石鵬飛,鄭媛媛,楊東玉,黨 靜,王貴彥
(河北農(nóng)業(yè)大學農(nóng)學院,河北 保定 071001)
種養(yǎng)一體規(guī)?;r(nóng)場溫室氣體排放量分析
石鵬飛,鄭媛媛,楊東玉,黨 靜,王貴彥①
(河北農(nóng)業(yè)大學農(nóng)學院,河北 保定 071001)
為準確評估華北平原種養(yǎng)一體規(guī)?;r(nóng)場溫室氣體排放量,以河北某種養(yǎng)一體規(guī)模化農(nóng)場為例,應用生命周期評價方法,根據(jù)《IPCC 2006國家溫室氣體清單指南》中的排放系數(shù),計算該農(nóng)場運行過程中溫室氣體排放量。結(jié)果表明,農(nóng)場運行過程中年溫室氣體總排放量(以CO2當量計,下同)為32 528.02 t,其中農(nóng)田生產(chǎn)系統(tǒng)排放占28.09%,養(yǎng)殖場排放占71.91%,其中糞便貯存管理、飼料生產(chǎn)和加工、腸道發(fā)酵及氮素生產(chǎn)和施用等生產(chǎn)環(huán)節(jié)是溫室氣體主要排放源,分別占總排放量的34.66%、21.24%、15.48%和20.08%。生產(chǎn)1 t小麥、玉米籽粒的溫室氣體排放量分別為1 059.39和411.92 kg;生產(chǎn)1 kg原奶和1 kg按蛋白質(zhì)和脂肪糾正的牛奶(FPCM)的溫室氣體排放量分別為1.04和1.14 kg,低于全球平均水平;生產(chǎn)1 kg活體豬、肉牛的溫室氣體排放量分別為2.58和10.00 kg,與國內(nèi)其他集約化養(yǎng)殖場的排放量相當。通過情景分析發(fā)現(xiàn),種植生產(chǎn)中采取減氮(化肥)以及提高畜禽糞便廢棄物處理能力等措施,加強農(nóng)場氮素管理,改善飼料結(jié)構(gòu),可直接或間接減少農(nóng)場水平溫室氣體排放。
種養(yǎng)一體規(guī)模化;農(nóng)場水平;溫室氣體;減排潛力
氣候變暖是當今國際社會普遍關(guān)注的全球性環(huán)境問題,也是人類面臨的最嚴峻的挑戰(zhàn)之一,而溫室氣體(GHG)的增加是造成氣候變暖的重要原因。其中涉及農(nóng)業(yè)源的溫室氣體有二氧化碳(CO2)、甲烷(CH4)和氧化亞氮(N2O)[1]。聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)指出,種植業(yè)和畜牧業(yè)溫室氣體排放分別占全球人為溫室氣體排放的30%和18%[2]。根據(jù)聯(lián)合國政府間氣候變化專門委員會(Intergovernmental Panel on Climate Change,IPCC)第五次評估報告,全球范圍內(nèi)農(nóng)業(yè)排放CH4和N2O分別占人類活動造成的CH4和N2O排放總量的50%和60%[3]。中國農(nóng)業(yè)源溫室氣體排放占全國溫室氣體排放總量的17%,其中農(nóng)業(yè)活動排放的CH4和N2O分別占全國CH4和N2O排放量的50.15%和92.47%[1]。
華北平原是我國重要的糧食生產(chǎn)基地,耕地面積占全國耕地總面積的26.57%[4],糧食產(chǎn)量占全國糧食總產(chǎn)量的34.39%,氮肥用量占全國用量的35.02%[5]。冬小麥-夏玉米一年兩熟制是華北平原最主要的種植制度,該區(qū)農(nóng)田管理的主要特點是施用化肥和秸稈全量還田,這就必然伴隨著CO2、CH4和N2O等溫室氣體的產(chǎn)生和排放。目前,推廣減少氮肥施用、無機和有機肥相結(jié)合、測土配方施肥和秸稈還田綜合管理等措施是農(nóng)田溫室氣體減排的潛力所在[1,6-9]。華北平原農(nóng)區(qū)畜牧業(yè)也發(fā)展迅速,過去的農(nóng)戶分散養(yǎng)殖已逐漸被規(guī)?;?、集約化的養(yǎng)殖場所取代,大量畜禽糞便等廢棄物在堆置過程中產(chǎn)生的溫室氣體造成了嚴重的面源污染。因此,種植和養(yǎng)殖相結(jié)合是解決畜禽廢棄物面源污染的重要途徑[10-11],而改善飼料質(zhì)量、提高動物生產(chǎn)力、改進糞便貯存管理模式以及建設沼氣工程等都是集約化養(yǎng)殖場溫室氣體減排的重要措施[12-17]。
