亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Cat弱Hopf代數(shù)

        2017-04-10 06:10:49
        關(guān)鍵詞:浙江定義

        陳 笑 緣

        (浙江商業(yè)職業(yè)技術(shù)學(xué)院, 浙江 杭州 310053 )

        Cat弱Hopf代數(shù)

        陳 笑 緣

        (浙江商業(yè)職業(yè)技術(shù)學(xué)院, 浙江 杭州 310053 )

        首先引入pre-cat弱Hopf代數(shù)和cat弱Hopf代數(shù)來(lái)刻畫(huà)具有投射的弱Hopf代數(shù)的性質(zhì),并建立pre-cat弱Hopf代數(shù)的張量范疇,證明了pre-cat弱Hopf代數(shù)是cat弱Hopf代數(shù)的充要條件,從而推廣了LODAY引入的cat-群和cat Hopf代數(shù)的相應(yīng)結(jié)論.

        弱Hopf代數(shù);投射;cat 弱Hopf代數(shù)

        定義1 范疇C的一個(gè)fork是指圖

        (1)

        其中,f°i=g°i.fork可分指在范疇C中存在態(tài)射h:B→A和p:A→I滿足h°f=idA,h°g=i°p及p°i=idI.

        例1 下式是可分fork,

        (2)

        ∑af(11)SA(fg(f(12)))=

        ∑af(11)SA(f(12))=a;

        ∑a1f(SH(g(a2))g(a3)l)=

        證明 定義I的代數(shù)、余代數(shù)和對(duì)極分別為μI(x?y)=x·y=p(i(x)i(y)),ηI=p(1A),ΔI(x)=∑p(i(x)1)?p(i(x)2),εI(x)=ε(i(x)),SI(x)=pSA(i(x)).

        首先,驗(yàn)證I是一個(gè)代數(shù)且i是代數(shù)同態(tài).事實(shí)上,對(duì)任意x,y,z∈I,有

        (x·y)·z=p(h(gi(x)gi(y))i(z))=

        p(h(fi(x)fi(y))i(z))=p((i(x)i(y))i(z))=

        p(i(x)(i(y)i(z)))=x·(y·z);

        x·p(1)=p(i(x)ip(1))=p(i(x)hg(1))=

        p(i(x))=x;

        i(x·y)=h(gi(x)gi(y))=h(fi(x)fi(y))=

        hf(i(x)i(y))=i(x)i(y);

        i(1I)=ip(1A)=hg(1A)=hf(1A)=1A.

        其次,ΔI顯然是余結(jié)合的且εI(1I)=ε(i(1A))=1.并且i是余代數(shù)同態(tài),因?yàn)閷?duì)任意x∈I有

        (i?i)ΔI(x)=∑ip(i(x)1)?ip(i(x)2)=

        ∑h(gi(x)1)?h(gi(x)2)=∑hf(i(x)1)?

        hf(i(x)2)=∑i(x)1?i(x)2.

        所以只需驗(yàn)證I是一個(gè)弱雙代數(shù).因?yàn)閷?duì)任意x,y,z∈I,有

        ΔI(x)·ΔI(y)=∑p(h(gi(x)1gi(y)1))?p(h(gi(x)2gi(y)2))=∑p(hf(i(x)1)hf(i(y)1))?p(hf(i(x)2)hf(i(y)2))=∑p(i(x)1i(y)1)?p(i(x)2i(y)2)=ΔI(x·y);

        εI(x·y1)εI(y2·z)=∑εA(h(g(i(x))gip(i(y)1)))εA(h(gip(i(y)2))gi(z))=∑εA(hf(i(x)ip(i(y)1)))εA(hf(ip(i(y)2)i(z)))=

        ∑εA(i(x)i(y)1)εA(i(y)2i(z))=

        εA(i(x)i(y)i(z))=εI(x·y·z).

        同理可證εI(x·y2)εI(y1·z)=εI(x·y·z).

        (ΔI(p(1))?p(1))·(p(1)?ΔI(p(1)))=

        (p(1)?ΔI(p(1)))·(ΔI(p(1))?p(1)).

