒重,用粉碎機(jī)粉碎后,密封備用。

        土壤和水稻樣品消解方法:稱取0.2000 g 左右過0.149 mm篩的風(fēng)干土樣于聚四氟乙烯坩堝中,加入混合酸(HF-HClO4-HNO3)進(jìn)行消解。稱取水稻各組織烘干粉末2.0000 g(稻根樣1.0000 g)置于三角燒瓶中,加HNO330 ml浸泡過夜后,低熱消解,隨后加入2 ml HClO4繼續(xù)消解至終點(diǎn)。

        土壤和水稻樣品重金屬測(cè)定:消解液重金屬(Cu、Zn、Cr、Ni、Co、Mn)含量用電感耦合等離子體發(fā)射光譜儀(ICP-AES:Prodigy型,利曼儀器有限公司,美國(guó))測(cè)定,儀器誤差為1.52%~3.43%,相對(duì)標(biāo)準(zhǔn)偏差1.34%~2.18%;Cd、Pb含量用石墨爐原子吸收法(GF-AAS:Z E E n i t 6 0 0/6 5 0,耶拿公司,德國(guó))測(cè)定,儀器誤差為2.3 1%~4.1 3%,相對(duì)標(biāo)準(zhǔn)偏差1.85%~2.89%。土壤重金屬分析過程用國(guó)家標(biāo)準(zhǔn)土壤樣品(GSS-6)進(jìn)行分析質(zhì)量控制;水稻樣品重金屬元素分析過程用湖南大米標(biāo)準(zhǔn)樣品(GBW10045)進(jìn)行分析質(zhì)量控制。每測(cè)試10個(gè)樣品,插入一個(gè)居中濃度的標(biāo)準(zhǔn)液校正測(cè)定值。

        1.3 重金屬污染指標(biāo)計(jì)算

        內(nèi)梅羅指數(shù):表示重金屬污染物對(duì)土壤環(huán)境和生態(tài)環(huán)境的危害程度,分為單因素污染指數(shù)和綜合污染指數(shù)。單因素污染指數(shù)[10]:

        式中,Pi為土壤中某重金屬 i 的單因素污染指數(shù);Ci為土壤中某重金屬 i 實(shí)測(cè)平均含量;Si為i的標(biāo)準(zhǔn)參考值(取GB15618-1995的二級(jí)含量限值);本研究i包括Mn、Cu、Zn、Co、Ni、Cr、Cd和Pb八種重金屬。

        式中,Pimax為樣區(qū)某重金屬i單因素污染指數(shù)的最大值;P—為單污染指數(shù)的加權(quán)平均值;wi為重金屬的權(quán)重,Hg、Pb、Cd和As為3,Zn、Cu、Cr和Ni 為2[12]。依據(jù)上述單因素污染指數(shù)和綜合污染指數(shù)的大小,將土壤重金屬污染現(xiàn)狀分為如下4個(gè)等級(jí):(1)P<1. 0,清潔;(2)P = 1. 0 ~ 2.0,輕度污染;(3)P = 2.0~3.0,中度污染;(4)P >3. 0,重度污染。

        生物富集因子(Bioconcentration factor,BCF):表示植物從土壤中吸收某種特定重金屬并積累在植物體內(nèi)的能力。計(jì)算公式[13]:

        式中,Cplant和Csoil分別代表了植物某部位的重金屬濃度和對(duì)應(yīng)的土壤重金屬濃度,以烘干重為基準(zhǔn)。

        遷移因子(Translocation factor,TF):表示植物體內(nèi)重金屬?gòu)母窟w移到地上部位的能力。計(jì)算公式[14]

        式中,Cshoot和Croot分別表示植物地上部位和植物根部重金屬濃度。

        重金屬每人每日攝入量(Per capita daily ingestion of heavy metals,DI):研究區(qū)內(nèi)居民經(jīng)稻米途徑攝入重金屬量,采用每人每日攝入量來(lái)計(jì)算。公式表達(dá)如下[15]

        式中,F(xiàn)IR為食物的攝入率,g person-1d-1。根據(jù)我國(guó)平均食物消費(fèi)結(jié)構(gòu),人均每年消費(fèi)稻麥等谷類糧食作物206 kg,假設(shè)谷類全部為大米,則成人每天消費(fèi)稻米0.339 kg[16];C為食物中重金屬含量,mgkg-1;1 000為單位轉(zhuǎn)換系數(shù),使mg d-1person-1轉(zhuǎn)換成μg d-1person-1。