河北某種養(yǎng)一體規(guī)?;r(nóng)場采用華北平原典型的農(nóng)牧結(jié)合模式,通過秸稈回收青貯作飼料、畜禽糞便進入沼氣池發(fā)酵和替代部分化肥還田、沼液和沼渣還田等接口技術(shù)鏈接種植和養(yǎng)殖生產(chǎn)環(huán)節(jié),不僅提高了物質(zhì)循環(huán)效率,而且有利于溫室氣體減排。但截至目前,有關(guān)溫室氣體排放的研究大都僅涉及農(nóng)田生產(chǎn)系統(tǒng)和畜牧養(yǎng)殖系統(tǒng)的某個環(huán)節(jié)或某個子系統(tǒng),而針對種養(yǎng)一體規(guī)?;r(nóng)場溫室氣體排放評估的研究相對較少。
生命周期評價(LCA)是對一個產(chǎn)品系統(tǒng)的生命周期中輸入、輸出及潛在環(huán)境影響的匯編和評價[18],它提供了一種從系統(tǒng)角度分析問題的思路和評估的標準方法[19]。近年來,不少國內(nèi)外學者使用LCA對農(nóng)田和畜牧生產(chǎn)系統(tǒng)的溫室氣體排放進行了評估[15,20-26]。因此,筆者以河北某種養(yǎng)一體規(guī)?;r(nóng)場為例,利用LCA評估方法系統(tǒng)分析種養(yǎng)一體規(guī)模化農(nóng)場溫室氣體排放及各生產(chǎn)子系統(tǒng)排放比例,系統(tǒng)分析減排潛力,為提出有效減排措施提供科學依據(jù),研究結(jié)果對華北平原農(nóng)業(yè)生產(chǎn)過程溫室氣體減排具有參考意義。
1.1 農(nóng)場生產(chǎn)概況及數(shù)據(jù)來源
河北某種養(yǎng)一體規(guī)模化農(nóng)場是集種植、養(yǎng)殖、沼氣發(fā)酵、飼料加工和有機肥加工等多項產(chǎn)業(yè)于一體的國家級循環(huán)農(nóng)業(yè)園區(qū),是華北平原典型的循環(huán)農(nóng)業(yè)模式。以農(nóng)場2014年的生產(chǎn)情況為例,分析其溫室氣體排放特點。小麥-玉米一年兩熟是其主要種植制度,種植面積1 000 hm2,小麥單產(chǎn)6 000 kg·hm-2,玉米單產(chǎn)6 750 kg·hm-2。小麥和玉米兩季施氮量為557.88 kg·hm-2,其中化肥氮231.26 kg·hm-2。農(nóng)田生產(chǎn)系統(tǒng)中能源消耗主要為旋耕、播種和收獲等耗柴油188.25 kg·hm-2,作物生長期間灌溉耗電1 800 kW·h·hm-2。
養(yǎng)殖中奶牛存欄量為1 400頭,其中犢牛(平均體重180 kg)420頭,育成牛(平均體重450 kg)700頭,泌乳牛(平均體重600 kg)280頭,年產(chǎn)奶1 460 t;肉牛存欄量為3 000頭,犢牛(平均體重180 kg)1 000 頭,育肥牛(平均體重550 kg)1 400頭,架子牛(平均體重250 kg)600頭;豬場中母豬(平均體重210 kg)存欄量為2 400頭,年出欄生豬(平均體重100 kg)60 000頭。出欄豬育肥過程中主要經(jīng)過仔豬(平均體重12 kg,70 d)、生長豬(平均體重45 kg,30 d)和育肥豬(平均體重90 kg,90 d)3個生長階段。公司現(xiàn)已投入使用的沼氣池達8 000 m3,還有3 000 m3沼氣池待使用,養(yǎng)殖場年產(chǎn)糞尿204 035 t,其中65%直接進入沼氣池,35%通過開放厭氧塘糞便處理系統(tǒng)貯存。沼氣發(fā)酵所產(chǎn)沼氣用于發(fā)電,2014年產(chǎn)氣量182.5萬 m3,年發(fā)電量315.36萬kW·h,主要供養(yǎng)殖場和飼料加工及農(nóng)場日常使用。
