鐘志有, 康 淮, 陸 軸, 龍 路
(中南民族大學(xué) 電子信息工程學(xué)院, 智能無線通信湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)
摻鎂氧化鋅薄膜結(jié)構(gòu)及其光學(xué)性質(zhì)的研究
鐘志有, 康 淮, 陸 軸, 龍 路
(中南民族大學(xué) 電子信息工程學(xué)院, 智能無線通信湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)
以氧化鎂(MgO)摻雜的氧化鋅(ZnO)陶瓷靶作為濺射靶材,采用射頻磁控濺射方法在玻璃襯底上制備了摻鎂ZnO(ZnO:Mg)薄膜樣品.通過X射線衍射儀和可見-紫外光分光光度計(jì)的測試表征,研究了濺射時間對ZnO:Mg薄膜晶體結(jié)構(gòu)和光學(xué)性質(zhì)的影響.結(jié)果表明:ZnO:Mg薄膜的結(jié)構(gòu)和性能與濺射時間密切相關(guān).隨著濺射時間的增加,ZnO:Mg薄膜(002)晶面的織構(gòu)系數(shù)減小、(110)晶面的織構(gòu)系數(shù)增大,對應(yīng)的可見光波段的平均透過率降低.濺射時間為15 min時,ZnO:Mg薄膜樣品具有最佳的(002)擇優(yōu)取向生長特性和最好的透光性能.同時ZnO:Mg薄膜樣品的禁帶寬度隨濺射時間增加而單調(diào)增大.與未摻雜ZnO薄膜相比,所有ZnO:Mg薄膜樣品的禁帶寬度均變寬.
磁控濺射;氧化鋅;晶體結(jié)構(gòu);光學(xué)性質(zhì)
作為一種新型的Ⅱ-Ⅵ族直接帶隙半導(dǎo)體材料,氧化鋅(ZnO)可以廣泛應(yīng)用于太陽能電池[1-5]、發(fā)光二極管[6-9]、光波導(dǎo)器件[10]、平板顯示[11-15]、氣體傳感器[16-18]以及窗口材料[19]等眾多領(lǐng)域,同時由于它具有禁帶寬、原料豐富、無毒性、價格低廉等潛在優(yōu)勢,被普遍認(rèn)為是傳統(tǒng)銦錫氧化物(ITO)的最佳替代品之一[20-22],因此深受國內(nèi)外科技界和工業(yè)界的廣泛關(guān)注.人們通過在ZnO中摻入雜質(zhì)可以改變其特性,以滿足特殊用途的需要.例如:摻鎘ZnO能夠調(diào)節(jié)薄膜的禁帶寬度,應(yīng)用于光熱轉(zhuǎn)換太陽能器件之中,摻鈹ZnO能夠增強(qiáng)薄膜的電學(xué)穩(wěn)定性,摻鋯ZnO能夠提高薄膜的熱穩(wěn)定性,而摻鋁ZnO則有利于改善薄膜的綜合光電性能[23-25].目前,在ZnO中摻入Mg成分形成三元合金Zn1-xMgxO,使之禁帶寬度比純ZnO的大,并且可以通過調(diào)節(jié)Mg/Zn不同原子比來獲得不同的禁帶寬度.Zn1-xMgxO作為一種新的光電材料,由于其禁帶寬度較大且可調(diào)控,因此它在半導(dǎo)體激光器、ZnO/Zn1-xMgxO超晶格、異質(zhì)結(jié)、量子阱等光學(xué)帶隙工程中,具有巨大的應(yīng)用潛力.此外,在CIGS薄膜太陽能電池中,Zn1-xMgxO薄膜也被很多研究者視為替代有毒CdS作為緩沖層極具前景的材料之一[19].因此,對于摻鎂ZnO(ZnO:Mg)薄膜制備和性質(zhì)的研究具有極其重要的意義.
ZnO:Mg薄膜的制備方法主要有磁控濺射沉積[26-30]、脈沖激光沉積[31,32]、原子層沉積[33,34]、噴霧熱分解[35,36]、溶膠-凝膠法[37,38]等,而其中采用射頻磁控濺射技術(shù)制備ZnO:Mg薄膜具有沉積速率高、均勻性好、粘附性能好、便于大批量工業(yè)生產(chǎn)等優(yōu)勢[39-42],所以獲得了廣泛應(yīng)用.本文以普通玻璃為襯底材料,以MgO摻雜的ZnO陶瓷靶作為濺射靶材,采用射頻磁控濺射技術(shù)制備ZnO:Mg薄膜樣品,通過X射線衍射儀、紫外-可見光分光光度計(jì)等測試表征,研究了濺射時間對ZnO:Mg薄膜晶體結(jié)構(gòu)及其光學(xué)性質(zhì)的影響.