        2 結(jié)果與討論

        2.1 稻田土壤重金屬含量

        研究區(qū)域水稻土發(fā)育于第四紀(jì)紅土,質(zhì)地黏重,多呈酸性或強(qiáng)酸性;但由于受淹水作用影響,個(gè)別樣點(diǎn)已趨中性(表2)。15個(gè)水稻土監(jiān)測(cè)樣點(diǎn),位于煉礦廢水排放導(dǎo)致的污染溪流兩岸。以國(guó)家土壤環(huán)境質(zhì)量二級(jí)標(biāo)準(zhǔn)(GB15618-1995)為基準(zhǔn),對(duì)稻田土壤重金屬含量(表2)進(jìn)行評(píng)價(jià)。結(jié)果表明:土壤Cd含量,超標(biāo)率達(dá)到了100%,污染十分普遍;Cu、Zn、Co、Ni的超標(biāo)率也分別達(dá)到了86.7%、60%、80%和60%。土壤Cd的單因素污染指數(shù)為12.85,達(dá)到重度污染;Cu、Zn、Co 和Ni的單因素污染指數(shù)依次為1.54、1.26、1.15和1.13,均為輕度污染(圖1),依然不可忽視。研究區(qū)稻田綜合污染指數(shù)達(dá)到9.39,已達(dá)到重度污染程度,表明該區(qū)域土壤已遭受嚴(yán)重污染。

        2.2 水稻重金屬生物富集因子

        根據(jù)研究區(qū)域水稻根部重金屬生物富集因子(表3),所研究重金屬可以分為兩大類:一類為Cd、Mn,極易從土壤中被水稻根系吸收;另一類為Cu、Pb、Co、Cr、Zn和Ni,相對(duì)不易被水稻根系吸收??梢钥闯?,Mn、Cu、Zn、Co、Ni、Cr、Cd和Pb八種重金屬中,Cd從土壤遷移至水稻根系的能力遠(yuǎn)超其他重金屬,生物富集因子平均值為11.84,最高值達(dá)到了22.24。Cd更易從土壤被水稻根系吸收[17]。Cu、Pb和Zn等重金屬在水稻生長(zhǎng)中后期基本不會(huì)再被水稻根系吸收進(jìn)入體內(nèi),但對(duì)Cd的吸收卻依然十分旺盛[18]。Mn也很容易被水稻根系吸收,生物富集因子平均為2.25。Cu、Pb、Co、Cr、Zn和Ni的生物富集因子多數(shù)小于1.00,說(shuō)明均不易從土壤遷移至水稻根部;但也有個(gè)別樣點(diǎn)超過1.00(表3),可能與不同樣點(diǎn)重金屬共存情況、土壤理化性質(zhì)和肥料施用不同等因素有關(guān)[19]。

        2.3 水稻植株重金屬積累和分布

        依據(jù)重金屬元素在水稻植株各部位(根、莖、葉、糙米和稻殼)的濃度百分比(圖2),也可以將所研究重金屬分為兩大類:一類為Pb、Co、Cu、Cd和Cr,主要累積于植株根部,在根部的濃度百分比依次為82.5%、70.6%、64.8%、59.4%和57.5%;另一類為Mn、Zn和Ni,根部的濃度百分比只為16.3%、29.9%、49.9%,而在地上部莖、葉和稻谷各部位濃度顯著增加。

        表2 研究區(qū)稻田土壤重金屬含量Table 2 Contents of heavy metals in the studied paddy soils

        圖1 研究區(qū)稻田土壤重金屬單因素污染指數(shù)Fig. 1 Singe-factor pollution indices of heavy metals in the studied paddy fields

        表3 研究區(qū)稻田水稻根部重金屬生物富集因子Table 3 Heavy metals bioconcentration factors in rice roots in the studied paddy fields