農(nóng)場中的飼料主要包括青貯玉米、牧草等粗飼料和玉米、麥麩和豆粕等精飼料。養(yǎng)殖年消耗青貯玉米8 000 t、玉米籽粒13 294 t、麥麩6 787 t和豆粕5 781 t。其中麥麩和豆粕全部從農(nóng)場外購買,玉米籽粒除農(nóng)場生產(chǎn)的6 750 t外,其余的外購。外購玉米籽粒、麥麩和豆粕的產(chǎn)量和施氮量根據(jù)河北省實際生產(chǎn)情況取值[27]:玉米產(chǎn)量為6.30 t·hm-2,施氮量為0.21 t·hm-2;小麥產(chǎn)量為6.00 t·hm-2,施氮量為0.225 t·hm-2,小麥加工后出麩率為25%,加工小麥耗電0.048 MW·h·t-1;大豆產(chǎn)量為2.032 t·hm-2,施氮量為0.105 t·hm-2,豆粕為大豆榨油后的副產(chǎn)品,豆粕率為80%,加工大豆耗電0.03 MW·h·t-1[17]。
1.2 系統(tǒng)邊界的確定
根據(jù)農(nóng)場種植和養(yǎng)殖生產(chǎn)過程中相關(guān)的溫室氣體排放活動確定系統(tǒng)邊界。農(nóng)田生產(chǎn)過程主要為氮肥(化肥和糞肥)施用、化肥氮生產(chǎn)、灌溉耗電以及田間管理等機械能耗所排放的溫室氣體。養(yǎng)殖場排放源主要包括動物腸道發(fā)酵、飼料生產(chǎn)和加工、糞便貯存及養(yǎng)殖場日常管理運輸?shù)饶芎乃a(chǎn)生的溫室氣體。另外,根據(jù)碳平衡原理[28],糞便進入沼氣池發(fā)酵過程產(chǎn)生的溫室氣體為0。
1.3 溫室氣體排放量計算公式
化肥氮和糞肥田間施用過程中N2O排放、動物胃腸道發(fā)酵產(chǎn)生的CH4排放和飼料生產(chǎn)加工過程中的溫室氣體排放計算公式參照文獻[17];糞便貯存過程中N2O排放和糞便貯存過程中CH4排放的計算公式參照文獻[14]。
1.4 參數(shù)選擇與說明
CO2、CH4和N2O的增溫潛勢值根據(jù)文獻[29]分別取1、25、298。CO2、CH4和N2O的計算結(jié)果皆根據(jù)各自的當量因子以CO2當量表示。
小麥和大豆的種植過程和加工能耗帶來的溫室氣體排放根據(jù)分配系數(shù)分配給麥麩和小麥粉、豆粕和豆油。分配系數(shù)參照文獻[17]進行計算。
(1)
式(1)中,Wi為飼料組分i的排放量分配系數(shù);Ri為谷物i加工的副產(chǎn)品產(chǎn)出率(小麥的出麩率或大豆的出豆粕率),%;Pi為谷物i的副產(chǎn)品(麥麩或豆粕)價格,元·kg-1;Pci為谷物i主產(chǎn)品(小麥面粉或豆油)價格,元·kg-1。根據(jù)2014年河北省小麥和大豆生產(chǎn)情況,小麥面粉價格為3.05元·kg-1,麥麩價格為1.36元·kg-1,大豆豆油價格為6.75元·kg-1,豆粕價格為3.4元·kg-1,根據(jù)公式可計算出麥麩和豆粕的分配系數(shù)分別為0.13和0.67。
溫室氣體排放因子參數(shù)見表1[14,29-34]。
表1 溫室氣體排放因子參數(shù)
Table 1 Parameters of factors affecting GHG emission in calculations