1.1 襯底處理
選用厚度為1 mm的普通玻璃作為襯底材料,襯底大小為30 mm×30 mm.實(shí)驗(yàn)前首先對玻璃襯底進(jìn)行擦拭、沖洗,然后依次在丙酮溶液、無水乙醇和去離子水中進(jìn)行超聲清洗15 min,最后使用去離子水沖洗并自然干燥,放入預(yù)濺射室中.
1.2 樣品制備
ZnO:Mg薄膜樣品通過射頻磁控濺射方法制備,所用成膜設(shè)備為沈陽科友真空設(shè)備公司生產(chǎn)的KDJ-567型高真空磁控與離子束復(fù)合鍍膜系統(tǒng),所用射頻頻率為13.56 MHz.系統(tǒng)的本底真空度為2.8×10-4Pa,襯底溫度為300 ℃,濺射功率為180 W,濺射時間為15~25 min,所用陶瓷靶材為合肥科晶材料技術(shù)有限公司生產(chǎn),由純度均為99.99%的ZnO和MgO(兩者的質(zhì)量比為97%:2%)經(jīng)過高溫?zé)Y(jié)而成,靶材直徑為50 mm,厚度為4 mm,靶材與襯底之間的距離為75 mm.濺射時所用工作氣體為99.999%的高純氬氣,濺射時氬氣壓強(qiáng)為2.3 Pa.實(shí)驗(yàn)過程中,保持其它工藝參數(shù)不變而改變?yōu)R射時間,分別將濺射時間設(shè)置為15、20和25 min制備薄膜樣品,以研究濺射時間對ZnO:Mg薄膜樣品晶體結(jié)構(gòu)及其光學(xué)性質(zhì)的影響.
1.3 樣品測試
ZnO:Mg薄膜樣品的晶體結(jié)構(gòu)通過德國Bruker公司的D8-ADVANCE型X射線衍射儀(Cu Kα,射線源的波長λ=1.5406 ?)分析,采用θ-2θ連續(xù)掃描方式,掃描速度為10 °/min,掃描步長為0.0164°,工作電壓為40 kV,工作電流為40 mA.掃描角度為30°~70°.光學(xué)透過率利用北京普析通用儀器公司的UV-2100型雙光束紫外-可見分光光度計(jì)進(jìn)行表征,測量時掃描步長為1 nm,掃描范圍為300~800 nm.所有測試均在室溫和大氣條件下完成.
2.1 薄膜的生長速率
不同濺射時間時ZnO:Mg薄膜樣品的厚度如圖1所示,可以看出,濺射時間為15、20和25 min時,ZnO:Mg薄膜樣品的厚度分別為550、890和1060 nm,對應(yīng)的薄膜生長速率為0.61、0.74和0.71 nm/s.很明顯,在制備薄膜樣品的初始階段,其生長速率相對較小;隨著濺射時間的增加,薄膜生長速率也有所有增大,但是當(dāng)濺射時間增加到一定程度之時,薄膜的生長速率卻略有減小.可見,在ZnO:Mg薄膜制備過程中,其生長速率的變化幅度較小,它隨濺射時間的增加而呈現(xiàn)出先增大后減小的變化趨勢.
圖1 不同濺射時間時薄膜樣品的厚度Fig.1 Thickness of the thin films deposited with various sputtering time
2.2 薄膜的晶體結(jié)構(gòu)
不同濺射時間時ZnO:Mg薄膜樣品的XRD圖譜如圖2所示,從圖中可知,在30°~70°的掃描范圍內(nèi),所有的ZnO:Mg薄膜樣品都顯示有三個強(qiáng)度較大的XRD衍射峰,分別位于2θ為31°、34°和55°附近,通過比對標(biāo)準(zhǔn)ZnO晶體(JCPDS No.36-1451)[43,44]發(fā)現(xiàn)它們分別與ZnO晶面(100)、(002)和(110)的特征譜線數(shù)據(jù)相吻合.另外,XRD圖譜中并沒有出現(xiàn)金屬Zn、金屬M(fèi)g以及MgO的特征衍射峰,其測試結(jié)果表明:在實(shí)驗(yàn)制備的薄膜樣品中,Mg替代了Zn的位置,或者存在于六角晶格之中,或者分布在晶粒間界的區(qū)域,所有ZnO:Mg薄膜樣品具有ZnO六角纖鋅礦型結(jié)構(gòu),并且它們均為多晶薄膜.