        植物地上部重金屬過量會(huì)毒害和抑制植物生長(zhǎng)。對(duì)于非必需重金屬元素,植物自身會(huì)通過減少吸收或截留在根部細(xì)胞等調(diào)節(jié)方式,使體內(nèi)重金屬含量維持在一定水平[20-21]。Pb主要富集在水稻根部,少量分布于莖、葉和稻殼中,而在糙米中的濃度非常低。前人[22]的研究也表明,水稻根部Pb濃度在抽穗期達(dá)到峰值,在莖和葉中的含量也會(huì)持續(xù)增大,但在糙米中的含量很低。Pb在水稻體內(nèi)含量分配的差異與Pb在植株各組織及細(xì)胞中的存在形式和移動(dòng)性有關(guān)[23]。Cu主要截留在水稻根部,會(huì)使根病變成棕色,作物發(fā)芽減少,從而降低產(chǎn)量[24]。本研究也表明,根部Cu濃度百分比達(dá)60%以上,莖、葉和殼的濃度較低,但稻米中的濃度接近葉部濃度。說(shuō)明Cu主要被攔截于水稻的根部,只有少部分轉(zhuǎn)移至水稻的其他部位,包括稻米中。Cr和Co也大部分在根部截留,較地上部富集量大很多。Cd對(duì)水稻有很大的毒害作用,水稻根部吸收Cd后主要富集在根部,根部Cd濃度百分比達(dá)59.4%,但有近40%的濃度比集中在水稻地上部。研究表明,木質(zhì)部的傳輸決定Cd從水稻根部遷移至地上部,遷移至糙米中則主要由韌皮部的傳輸決定[25]。

        Mn、Zn和Ni對(duì)水稻的毒害較小,且作為水稻的營(yíng)養(yǎng)元素大量遷移至水稻地上部。Mn主要蓄積在水稻葉部,葉部Mn濃度百分比達(dá)50%以上(圖2),當(dāng)葉部濃度達(dá)到0.5 ~ 2 mg kg-1時(shí),會(huì)降低水稻的光合作用[26]。植物葉中Mn含量的高低往往受體內(nèi)磷含量影響,當(dāng)體內(nèi)磷含量較低時(shí)會(huì)釋放較多羧化物,從而使植物葉中Mn含量維持在較高的水平[27]。Zn作為動(dòng)植物的營(yíng)養(yǎng)元素被吸收后,并不會(huì)被根部截留,而是主動(dòng)由木質(zhì)部傳輸至地上部,為植物提供營(yíng)養(yǎng)[28]。Zn主要蓄積在水稻莖部,莖部Zn濃度百分比達(dá)51.2%(圖2)。Zn在植物體內(nèi)含量還受磷含量影響,體內(nèi)磷含量較高時(shí),Zn含量較低,但在不同生長(zhǎng)期會(huì)有不同的影響[29]。Ni在水稻根部和地上部的濃度百分比基本相同,均為50%左右(圖2)。Ni在水稻地上部主要蓄積在莖和葉部,且濃度百分比也十分接近。這說(shuō)明水稻各組織對(duì)Ni的吸收和富集具有相似性[30]。雖然Ni是植物必需的微量元素,但過量的Ni會(huì)降低水稻呼吸作用[31],削弱水稻的氮同化作用,毒害水稻幼苗[32]。

        圖2 水稻植株各組織重金屬濃度百分比Fig. 2 Distribution of heavy metals(in percentage)in different tissues of a rice plant

        2.4 水稻糙米重金屬含量

        本研究對(duì)水稻地上部各組織的重金屬遷移因子進(jìn)行計(jì)算,結(jié)果見表4??傮w看,水稻莖、葉的重金屬遷移因子顯著高于糙米。因?yàn)橹亟饘賹?duì)水稻的毒害作用,使水稻產(chǎn)生一系列耐性機(jī)理阻礙其遷移,防止進(jìn)一步轉(zhuǎn)移至籽實(shí)[33]。

        稻米是主糧,稻米重金屬含量會(huì)深刻影響人體健康。Mn在糙米中的含量遠(yuǎn)低于莖和葉,Cr和Pb遷移至糙米的能力幾乎為零。Zn不易向糙米富集,但相對(duì)于其他非必需元素,Zn遷移至糙米的能力最強(qiáng)(表4)。Cu遷移至糙米的能力僅次于Zn(表3)。水稻能通過暫存在葉中的Cu直接從根部遷移至糙米中[34]。微量的Ni有助于植物的氮代謝,但過量的Ni則會(huì)毒害水稻分蘗,使穗重量降低[35]。研究表明[36],水稻籽實(shí)能選擇性地“優(yōu)先”吸收Cd。糙米對(duì)Cd的吸收有顯著的基因型差異,此外,Cd在土壤中的有效性以及土壤種類、酸堿度、肥料使用和氣候條件等也會(huì)影響糙米Cd含量[37]。