        最后,證明I是弱Hopf代數(shù),i是弱Hopf代數(shù)同態(tài).實(shí)際上,對(duì)任意x∈I,有

        ∑SI(x1)·x2·SI(x3)=

        ∑p(ip(SA(i(x1))i(x2))ip(SA(i(x3))))=

        ∑p(h(SB(gi(x1))gi(x2))hSB(gi(x3)))=

        ∑p(hf(SA(i(x1))i(x2))hf(SA(i(x3))))=

        ∑p(SA(i(x1))i(x2)SA(i(x3)))=

        p(SA(i(x)))=SI(x);

        i(SI(x))=ip(SA(i(x)))=hSA(gi(x))=hf(SA(i(x)))=SA(i(x));

        ∑x1·SI(x2)=

        ∑p(ip(i(x)1)ip(SA(ip(i(x)2))))=

        ∑p(i(x1)hSB(gi(x2)))=

        ∑p(i(x1)hf(SA(i(x2)))=

        ∑p(i(x1)SA(i(x2))=p(i(x)l);

        ∑εI(p(1)1·x)p(1)2=

        ∑εA(ip(11)i(x))p(12)=

        ∑εA(11i(x))p(12)=p(i(x)l),

        因此,x1·SI(x2)=∑εI(p(1)1·x)p(1)2.同理可證SI(x1)·x2=∑εI(x·p(1)2)p(1)1.證畢.

        α°γ=β°γ=idH;

        (3)

        ∑α(a2)?a1=∑α(a1)?a2,a∈A;

        (4)

        ∑β(a2)?a1=∑β(a1)?a2,a∈A.

        (5)

        (6)

        γA(βB(b1)lβB(b2))?b3=

        ∑a1γA(SH(αA(a4)))1γA(βB(b1))?αA(a2γA(SH(αA(a4)))2)βB(b2)?b3=

        ∑a1γA(SH(12αA(a2)))γA(βB(b1))?SH(11)βB(b2)?b3=

        hA,B°(idA?((βB?idB)°ΔB))(a?b)=

        hA,B°(((idA?αA)°ΔA)?idB)(a?b)=

        ∑a11γA(SH(αA(12)))?b=

        ∑aγA(11)γA(SH(αA(γA(12))))?b=a?b.

        顯然,映射((idA?αA)°ΔA)?idB和idA?((βB?idB)°ΔB)均為弱Hopf代數(shù)同態(tài),由定理1可知A?HB是弱Hopf代數(shù).

        最后,驗(yàn)證A?HB是pre-cat弱Hopf代數(shù).定義2中的條件(4)和(5)顯然成立,只需證明條件(3)成立.因?yàn)閷?duì)任意h∈H,有

        (βA?εB)°iA,B°γA?HB(h)=

        ∑βA(γA(h1))βAγA(SH(αA(γA(h2))))h3=

        ∑h1SH(h2)h3=h.

        定理2證畢.

        范疇CH的對(duì)象是H上的pre-cat弱Hopf代數(shù),態(tài)射是pre-cat弱Hopf代數(shù)同態(tài).則有以下結(jié)論.

        定理3 范疇CH是monoidal范疇.

        φX=(idX?αX)°ΔX,ψX=(βX?idX)°ΔX):

        A?H?B?H?C,

        (7)

        A?H?B?H?C.

        (8)

        (9)

        (10)

        ∑a1γA(SH(12αA(a2)))γA(x1)?SH(11)x2=

        (2)μA°(βi?iα)=μA°τA,A°(βi?iα).

        證明 (1)?(2)的證明.因?yàn)閙是代數(shù)同態(tài),所以有m°μA?HA((1?a)?(b?1))=μA°(m?m)((1?a)?(b?1)).方便起見(jiàn),將iA,A(a?Hb)記為∑a*?b*,進(jìn)一步有,

        μA°(m?m)((1?a)?(b?1))=

        μA°(βi?iα)=μA°τA,A°(βi?iα).

        (2)?(1)的證明.首先證明m是代數(shù)同態(tài).事實(shí)上,對(duì)任意a,b,x,y∈A,有

        μA°(m?m)((a?Hb)?(x?Hy));

        m°ηA?HA=

        ∑11γA(S(αA(12)))=γA(1)=1.

        αA°m(a?Hb)=

        ∑γA(h1)γA(S(αA(γA(h2))))γA(h3)=

        ∑γA(h1)γA(S(h2))γA(h3)=γA(h).