參數(shù) 含義描述 單位 排放源取值文獻來源efNDM糞肥田間施用的N2O直接排放系數(shù)t·t-1土壤排放0.0105[30]efND氮肥田間施用的N2O直接排放系數(shù)t·t-1土壤排放0.0105[30]FGAS氮肥以NH3-N和NOx-N形式揮發(fā)系數(shù)t·t-1氮揮發(fā)0.1[29]FGASM糞肥以NH3-N和NOx-N形式揮發(fā)系數(shù)t·t-1氮揮發(fā)0.2[29]efNH大氣氮沉降N2O排放系數(shù)t·t-1氮沉降0.01[29]FLM糞肥的滲漏損失系數(shù)t·t-1滲漏損失0.25[31]FL氮肥的滲漏損失系數(shù)t·t-1滲漏損失0.25[31]efNL滲漏或徑流氮損失的N2O排放系數(shù)t·t-1氮淋洗0.0075[29]efMAj1奶牛胃腸道發(fā)酵CH4排放系數(shù)kg·頭-1·a-1胃腸道109[29]efMAj2肉牛、犢牛腸道發(fā)酵CH4排放系數(shù)kg·頭-1·a-1胃腸道57[29]efMAj3育肥豬(平均體重100kg)腸道發(fā)酵CH4排放系數(shù)kg·頭-1·a-1胃腸道1[29]Nrate1每1000kg奶牛體重氮排泄率kg·d-10.47[29]Nrate2每1000kg肉牛體重氮排泄率kg·d-10.34[29]Nrate3每1000kg生豬體重氮排泄率kg·d-10.5[29]EF2舍內(nèi)糞污貯存N2O排放kg·kg-1舍內(nèi)0.002[29]BOLT1每頭奶牛(350kg)糞污的最大CH4產(chǎn)生潛力m3·kg-1蓄糞池0.13[29]BOLT2每頭肉牛(319kg)糞污的最大CH4產(chǎn)生潛力m3·kg-1蓄糞池0.1[29]BOLT3每頭生豬(28kg)糞污的最大CH4產(chǎn)生潛力m3·kg-1蓄糞池0.29[29]DCH4CH4密度t·m-3蓄糞池0.00067[32]MCFj開放厭氧塘的CH4轉(zhuǎn)換因子蓄糞池70%[29]VSdefault1每頭奶牛日排泄的揮發(fā)性固體干物質(zhì)(默認值)kg·d-1蓄糞池2.8[29]VSdefault2每頭肉牛日排泄的揮發(fā)性固體干物質(zhì)(默認值)kg·d-1蓄糞池2.3[29]VSdefault3每頭生豬日排泄的揮發(fā)性固體干物質(zhì)(默認值)kg·d-1蓄糞池0.3[29]UFb不確定性的修正因子0.94[14]MS進入系統(tǒng)內(nèi)的糞污比例35%實地調(diào)查efNC氮肥生產(chǎn)的CO2排放系數(shù)t·t-14.77[33]EFa電網(wǎng)排放因子t·MW-1·h-1華北電網(wǎng)0.8936[34]EFdiesel柴油燃燒的排放因子t·t-13.16[29]EFKm,CO2道路運輸kg·km-11.01[29]
溫室氣體排放系數(shù)根據(jù)河北省飼料作物生產(chǎn)和農(nóng)場的具體情況,結(jié)合國內(nèi)研究成果和文獻[29]選擇。養(yǎng)殖場中溫室氣體排放基于豬、肉牛和奶牛2014年存欄量進行計算,但由于存欄豬、牛群結(jié)構(gòu)和體重有所不同,因此在計算動物胃腸道發(fā)酵CH4排放、糞便貯存過程中N2O和CH4排放時,均按照不同類型豬、肉牛、奶牛各階段平均體重及維持時間,對照表1進行排放因子折算,進而計算溫室氣體排放總量。
2.1 農(nóng)場農(nóng)田生產(chǎn)和養(yǎng)殖子系統(tǒng)各環(huán)節(jié)溫室氣體排放量及所占比例