        水稻糙米中,Mn、Cu和Zn含量顯著高于Cd(表5)。但前者生理毒性低,且又是水稻的營(yíng)養(yǎng)元素。Cd對(duì)水稻無(wú)任何營(yíng)養(yǎng)意義,且有很強(qiáng)的生理毒性。糙米Cd含量是評(píng)估稻米安全和質(zhì)量的一個(gè)重要指標(biāo)。在食品安全國(guó)家標(biāo)準(zhǔn)(GB2762-2012)中,糙米Cd 含量0.2 mg kg-1為限制值。糙米Cd含量超過1 mg kg-1時(shí),稱為“鎘米”[38],食用后會(huì)對(duì)人體健康產(chǎn)生嚴(yán)重危害,因而又稱“毒大米”。對(duì)研究區(qū)稻田產(chǎn)出糙米的Cd含量進(jìn)行評(píng)價(jià),糙米Cd超標(biāo)率達(dá)100%,與農(nóng)田土壤Cd污染程度一致;“鎘米”的產(chǎn)出率達(dá)53.3%。充分說(shuō)明由于受煉礦廢水排放的影響,研究區(qū)域已受到Cd的嚴(yán)重污染,尤其毒大米產(chǎn)出比例很高,應(yīng)引起高度重視。糙米Cu和Ni的超標(biāo)率也分別達(dá)到了40%、 86.7%,同樣不容忽視。

        表4 研究區(qū)稻田水稻植株地上部重金屬遷移因子Table 4 Heavy metals translocation factors in rice shoots in the studied paddy fields

        表5 研究區(qū)稻田糙米重金屬含量Table 5 Contents of heavy metals in the brown rice produced in the studied paddy fields

        2.5 稻米食用風(fēng)險(xiǎn)評(píng)價(jià)

        圖3 研究區(qū)居民食用研究稻田產(chǎn)出稻米每人每日重金屬攝入量Fig. 3 Per capita daily ingestion of heavy metals of the local residents through consumption of the rice produced in the studied paddy fields

        假定研究區(qū)域周邊居民以當(dāng)?shù)爻霎a(chǎn)的稻米為主食,估算出居民因食用稻米攝入的Cu、Zn、Ni、 Cr、Cd和Pb量分別為2 732、7 085、464、85、410和37 μg d-1person-1(圖3)。其中,Cu、Zn、Ni、Cr和Pb的攝入量低于FAO/WHO推薦限量標(biāo)準(zhǔn)[39],但Cd攝入量為FAO/WHO推薦允許限量標(biāo)準(zhǔn)的5.9倍(圖3)。重金屬在稻米中主要與蛋白質(zhì)結(jié)合[40];進(jìn)入人體后,可溶性蛋白質(zhì)能絡(luò)合Cd等重金屬,可一定程度緩和重金屬對(duì)人體的毒性[41]。另一方面,還應(yīng)考慮多種重金屬被人體吸收后的復(fù)合效應(yīng),不能只考慮單一暴露源進(jìn)行評(píng)價(jià)[42]。因此,這一評(píng)價(jià)方式也有局限。研究區(qū)域稻米Cd的累積,對(duì)當(dāng)?shù)鼐用裆眢w健康構(gòu)成潛在威脅。

        3 結(jié) 論

        湘北某鎮(zhèn)一硫鐵礦冶煉廠廢水排放,污染灌溉溪流,使得溪流兩岸約20 hm2稻田土壤重金屬污染嚴(yán)重:土壤Cd的超標(biāo)率達(dá)100%,Cd單因素污染指數(shù)達(dá)重度污染,Cu、Zn、Co和Ni也達(dá)到輕度污染,重金屬綜合污染指數(shù)達(dá)重度污染。Cd和Mn極易從土壤被水稻根部吸收,其他重金屬元素相對(duì)不易被水稻根吸收。重金屬元素Pb、Co、Cu、Cd 和Cr被水稻根部吸收后,主要累積于根部;Mn、Zn和Ni被根部吸收后,會(huì)迅速遷移至地上部。研究區(qū)稻田出產(chǎn)的糙米Cd污染嚴(yán)重,Cd的超標(biāo)率達(dá)100%,“鎘米”的產(chǎn)出率達(dá)53.3%。糙米Cu、Ni的超標(biāo)率也分別達(dá)40%和86.7%。若居民食用研究區(qū)出產(chǎn)稻米,每人每日攝入Cd量高于FAO/WHO推薦的標(biāo)準(zhǔn)限值5.9倍。表明該典型污染區(qū)稻米已存在很大食用風(fēng)險(xiǎn)。

        [1]Li P,Wang X,Zhang T,et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. Journal of Environmental Sciences,2008,20(4):449—455

        [2]Liao B,Guo Z,Probst A,et al. Soil heavy metal contamination and acid deposition:Experimental approach on two forest soils in Hunan,southern China. Geoderma,2005,127(1/2):91—103