        再者,必須證明m°SA?HA=S°m.事實(shí)上,對(duì)任意a,b∈A和h∈H,有

        γA(S(βA(S(b2)1)))S(b2)2=

        ∑S(γA(βA(b1)))γA(S(βA(S(b2)1)))S(b2)2×

        ∑a1γA(S(αA(a2))βA(b1))γA(S(βA(b1)))b3=

        因而有

        ∑a1γA(S(αA(a4)))b1γA(S(αA(b2)))×

        γA(S(αA(a2γA(αA(a3)))))c=∑a1γA(S(αA(a3)))b1γA(S(αA(b2)))γA(S(αA(a2))l)c=

        ∑a1γA(S(αA(a2)))b1γA(S(αA(b2)))c=

        定理4證畢.

        [1]LODAYLJ.Spaceswithfinitelymanynontrivialhomotopygroups[J]. J Pure Appl Algebra,1982,24(2):179-202.

        [4] BOHM G, NILL F, SZLACHANYI K. Weak Hopf Algebras (I): Integral theory andC*-structure[J].Journal of Algebra,1999,221(2):385-438.

        [5] BESPALOV Y. Crossed modules and quantum groups in Braided Categories[J]. Appl Categ Structure,1997,5(2):155-204.

        CHEN Xiaoyuan

        (ZhejiangBusinessCollege,Hangzhou310053,China)

        In this paper, we first introduce the notions of pre-cat weak Hopf algebras and cat weak Hopf algebras to characterize the structures of weak Hopf algebras with projections. Then, we give the monoidal category of these objects which generalize the results of cat Hopf algebras and cat-groups introduced by LODAY.

        weak Hopf algebra; projection; cat weak Hopf algebra

        2015-01-21.

        陳笑緣(1963-),ORCID:http://orcid.org/0000-0003-2898-9976,女,教授,主要從事代數(shù)學(xué)研究,E-mail:cxy5988@sina.com.

        10.3785/j.issn.1008-9497.2017.02.010

        O 153.3

        A

        1008-9497(2017)02-181-05

        Cat weak Hopf algebras. Journal of Zhejiang University(Science Edition), 2017,44(2):181-185

        猜你喜歡
        浙江定義
        Mother
        永遠(yuǎn)不要用“起點(diǎn)”定義自己
        海峽姐妹(2020年9期)2021-01-04 01:35:44
        掃一掃閱覽浙江“助企八條”
        定義“風(fēng)格”
        Dave Granlund's Cartoons
        浙江“最多跑一次”倒逼“放管服”
        浙江“雙下沉、兩提升”之路
        成功的定義
        山東青年(2016年1期)2016-02-28 14:25:25
        浙江醫(yī)改三部曲
        修辭學(xué)的重大定義
        欧美粗大无套gay| 亚洲第一幕一区二区三区在线观看| 亚洲av男人电影天堂热app| 亚洲精品92内射| 亚洲精品综合第一国产综合| av免费网站在线免费观看| 美女视频一区二区三区在线 | 免费av一区男人的天堂| 亚洲av中文无码乱人伦在线视色| a级毛片在线观看| 国产乱人视频在线观看播放器| 中文字幕人妻互换激情| 无码人妻h动漫中文字幕| 男女野外做爰电影免费| 国产激情视频在线| 杨幂一区二区系列在线| 国产二区交换配乱婬| 色狠狠色狠狠综合一区| 秀人网嫩模李梓熙大尺度| 国产桃色一区二区三区| 中文字幕乱码熟女人妻水蜜桃| 一本一道波多野结衣av中文| 久久天堂av综合合色| 亚洲在线视频免费视频| 老子影院午夜精品无码| 久久夜色精品国产亚洲噜噜| 国产熟女白浆精品视频二| 日韩av无码精品一二三区| 国产美女白浆| 久久国产女同一区二区| 久久国产人妻一区二区| 国产欧美一区二区精品性色| 黄色三级视频中文字幕| 日韩女优av一区二区| 四虎影视在线影院在线观看| 亚洲成a人网站在线看| 在线观看一区二区三区在线观看| 国产日产综合| 中文字幕在线久热精品| 熟女少妇av一区二区三区| 扒开腿狂躁女人爽出白浆|