圖2 薄膜樣品的XRD圖譜Fig.2 XRD patterns of the thin films
不同濺射時間時,ZnO:Mg薄膜樣品各個晶面的衍射峰強(qiáng)度(I(100)、I(002)、I(110))如圖3所示,可以看出,隨著濺射時間的增加,I(100)、I(002)和I(110)呈現(xiàn)出不同的變化趨勢,其中,I(002)隨濺射時間增加而單調(diào)減小、I(110)隨濺射時間增加而單調(diào)增大,而I(100)隨濺射時間增加則先增大而后減小.為了表征所制備ZnO:Mg薄膜樣品的擇優(yōu)取向特性,本文采用織構(gòu)系數(shù)(TC(hkl))進(jìn)行定量描述.織構(gòu)系數(shù)TC(hkl)定義為某個晶面的相對衍射強(qiáng)度與各晶面相對衍射強(qiáng)度總和的平均值之比[45],其具體表達(dá)式如下:
(1)
(1)式中,N為計(jì)算時所取的晶面總數(shù)目;h、k、l為衍射晶面密勒指數(shù);TC(hkl)表示(hkl)晶面的織構(gòu)系數(shù);I(hkl)和I0(hkl)分別為薄膜樣品與標(biāo)準(zhǔn)ZnO試樣(JCPDS No.36-1451)在(hkl)晶面的衍射峰強(qiáng)度.在本文中,N=3,即取三個較強(qiáng)的衍射峰(100)、(002)和(110)來計(jì)算TC(hkl).從公式(1)看出:如果各個衍射面的TC值都相同時,就說明各晶面的取向是無序的;如果某個晶面的TC值大于1時,則表示該晶面表現(xiàn)出擇優(yōu)生長取向特性,同時TC的數(shù)值越大,則表明擇優(yōu)取向的程度就越高.
圖3 薄膜樣品的衍射峰強(qiáng)度Fig.3 The intensity of diffraction peaks for the thin films
根據(jù)圖3中ZnO:Mg薄膜樣品的XRD分析數(shù)據(jù),可以計(jì)算出不同濺射時間時ZnO:Mg薄膜樣品在(100)、(002)和(110)晶面的織構(gòu)系數(shù)TC(hkl),其結(jié)果如圖4所示.由圖可知,對于所制備的ZnO:Mg薄膜樣品,其TC(100)值為0.61~0.68、TC(002)值為0.95~1.35,而TC(110)值為0.97~1.45.可以看出,TC(100)值的變化幅度很小,幾乎不受濺射時間的影響;而TC(002)值和TC(110)值的變化幅度較大,說明它們明顯受到濺射時間的影響.從圖4中還看到,TC(100)的數(shù)值均小于1,并隨濺射時間增加而單調(diào)減小,這說明ZnO:Mg薄膜沒有顯示(100)晶面擇優(yōu)取向生長特性.當(dāng)濺射時間從15 min增加到25 min時,TC(002)和TC(110)呈現(xiàn)出相反的變化趨勢,即TC(002)值從1.35減小為0.95,而TC(110)值則從0.97增大為1.45,可見,濺射時間為15 min時ZnO:Mg薄膜的擇優(yōu)取向?yàn)?002),濺射時間為20 min時ZnO:Mg薄膜的擇優(yōu)取向?yàn)?002)和(110),而濺射時間為20 min時ZnO:Mg薄膜的擇優(yōu)取向?yàn)?110).這一結(jié)果表明:ZnO:Mg薄膜的擇優(yōu)取向生長特性是隨濺射時間而改變的.