        [3]Li Z,F(xiàn)eng X,Li G,et al. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province,China. Applied Geochemistry,2011,26(2):160—166

        [4]Wang M,Chen W,Peng C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan,southern China. Chemosphere,2016,144:346—351

        [5]Wu W,Cheng S. Root genetic research,an opportunity and challenge to rice improvement. Field CropsResearch,2014,165:111—124

        [6]Nayak A K,Raja R,Rao K S,et al. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicology and Environmental Safety,2015,114:257—262

        [7]Du Y,Hu X F,Wu X H,et al. Affects of mining activities on cd pollution to the paddy soils and rice grain in Hunan province,central south China. Environmental Monitoring and Assessment,2013,185 (12):9843—9856

        [8]張甘霖,王秋兵,張鳳榮,等. 中國(guó)土壤系統(tǒng)分類土族和土系劃分標(biāo)準(zhǔn). 土壤學(xué)報(bào),2013,50(4):826—834

        Zhang G L,Wang Q B,Zhang F R,et al. Criteria for establishment of soil family and soil series in Chinese Soil Taxonomy(In Chinese). Acta Pedologica Sinica,2013,50(4):826—834

        [9]孫波,張?zhí)伊郑w其國(guó). 南方紅壤丘陵區(qū)土壤養(yǎng)分貧瘠化的綜合評(píng)價(jià). 土壤,1995,27(3):119—128

        Sun B,Zhang T L,Zhao Q G. Evalution of soil nutrient depletion in hilly red soil region of southern China(In Chinese). Soils,1995,27(3):119—128

        [10]杜艷,常江,徐笠. 土壤環(huán)境質(zhì)量評(píng)價(jià)方法研究進(jìn)展.土壤通報(bào),2010,41(3):749—756

        Du Y,Chang J,Xu L. Progress on assessing methods of soil environmental quality(In Chinese). Chinese Journal of Soil Science,2010,41(3):749—756

        [11]胡淼,吳家強(qiáng),彭佩欽,等. 礦區(qū)耕地土壤重金屬污染評(píng)價(jià)模型與實(shí)例研究. 環(huán)境科學(xué)學(xué)報(bào),2014,34 (2):423—430

        Hu M,Wu J Q,Peng P Q,et al. Assessment model of heavy metal pollution for arable soils and a case study in a mining area(In Chinese). Acta Scientiae Circumstantiae,2014,34(2):423—430

        [12]崔立強(qiáng),嚴(yán)金龍,丁成,等. 鹽城市不同功能區(qū)地表灰塵重金屬污染特征及評(píng)價(jià). 環(huán)境污染與防治,2014,36(9):712,17

        Cui L Q,Yan J L,Ding C,et al. Characteristic and assessment of heavy metals pollution in urban surface dust of different functional areas of Yancheng(In Chinese). Environmental Pollution and Control,2014,36(9):7—12,17

        [13]Galal T M,Shehata H S. Bioaccumulation and translocation of heavy metals by plantago major l. Grown in contaminated soils under the effect of traffic pollution. Ecological Indicators,2015,48:244—251 [14]Zhang Y,Luo XJ,Mo L,et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L)planted in paddy soil collected from an electronic waste recycling site,south China. Chemosphere,2015,137:25—32

        [15]Fang Y,Sun X,Yang W,et al. Concentrations and health risks of lead,cadmium,arsenic,and mercury in rice and edible mushrooms in China. Food Chemistry,2014,147:147—151

        [16]雷鳴,曾敏,王利紅,等. 湖南市場(chǎng)和污染區(qū)稻米中As、Pb、Cd污染及其健康風(fēng)險(xiǎn)評(píng)價(jià). 環(huán)境科學(xué)學(xué)報(bào),2010,30(11):2314—2320

        Lei M,Zeng M,Wang L H,et al. Arsenic,lead,and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment(In Chinese).Acta Scientiae Circumstantiae,2010,30 (11):2314—2320

        [17]Z h a o K,L i u X,X u J,e t a l. H e a v y m e t a l contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials,2010,181 (1/3):778—787

        [18]朱姍姍,張雪霞,王平,等. 多金屬硫化物礦區(qū)水稻根際土壤中重金屬形態(tài)的遷移轉(zhuǎn)化. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(5):944—952

        Zhu S S,Zhang X X,Wang P,et al. Effect of rhizospheric environment of rice on bioavailability and mobility of Cd,Cu,Pb and Zn in AMD polluted paddy soil(In Chinese). Journal of Agro-Environment Science,2013,32(5):944—952