農(nóng)場生產(chǎn)活動中,農(nóng)田生產(chǎn)系統(tǒng)排放的溫室氣體(以CO2當量計,下同)為9 136.83 t·a-1,占農(nóng)場年總排放量的28.09%(表2)。其中,農(nóng)田系統(tǒng)的化肥氮、糞肥施用以及化肥氮生產(chǎn)過程中的溫室氣體排放所占比例較高,分別占農(nóng)田生產(chǎn)總排放量和農(nóng)場年總排放量的71.46%和20.08%;其次為機械和灌溉能耗,占農(nóng)田生產(chǎn)總排放量的28.54%。由此可知,農(nóng)田系統(tǒng)中溫室氣體排放主要來自氮肥和糞肥施用及生產(chǎn)氮肥所產(chǎn)生的溫室氣體,其中化肥氮生產(chǎn)和田間施用環(huán)節(jié)溫室氣體排放量為4 330.80 t,占農(nóng)田生產(chǎn)總排放量的47.40%,為主要排放源。
表2 農(nóng)田生產(chǎn)系統(tǒng)溫室氣體排放量及占農(nóng)場總排放量的比例
Table 2 GHG emission from the farming system and its contribution to the total from the farm
排放源 排放量/(t·a-1)占農(nóng)場總排放量的比例/%化肥氮生產(chǎn)1872.325.76化肥氮施用2458.487.56糞肥施用2198.686.76機械能耗998.873.07灌溉能耗1608.484.94合計9136.8328.09
農(nóng)場養(yǎng)殖系統(tǒng)主要包括生豬、肉牛和奶牛養(yǎng)殖以及飼料生產(chǎn)加工等生產(chǎn)活動,溫室氣體主要來源于動物腸道發(fā)酵、飼料生產(chǎn)加工、糞便貯存及日常管理等生產(chǎn)過程。由表3可知,養(yǎng)殖系統(tǒng)溫室氣體年排放總量為23 391.19 t·a-1,占農(nóng)場年排放總量的71.91%。其中,貢獻最大的是糞便貯存過程排放,為11 275.26 t,占農(nóng)場總排放量的34.66%。由于養(yǎng)殖規(guī)模較大,而且現(xiàn)有沼氣池容積不能容納全部糞便進行沼氣發(fā)酵,使得大量糞便集中貯存,從而導致溫室氣體排放增多;農(nóng)場生豬和肉牛飼養(yǎng)量較大,對精飼料需求較多,因此飼料生產(chǎn)和加工過程中的溫室氣體排放也占農(nóng)場總排放量的21.24%。由于外購了大量的玉米籽粒和麥麩、豆粕等精飼料原料,外購飼料生產(chǎn)過程中的化肥氮施用也排放了大量的溫室氣體。此外,動物腸道發(fā)酵的溫室氣體年排放量占年總排放量的15.48%。
表3 養(yǎng)殖生產(chǎn)系統(tǒng)溫室氣體排放量及占農(nóng)場總排放量的比例
Table 3 GHG emission from the livestock rearing system and its contribution to the total of the farm
排放源生產(chǎn)環(huán)節(jié)排放量/(t·a-1)占農(nóng)場總排放量的比例/%腸道發(fā)酵生豬養(yǎng)殖 551.30奶牛養(yǎng)殖2779.00肉牛養(yǎng)殖1705.00合計5035.3015.48飼料生產(chǎn)與加工1)生豬養(yǎng)殖4935.52奶牛養(yǎng)殖667.24肉牛養(yǎng)殖1305.59合計6908.3521.24糞便N2O排放生豬養(yǎng)殖131.92奶牛養(yǎng)殖31.41肉牛養(yǎng)殖44.75合計208.080.64糞便CH4排放生豬養(yǎng)殖9845.44奶牛養(yǎng)殖836.31肉牛養(yǎng)殖385.43合計11067.1834.02柴油CO2排放2)生豬養(yǎng)殖33.27奶牛養(yǎng)殖80.42肉牛養(yǎng)殖58.59合計172.280.53總計23391.1971.91
1)包括外購麥麩和豆粕在生產(chǎn)和初加工時的用電排放量及農(nóng)場進行精、粗飼料加工時的用電排放量;2)指養(yǎng)殖場日常管理機械能耗排放量。