圖4 薄膜樣品的織構(gòu)系數(shù)Fig.4 The texture coefficient of (hkl) plane of the thin films
根據(jù)XRD測試數(shù)據(jù),不同濺射時間時ZnO:Mg薄膜樣品的平均晶粒尺寸(D)可以利用由Scherrer公式[46,47]進(jìn)行計(jì)算:
(2)
(2)式中,K為由Scherrer常數(shù),其值為0.89;λ為XRD測試時所使用的X射線源的波長(λ=0.15406 nm);B為擇優(yōu)取向生長衍射峰的半高寬.θ為所對應(yīng)衍射峰晶面的布柆格角.圖5給出了不同濺射時間時ZnO:Mg薄膜樣品的平均晶粒尺寸D.由圖可見,平均晶粒尺寸D約為10.3~10.7 nm,其變化幅度為0.4 nm.這一結(jié)果表明:在本實(shí)驗(yàn)中ZnO:Mg薄膜的平均晶粒尺寸幾乎不受濺射時間的影響.
圖5 薄膜樣品的平均晶粒尺寸Fig.5 Average grain size of the thin films
2.3 薄膜的光學(xué)性質(zhì)
圖6為不同濺射時間時ZnO:Mg薄膜樣品的透過率曲線,為了方便比較,圖中還增加了未摻雜ZnO薄膜樣品的透過率曲線,如圖6(a)所示,其制備工藝條件與濺射時間為15 min時ZnO:Mg薄膜的工藝參數(shù)完全相同.從圖中看出,與未摻雜ZnO薄膜樣品相比,所有ZnO:Mg薄膜樣品的截止波長均向短波方向移動,即出現(xiàn)“藍(lán)移”現(xiàn)象,濺射時間增加則“藍(lán)移”越大,這說明ZnO:Mg薄膜樣品的禁帶寬度均大于未摻雜ZnO薄膜的數(shù)值,并且隨濺射時間的增加而增大.從圖中還可以看出,所有薄膜樣品的透過率曲線都顯示了清晰、光滑的干涉條紋,這說明所實(shí)驗(yàn)所制備的薄膜樣品厚度是均勻的、表面是平整的.當(dāng)濺射時間增加時,薄膜樣品的干涉條紋就越多.這是由于濺射時間增加時,所沉積薄膜的厚度也會隨之增加的緣故.
圖6 薄膜樣品的透過率曲線Fig.6 Transmittance spectra of the thin films
對于未摻雜ZnO薄膜樣品,在可見光區(qū)域的平均透過率Tav為82.9%,具有較好的透光性.圖7為不同濺射時間時ZnO:Mg薄膜樣品在可見光波段的平均透過率(Tav),由圖可見,ZnO:Mg薄膜的平均透過率Tav與濺射時間成反變關(guān)系,當(dāng)濺射時間為15、20和25 min時,ZnO:Mg薄膜的Tav值分別為90.2%、88.9%和88.1%,其Tav值明顯高于未摻雜ZnO薄膜樣品,表現(xiàn)出優(yōu)良的透光性能.由此可見,鎂摻雜有利于提高ZnO薄膜的透光性能.
圖7 薄膜樣品的可見光波段平均透過率Fig.7 Average transmittance in the visible light range of thin films
在吸收邊附近,ZnO:Mg薄膜的透過率(T)與吸收系數(shù)(α)之間滿足如下關(guān)系式[48]:
T=T0e-αd,
(3)
式(3)中,d為薄膜厚度;T0為常數(shù),在吸收邊附近T0≈1,因此,利用公式(3)由薄膜厚度d以及對應(yīng)的吸收邊附近的光學(xué)透過率T就可以計(jì)算薄膜的吸收系數(shù)α.根據(jù)Tauc公式[49,50],在薄膜的吸收邊附近,吸收系數(shù)α與入射光子能量(hv)之間滿足如下方程:
(αhv)n=C0(hv-Eg),
(4)
式(4)中,C0為常數(shù),Eg為薄膜的禁帶寬度,指數(shù)n的值取決于光子躍遷的類型.當(dāng)n=2時,對應(yīng)于直接躍遷,而當(dāng)n=1/2時則對應(yīng)于間接躍遷[48].由于ZnO:Mg薄膜屬于直接躍遷材料,故取n=2作出(αhv)2與hv之間的關(guān)系曲線圖,根據(jù)外推法得到橫軸(hv)上的交點(diǎn)(αhv=0)后,可以獲得薄膜的禁帶寬度Eg.圖8為未摻雜ZnO薄膜和不同濺射時間時ZnO:Mg薄膜樣品的(αhv)2-hv關(guān)系曲線,利用外推法可得:未摻雜ZnO樣品的Eg值為3.202 eV,而ZnO:Mg薄膜樣品的Eg值為3.320~3.335 eV(見圖9),均大于未摻雜ZnO薄膜的禁帶寬度(3.202 eV),這是由于Mg摻雜后周圍電子能量增大產(chǎn)生的高能級與Burstein-Moss效應(yīng)[51,52]共同作用的結(jié)果.