        [19]喬振芳,彭世彰,徐俊增,等. 稻田土壤重金屬賦存形態(tài)·運(yùn)移規(guī)律及灌溉的影響. 安徽農(nóng)業(yè)科學(xué),2011,39(16):9698—9700,9702

        Qiao Z F,Peng S Z,Xu J Z,et al. Chemical forms and migration of soil heavy metals in paddy and effects of irrigation(In Chinese). Journal of Anhui Agricultural Sciences,2011,39(16):9698—9700,9702

        [20]Hameed A,Rasool S,Azooz M M,et al. Chapter 24 - heavy metal stress:Plant responses and signaling// Ahmad P. Plant metal interaction. India:Elsevier,2016:557—583

        [21]Kumar R,Mishra R K,Mishra V,et al. Chapter 13 -detoxification and tolerance of heavy metals in plants// Ahmad P. Plant metal interaction. India:Elsevier,2016:335—359

        [22]楊玉峰,黃標(biāo),齊雁冰,等. 長(zhǎng)江三角洲典型地區(qū)水稻籽粒中重金屬含量及空間分布特征. 土壤,2009,41 (1):42—48

        Yang Y F,Huang B,Qi Y B,et al. Spatial variation of heavy metals in rice grains in a typical area of Yangtze River Delta Region(In Chinese). Soils,2009,41 (1):42—48

        [23]楊祥田,周翠,何賢彪,等. 田間試驗(yàn)條件下不同基因型水稻對(duì)Cd和Pb的吸收分配特征. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(3):438—444

        Yang X T,Zhou C,He X B,et al. Uptake and partition of Cd and Pb among rice genotypes in contaminated paddy soil(In Chinese). Journal of Agro-Environment Science,2013,32(3):438—444

        [24]Huang Y,Hu Y,Liu Y. Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper,cadmium and lead. Acta Ecologica Sinica,2009,29(6):320—326

        [25]Uraguchi S,F(xiàn)ujiwara T. Cadmium transport and tolerance in rice:Perspectives for reducing grain cadmium accumulation. Rice,2012,5(1):1—8

        [26]Lidon F C,Barreiro M G,Ramalho J C. Manganese accumulation in rice:Implications for photosynthetic functioning. Journal of Plant Physiology,2004,161 (11):1235—1244

        [27]Lambers H,Hayes P E,Laliberte E,et al. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science,2015,20(2):83—90

        [28]虞銀江,廖海兵,陳文榮,等. 水稻吸收、運(yùn)輸鋅及其籽粒富集鋅的機(jī)制. 中國(guó)水稻科學(xué),2012,26(3):365—372

        Yu Y J,Liao H B,Chen W R,et al. Mechanism of Zn uptake,translocation in rice plant and Zn-enrichment in rice grain(In Chinese). Chinese Journal of Rice Science,2012,26(3):365—372

        [29]Zhang W,Liu D,Li C,et al. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application. Field Crops Research,2015,184:155—161

        [30]K a m r a n M A,E q a n i S A,B i b i S,e t a l. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria PGPRs)under nickel stress. Ecotoxicology and Environmental Safety,2016,126:256—263

        [31]Llamas A,Sanz A. Organ-distinctive changes in respiration rates of rice plants under nickel stress. Plant Growth Regulation,2007,54(1):63—69

        [32]Mishra P,Dubey R S. Nickel and Al-excess inhibit nitrate reductase but upregulate activities of aminating glutamate dehydrogenase and aminotransferases in growing rice seedlings. Plant Growth Regulation,2011,64(3):251—261

        [33]仲曉春,陳京都,郝心寧. 水稻作物對(duì)重金屬鎘的積累、耐性機(jī)理以及栽培調(diào)控措施進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào),2015,31(36):1—5

        Zhong X C,Chen J D,Hao X N. Research process of accumulation,tolerance mechanism and cultivation control measures of heavy metal cadmium in rice crops (In Chinese). Chinese Agricultural Science Bulletin,2015,31(36):1—5

        [34]Yan Y P,He J Y,Zhu C,et al. Accumulation of copper in brown rice and effect of copper on rice growth and grain yield in different rice cultivars. Chemosphere,2006,65(10):1690—1696

        [35]康立娟,謝忠雷. 鎳對(duì)玉米和水稻污染效應(yīng)及累積規(guī)律的研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2008,27(6):2315—2318