2.2 農(nóng)場內(nèi)產(chǎn)品單位產(chǎn)量GHG排放量
農(nóng)田和養(yǎng)殖過程中生產(chǎn)單位產(chǎn)品所排放的溫室氣體見表4。由表4可知,生產(chǎn)1 t小麥籽粒的溫室氣體排放量為1 059.39 kg,生產(chǎn)1 t玉米籽粒的溫室氣體排放量為411.92 kg。養(yǎng)殖生產(chǎn)中,生產(chǎn)1 kg單位活體生豬的溫室氣體排放量為2.58 kg,低于BASSET-MENS等[35](3.5 kg)和BLONK等[36](3.7 kg)的研究結(jié)果,與周軍[37]的研究結(jié)果(大規(guī)模養(yǎng)殖戶生命周期內(nèi)單位活體豬CO2排放當量為2.978 kg)基本一致;奶牛養(yǎng)殖中生產(chǎn)1 kg原奶的溫室氣體排放量為1.04 kg,和新西蘭、瑞典及德國的原奶生產(chǎn)溫室氣體排放范圍(0.93~1.3 kg)一致[38],與國內(nèi)其他規(guī)?;膛pB(yǎng)殖場單位產(chǎn)品原奶生產(chǎn)排放1.398 kg溫室氣體[17]的研究結(jié)果相當。如果參照文獻[17]折算成按蛋白質(zhì)和脂肪含量糾正的牛奶(FPCM)產(chǎn)量,生產(chǎn)1 kg FPCM的溫室氣體排放量為1.14 kg,低于國內(nèi)規(guī)?;膛pB(yǎng)殖場生產(chǎn)1 kg FPCM溫室氣體排放量(1.71 kg)[39],也低于集約化養(yǎng)殖的全球平均水平(生產(chǎn)1 kg FPCM 排放2.8 kg溫室氣體)[40]。按奶牛養(yǎng)殖場年總排放量折算,每頭存欄奶牛平均年排放溫室氣體3.1 t,低于某些規(guī)模化奶牛場的平均排放量(4.9 t)[14]。養(yǎng)殖生產(chǎn)1 kg單位活體肉牛的溫室氣體排放量為10.00 kg,與國內(nèi)規(guī)模化肉牛養(yǎng)殖育肥期間的溫室氣體排放強度(10.16 kg)研究結(jié)果一致[15]。
表4 農(nóng)場各系統(tǒng)單位產(chǎn)量溫室氣體排放量
Table 4 GHG emissions per unit output relative to system in the farm
系統(tǒng) 功能單位排放量/kg作物種植系統(tǒng)1t小麥籽粒1059.391t玉米籽粒411.92豬生產(chǎn)系統(tǒng)1kg活體重2.58奶牛生產(chǎn)系統(tǒng)1kg原奶1.041kgFPCM1.14肉牛生產(chǎn)系統(tǒng)1kg活體重10.00
FPCM為按蛋白質(zhì)和脂肪含量糾正的牛奶。
3.1 農(nóng)場農(nóng)田生產(chǎn)系統(tǒng)減氮(化肥)對溫室氣體減排的影響
目前農(nóng)場的種植結(jié)構(gòu)中,小麥-玉米兩熟的農(nóng)田面積占總種植面積的94.34%,生產(chǎn)過程基本機械化。種植過程中除小麥播種前施入282.10 kg·hm-2糞肥氮作為底肥外,還施用231.26 kg·hm-2化肥氮作為底肥和追肥,再加上玉米播種時施用的161.26 kg·hm-2化肥氮,小麥、玉米兩季僅化肥氮施用量就達392.52 kg·hm-2,造成了大量N2O排放,導致農(nóng)田成為N2O的主要排放源。根據(jù)河北平原高產(chǎn)小麥、玉米栽培研究,在產(chǎn)量達到18 845.25 kg·hm-2的情況下,施氮量為420~480 kg·hm-2[41]。因此,減氮尤其是減少化肥氮的施用,一方面可減少因化肥氮田間施用所排放的溫室氣體,而且也可減少化肥氮生產(chǎn)過程中的溫室氣體排放,是目前農(nóng)場溫室氣體減排的關(guān)鍵措施之一[6-9,39]。隨著糞肥施用年限的增長,不僅可以改善土壤物理結(jié)構(gòu),改良土壤肥力特性,增加土壤養(yǎng)分,而且能夠顯著提高水分利用效率[42],農(nóng)場可逐漸減少并停止施用化肥氮。根據(jù)情景分析,當小麥、玉米種植中的化肥氮施用量減少125.51 kg·hm-2時,在不影響作物產(chǎn)量情況下,溫室氣體可以年減排1 384.79 t,占農(nóng)田生產(chǎn)系統(tǒng)總排放量的15.6%。