圖8 薄膜樣品的(αhν)2-hν關(guān)系曲線Fig.8 The (αhν)2-hν curves of the thin films
圖9 薄膜樣品的禁帶寬度Fig.9 Band gaps of the thin films
采用MgO摻雜ZnO高密度陶瓷靶作為濺射靶材料,利用射頻磁控濺射工藝在玻璃襯底上制備了ZnO:Mg薄膜樣品,研究了濺射時間對ZnO:Mg薄膜晶體結(jié)構(gòu)和光學(xué)性能的影響.研究結(jié)果表明:所制備的ZnO:Mg樣品均為六角纖鋅礦型的多晶結(jié)構(gòu),其晶粒生長特性和光學(xué)性能與濺射時間密切相關(guān).濺射時間增加時,ZnO:Mg薄膜樣品的TC(002)值減小而TC(110)值增大,對應(yīng)的可見光區(qū)平均透過率降低.當(dāng)濺射時間為15 min時,ZnO:Mg樣品的(002)擇優(yōu)取向生長特性最好、平均透過率最高(90.2%).另外,利用外推法獲得了ZnO:Mg薄膜的禁帶寬度,結(jié)果表明:濺射時間對ZnO:Mg薄膜禁帶寬度具有一定的影響,由于Mg摻雜后周圍電子能量增大產(chǎn)生的高能級與Burstein-Moss效應(yīng)共同作用從而使ZnO:Mg薄膜的禁帶寬度有所增加.
[1] Lee D,Bae W K,Park I,et al.Transparent electrode with ZnO nanoparticles in tandem organic solar cells [J].Sol Energy Mater Sol Cells,2011,95(1): 365-368.
[2] Kim J Y,Lee K,Coates N E,et al.Tandem polymer solar cells fabricated by all-solution processing [J].Science,2007,317(5835): 222-225.
[3] Bekci D R,Erten-Ela S.Effect of nanostructured ZnO cathode layer on the photovoltaic performance of inverted bulk heterojunction solar cells [J].Renewable Energy,2012,43(2): 378-382.
[4] Sio A D,Chakanga K,Sergeev O,et al.ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes [J].Sol Energy Mater Sol Cells,2012,98(1): 52-56.
[5] 肖健平,何 青,陳亦鮮,等.CIGS薄膜材料研究進(jìn)展 [J].西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,34 (1): 189-193.
[6] Kim H,Horwitz J S,Kim W H,et al.Doped ZnO thin films as anode materials for organic light-emitting diodes [J].Thin Solid Films,2002,420-421(1): 539-543.
[7] Cao H T,Sun C,Pei Z L,et al.Properties of transparent conducting ZnO:Al oxide thin films and their application for molecular organic light-emitting diodes [J].J Mater Sci: Mater Electron,2004,14(1): 169-174.
[8] Kim H,Piqué A,Horwitz J S,et al.Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices [J].Thin Solid Films,2000,377-378(1): 798-802.
[9] Wang L,Swensen J S,Polikarpov E,et al.Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates [J].Org Electron,2010,11(6): 1555-1560.
[10] Ozgur U,Alivov Y I,Liu C,et a1.A comprehensive review of ZnO materials and devices [J].J Appl Phys,2005,98(4): 041301-041301-103.
[11] Yamamoto N,Makino H,Osone S,et al.Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels [J].Thin Solid Films,2012,520(11): 4131-4138.
[12] Tang C W,VanSlyke S A.Organic electroluminescent diodes [J].Appl Phys Lett,1987,51(12): 913-915.
[13] Burroughes J H,Bradley D D C,Brown A R,et al.Light-emitting diodes based on conjugated polymers [J].Nature,1990,347(6293): 539-541.
[14] Zhong Z Y,Jiang Y D.Surface treatments of indium-tin oxide substrates for polymer electroluminescent devices [J].Phys Status Solidi A,2006,203(15): 3882-3892.
[15] You Z Z,Hua G J,Lou S F.Optoelectrical characteristics of organic light-emitting devices fabricated with different cathodes [J].Int J Electron,2011,98(1): 129-135.