        Kang L J,Xie Z L. Pollution effects and accumulation rules of nickel in corn and rice(In Chinese). Journal of Agro-Environment Science,2008,27(6):2315—2318

        [36]魏建宏,范美蓉,廖育林,等. 赤泥施用量在鉛鋅礦區(qū)土壤-水稻系統(tǒng)中的改良效應(yīng). 土壤通報(bào),2013,44 (3):723—729

        Wei J H,F(xiàn)an M R,Liao Y L,et al. Effects of red mud on the remediation in soil-rice system on lead and zinc mining area soil(In Chinese). Chinese Journal of Soil Science,2013,44(3):723—729

        [37]李先喆,徐慶國(guó),劉紅梅. 栽培條件對(duì)水稻鎘積累的影響研究進(jìn)展. 湖南農(nóng)業(yè)科學(xué),2015(3):144—147

        Li X Z,Xu Q G,Liu H M. Research advance in effects of cultivation conditions on cadmium absorption and accumulation in rice(In Chinese).Hunan Agricultural Sciences,2015(3):144—147

        [38]孫聰,陳世寶,宋文恩,等. 不同品種水稻對(duì)土壤中鎘的富集特征及敏感性分布(SSD). 中國(guó)農(nóng)業(yè)科學(xué),2014,47(12):2384—2394 Sun C,Chen S B,Song W E,et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution(In Chinese). Scientia Agricultura Sinica,2014,47(12):2384—2394

        [39]Akinyele I O,Shokunbi O S. Concentrations of Mn,F(xiàn)e,Cu,Zn,Cr,Cd,Pb,Ni in selected nigerian tubers,legumes and cereals and estimates of the adult daily intakes. Food Chemistry,2015,173:702—708

        [40]周顯青,王鈴釗,張玉榮,等. 稻米籽粒中鎘的分布、形態(tài)和檢測(cè)方法研究進(jìn)展. 糧食與飼料工業(yè),2014 (7):9—13

        Zhou X Q,Wang L Z,Zhang Y R,et al. Reviews of distribution,forms and inspection methods of cadmium in rice kernel(In Chinese).Cereal and Feed Industry,2014(7):9—13

        [41]楊居榮,查燕. 食品中重金屬的存在形態(tài)及其與毒性的關(guān)系. 應(yīng)用生態(tài)學(xué)報(bào),1999,10(6):766—770

        Yang J R,Zha Y. Existing forms of heavy metals andtheir toxicity in foods(In Chinese).Chinese Journal of Appled Ecology,1999,10(6):766—770

        [42]涂杰峰,劉蘭英,羅欽,等. 福建省稻米鎘含量及其健康風(fēng)險(xiǎn). 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(4):695—701

        Tu J F,Liu L Y,Luo Q,et al. Contents and health risk assessment of cadmium in milled rice in Fujian Province(In Chinese). Journal of Agro-Environment Science,2015,34(4):695-701

        Accumulation of Heavy Metals in the Soil-Rice System and Assessment of Dietary Safety of the Rice Produced in the Paddy Fields ― A Case Study of a Town in the Northern Part of Hunan Province,China

        JIANG Yijun HU Xuefeng?SHU Ying JIANG Ying TENG Qing
        (School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)