[16] Patel N G.,Patel P D,Vaishnav V S.Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J].Sensor Actuat B-Chem,2003,96(1-2): 180-189.
[17] Yi I-J,Kim J-H,Choi Y J,et al.A disposable biosensor with Prussian blue deposited electrode [J].Microelectron Eng,2006,83(4-9): 1594-1597.
[18] Mitsubayashi K,Wakabayashi Y,Tanimoto S,et al.Optical-transparent and flexible glucose sensor with ITO electrode [J].Biosens Bioelectron,2003,19(1): 67-71.
[19] 葉志鎮(zhèn),呂建國,張銀珠,等.氧化鋅半導(dǎo)體材料摻雜技術(shù)與應(yīng)用 [M].杭州: 浙江大學(xué)出版社,2009.
[20] Park S,Tark S T,Lee J S,et al.Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode [J].Sol Energy Mater Sol Cells,2009,93(6-7): 1020-1023.
[21] 鐘志有,顧錦華,何 翔,等.有機(jī)太陽能電池?zé)o銦透明電極的光電性能研究 [J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,30(1): 64-69.
[22] Li L,Fang L,Zhou X J,et al.X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films [J].J Electron Spectrosc Relat Phenom,2009,173(1): 7-11.
[23] Yamamoto T.Codoping for the fabrication of p-type ZnO [J].Thin Solid Films,2002,420-421(1): 100-106.
[24] Gruber T,Kirchner C,Ling K,et al.Optical and structual analysis of ZnCdO layers grown by metal organic vapor phase epitaxy [J].Appl Phys Lett,2003,83(9): 3290-3292.
[25] Kim H,Horwitz J S,Kim W H,et al.Anode material based on Zr-doped ZnO thin films for organic light-emitting diodes [J].Appl Phys Lett,2003,83(18): 3809-3811.
[26] Prathap P,Reddy A S,Reddy G R,et al.Characterization of novel sprayed Zn1-xMgxO films for photovoltaic application [J].Sol Energy Mater Sol Cells,2010,94(6): 1434-1436.
[27] Grimm A,Klenk R,Klaer J,et al.CuInS2-based thin film solar cells with sputtered (Zn,Mg)O buffer [J].Thin Solid Films,2009,518(7): 1157-1159.
[28] Li W,Fang L,Qin G,et al.Tunable zinc interstitial related defects in ZnMgO and ZnCdO films [J].J Appl Phys,2015,117 (14): 145301.
[29] Minemoto T,Negami T,Nishiwaki S,et al.Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering [J].Thin Solid Films,2000,372(2): 173-176.
[30] Chen H,Ding J,Man S Structural and optical properties of ZnO:Mg thin films grown under different oxygen partial pressures [J].Phys E,2010,42(8): 1487-1491.
[31] Kaushal A,Kaur D.Effect of Mg content on structural electrical and optical properties of Zn1-xMgxO nanocomposite thin films [J].Sol Energy Mater Sol,2009,93(1): 193-198.
[32] Maemoto T,Ichiba N,Ishii H,et al.Structural and optical properties of ZnMgO thin films grown by pulsed laser deposition using ZnO-MgO multiple targets [J].J Phys Conf Ser,2007,59(2): 670-673.
[33] Torndahll T,Bjrkman C P,Kessler J,et al.Atomic layer deposition of Zn1-xMgxO buffer layers for Cu(In,Ga)Se2solar cells [J].Prog Photovolt: Res Appl,2007,15(2): 225-235.
[34] Hultqvist A ,Bjrkman C P,Pettersson J,et al.CuGaSe2solar cells using atomic layer deposited Zn(O,S) and (Zn,Mg)O buffer layers [J].Thin Solid Films,2009,517(11): 2305-2308.
[35] Prathap P,Reddy A S,Reddy G R,et al.Characterization of novel sprayed Zn1-xMgxO films for photovoltaic application [J].Sol energy Mater Sol Cells,2010,94(9): 1434-1436.
[36] Yoon J-G,Jung K O,Kim H J.Charge transfer at the interfaces of polycrystalline ZnO/ Zn1-xMgxO/ZnO heterostructures [J].J Korean Phys Soc,2008,53(4): 2033-2038.
[37] Abed C,Bouzidi C,Elhouichet H,et al.Mg doping induced high structural quality of sol-gel ZnO nanocrystals: application in photocatalysis [J].Appl Surf Sci,2015,349(2): 855-863.
[38] Zhao D X,Liu Y C,Shen D Z,et a1.Photoluminescence properties of Zn1-xMgxO alloy thin films fabricated by the sol-gel deposition method [J].J Appl Phys,2001,90(11): 5561-5563.
[39] Kim I Y,Shin S W,Gang M G,et al.Comparative study of quaternary Mg and Group III element co-doped ZnO thin films with transparent conductive characteristics [J].Thin Solid Films,2014,570(1): 321-325.
[40] You Z Z,Hua G J.Structural,optical and electrical characterization of ZnO:Ga thin films for organic photovoltaic applications [J].Mater Lett,2011,65(10): 3234-3236.
[41] 林慶祥,黃 毅.P型透明導(dǎo)電氧化物CuAlO2的研究進(jìn)展 [J].西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,40 (2): 256-260.
[42] Lu Z,Long L,Zhong Z,et al.Structural characterization and optoelectrical properties of Ti-Ga co-doped ZnO thin films prepared by magnetron sputtering [J].J Mater Sci: Mater Electron,2016,27(3): 2875-2884.
[43] Raoufi D,Raoufi T.The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films [J].Appl Surf Sci,2009,255(7): 5812-5817.
[44] Zhong Z Y,Zhang T.Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering [J].Mater Lett,2013,96 (2): 237-239.
[45] Valle G G,Hammer P,Pulcinelli S H,et al.Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating [J].J Eur Ceram Soc,2004,24(4): 1009-1013.
[46] Hong R,Shao J,He H,et al.ZnO:Zn phosphor thin films prepared by face-to-face annealing [J].J Cryst Growth,2005,284(3-4) 347-352.
[47] 黃 濤,李 燦,吳 靜,等.四方形鈀納米片的控制合成 [J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,32(3): 5-7.
[48] Pankove J I.Optical Processes in Semiconductors [M].New York: Dover Publications,1975.
[49] Lu Z,Kang H,Zhong Z,et al.Structural,electrical and optical properties of transparent conductive titanium-gallium-zinc oxide films by magnetron sputtering [J].J Mater Sci: Mater Electron,2016,27(12): 13271-13279.
[50] 肖心舉,黎 兵,江海波,等.ZnS多晶薄膜的磁控濺射沉積及其性能研究 [J].西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,39 (2): 223-227.
[51] Ayadi Z B,Mir L E,Djessas K,et al.The properties of aluminum-doped zinc oxide thin films prepared by rf-magnetron sputtering from nanopowder targets [J].Mater Sci Eng C,2008,28(3): 613-617.
[52] ?ztas M,Bedir M.Thickness dependence of structural,electrical and optical properties of sprayed ZnO:Cu films[J].Thin Solid Films,2008,516(8): 1703-1709.
Structure and Optical Properties of Magnesium-Doped
Zinc Oxide Thin FilmsZhongZhiyou,KangHuai,LuZhou,LongLu
(Hubei Key Laboratory of Intelligent Wireless Communications, College of Electronic Information Engineering, South-Central University for Nationalities, Wuhan 430074, China)
The magnesium-doped zinc oxide (ZnO:Mg) thin films were deposited on glass substrates by radio-frequency magnetron sputtering technique using the ceramic target fabricated by sintering the mixture of ZnO and MgO nanometer powder.The influence of sputtering time on structure and optical properties of the deposited films was investigated by X-ray diffractometer and UV-Visible spectrophotometer.The results show that the grain growth, structure and optical properties of the thin films are closely related to the sputtering time.As the sputtering time increases, the texture coefficient of (002) plane decreases, the texture coefficient of (110) plane increases, and the average transmittance in the visible range decreases.The thin film deposited at the sputtering time of 15 min has the best crystal quality and the highest optical transmittance.Meanwhile, the band gaps of the deposited films are observed to increase monotonically when the sputtering time increases.Compared with the band gap of undoped ZnO thin film, the direct band gaps of all the deposited thin films are broadened.
magnetron sputtering;zinc oxide thin films;structure;optical properties
2016-11-28
鐘志有(1965-), 男, 教授, 博士, 研究方向: 能源光電子、光電信息功能材料與器件, E-mail: zhongzhiyou@163.com
國家自然科學(xué)基金資助項(xiàng)目(11504436);湖北省自然科學(xué)基金資助項(xiàng)目(2015CFB364);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZW14019, CZW15045)
TM914
A
1672-4321(2017)01-0064-07