        【Objective】Hunan Province in Central South China,is a well known nonferrous metal mining base in China. The activities of mining and smelting,however,pose great threat to the cultivated land in the province. This study is to investigate the influences of mining and smelting on heavy metal pollution of soils and rice plants,and to assess its potential risks on human health.【Method】An investigation was carried out in a town in the northern part of Hunan Province rich in mineral resources,and found that a pyrite smelting factory located at Y Town discharged wastewater,severely polluting a creek and the paddy fields around. Contents of Mn,Cu,Zn,Co,Ni,Cr,Cd and Pb in the soil-rice system of the paddy field on the two sides of the polluted creek nearby the pyrite mine at the town were monitored.【Result】Results show that the soils were heavily polluted by Cd,with an over-standard rate being 100%,and by Cu,Zn,Co and Ni,too,with an over-standard rate being 86.7%,60%,80% and 60%,respectively. The single-factor pollution index of Cd in the soils reached 12.85,indicating a heavy pollution level,and that of Cu,Zn,Co and Ni was 1.54,1.26,1.15 and 1.13,respectively,indicating a light pollution level. The comprehensive pollution index of the eight heavy metal elements in the soils was 9.39,also indicating that the soils as a whole,were heavily polluted. Analysis of heavy metals bio-accumulation factors indicates that Cd and Mn in the soils were easily taken up by rice roots,especially,Cd,of which the availability to rice was much higher than that of all the others,with bio-accumulating factor being 11.84 on average,but Cu,Pb,Co,Cr,Zn and Ni were relatively hard. Pb,Co,Cu,Cd and Cr was mainly accumulated in rice roots,making up 82.5%,70.6%,64.8%,59.4% and 57.5%,respectively,of the total in the plant. Mn,Zn and Ni,however,was rapidly translocated to the shoots of rice plants after being taken up by roots,with only 16.3%,29.9% and 49.9%,respectively,left in the roots. The brown rice produced in the studied paddy fields was commonly heavily polluted by Cd. The brown rice produced in the fields was found with Cd exceeding the allowable limit(0.2 mg kg-1)by 100%,and about 53.5% of the brown rice was called“Cadium rice”with Cd concentration over 1 mg kg-1. In addition,the brown rice also contained Cu and Ni exceeding the allowable limits by 40% and 86.7%,respectively. The per capita daily ingestion(PDI)of Cu,Zn,Ni,Cr,Cd and Pb through consumption of the rice grain reached 2 732,7 085,464,85,410 and 37 μg,respectively. The PDI of Cu,Zn,Ni,Cr and Pb was lower than their respective safe levels,but that of Cd reached 5.9 times the safe level set by FAO/WHO.【Conclusion】All the findings in this study demonstrate that the rice produced in the studied area has posed a serious health risk to the local residents.

        Mining and smelting;Paddy soils;Heavy metals;Cd;Rice

        S151.9

        A

        10.11766/trxb201603300061

        (責(zé)任編輯:陳榮府)

        * 國(guó)家自然科學(xué)基金項(xiàng)目(41130526,41471174)資助 Supported by the National Natural Science Foundation of China(Nos. 41130526 and 41471174)

        ? 通訊作者 Corresponding author,E-mail:xfhu@shu.edu.cn

        蔣逸駿(1990—),男,浙江紹興人,碩士研究生,主要從事農(nóng)田土壤與水稻重金屬研究。E-mail:610131889@qq.com

        2016-03-30;

        2016-06-09;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-11-03

        猜你喜歡
        糙米稻米根部
        喝糙米茶好處多
        保健與生活(2023年9期)2023-05-19 21:07:36
        隱藏于稻米花果中的酒香
        美食(2022年5期)2022-05-07 22:27:35
        稻米香噴噴
        降低低壓鑄造鋁合金輪轂輻條根部縮孔報(bào)廢率
        發(fā)揮內(nèi)外因作用 促進(jìn)稻米業(yè)發(fā)展
        根部穿孔性闌尾炎的腹腔鏡治療策略
        膝關(guān)節(jié)內(nèi)側(cè)半月板后根部撕裂的MRI表現(xiàn)
        磁共振成像(2015年9期)2015-12-26 07:20:31
        陰莖根部完全離斷再植成功1例報(bào)告
        阿維菌素在稻米中的殘留檢測(cè)
        麥胚糙米混合粉的擠壓制備工藝研究
        加勒比东京热中文字幕| 国内精品福利在线视频| 亚洲黄视频| 国产精彩视频| 噜噜噜色97| 国产精品99久久精品女同| 在线观看一区二区三区国产 | 精品无码一区二区三区的天堂| 亚洲亚洲人成综合丝袜图片| 中文字幕无码不卡一区二区三区| 乱子真实露脸刺激对白| 色二av手机版在线| 中文字幕亚洲入口久久| 水野优香中文字幕av网站| 精品乱码久久久久久久| 国产999视频| 久久久久久一本大道无码| 91国产自拍精品视频| 午夜精品久久久久久久99热| 破了亲妺妺的处免费视频国产| 久久久久久国产福利网站| 人妻经典中文字幕av| 人妻体内射精一区二区三四| 亚洲欧美日韩高清专区一区| 国产一区亚洲欧美成人| 久久麻豆精亚洲av品国产蜜臀| 粉嫩av最新在线高清观看| 国产裸体xxxx视频在线播放| XXXXBBBB欧美| 日本一二三区在线视频观看| 久久久99精品成人片| 国产老熟女狂叫对白| 亚洲国产字幕| 在线观看播放免费视频| 精品国产三级a在线观看不卡| 色吊丝中文字幕| 亚洲AV无码国产成人久久强迫| 在线观看国产精品一区二区不卡| 成 人色 网 站 欧美大片在线观看| 亚洲成a人片在线观看无码| 国产精品制服一区二区|