養(yǎng)殖生產(chǎn)中,每年需要從農(nóng)場外購買6 544.47 t玉米籽粒、6 787 t麥麩和5 781 t豆粕,外購玉米、麥麩和豆粕主要來自農(nóng)戶種植,而目絕大部分農(nóng)戶基本不施用有機肥,外購玉米、麥麩和豆粕的生產(chǎn)消耗1 609.53 t化肥氮,間接增加農(nóng)場溫室氣體排放。因此,可采取相關(guān)措施減少外購精飼料,間接減少化肥氮施用,這也是農(nóng)場溫室氣體減排的潛力所在。
3.2 改善糞便綜合管理方式對農(nóng)場溫室氣體減排的影響
隨著農(nóng)場養(yǎng)殖規(guī)模的不斷擴大,動物糞便堆積貯存時,在厭氧條件下會產(chǎn)生大量CH4和N2O等溫室氣體,對環(huán)境構(gòu)成極大威脅。當有限的耕地不能全部容納養(yǎng)殖廢棄物時,有必要綜合利用多種廢棄物處理和資源化利用方式來達到更好的經(jīng)濟和環(huán)境效益[43]。在可供選擇的動物糞便污染控制技術(shù)中,沼氣發(fā)酵可減少溫室氣體排放[16,28,44-47]。
農(nóng)場通過建設沼氣池對畜禽糞便進行綜合利用,除已投入使用的8 000 m3沼氣池外,還將投入建造一套3 000 m3的沼氣發(fā)酵設施,當農(nóng)場沼氣發(fā)酵池達到11 000 m3時,年處理糞便量可增加11%,與不使用沼氣發(fā)酵相比可多減排15.68%。另外,目前農(nóng)場沼氣發(fā)電替代國家電網(wǎng)電力可間接減排溫室氣體2 818.06 t·a-1。根據(jù)調(diào)查,農(nóng)場建造沼氣池雖然可以得到政府的相應補貼,但仍需要投入大量資金進行維護,而處理廢棄物的經(jīng)濟利潤較低[43]。因此,相關(guān)部門應根據(jù)當?shù)氐呐欧艠藴屎铜h(huán)保要求等給予一定的經(jīng)濟補貼和獎勵。另外,對不能進入沼氣池發(fā)酵的糞便,在貯存過程中可添加小麥秸稈生物質(zhì)炭和過磷酸鈣等物質(zhì),已有研究表明這些措施均可顯著降低堆肥過程中的溫室氣體排放[48-49]。
3.3 改善飼料結(jié)構(gòu)對農(nóng)場溫室氣體減排的影響
目前,農(nóng)場養(yǎng)殖的奶牛和肉牛粗飼料以青貯玉米秸稈為主,只添加少量的高丹草和苜蓿等優(yōu)質(zhì)牧草。根據(jù)WANG等[39]的研究,對奶牛養(yǎng)殖而言,溫室氣體排放量和牛奶產(chǎn)量與飼料中的精飼料、青貯飼料及苜蓿等成分密切相關(guān),改善飼料構(gòu)成可減少生產(chǎn)單位質(zhì)量蛋白質(zhì)的溫室氣體排放。研究表明,當采用3 kg苜蓿替代1.5 kg精飼料時,牛奶產(chǎn)量將提高11%,如果苜蓿生產(chǎn)中不施用化肥,總溫室氣體排放量將增加2%,但生產(chǎn)1 kg FPCM的溫室氣體排放將減少8%;而當替代的苜蓿生產(chǎn)施用化肥情況下,總溫室氣體排放量將增加5%,但生產(chǎn)1 kg FPCM的溫室氣體排放將減少5%[39]。因此,在奶牛養(yǎng)殖時增加苜蓿和高丹草等優(yōu)質(zhì)牧草,雖然總溫室氣體排放量有所增加,但可降低單位產(chǎn)品的溫室氣體排放。
種養(yǎng)一體規(guī)模化農(nóng)場在正常運行狀態(tài)下的溫室氣體年總排放量為32 528.02 t,其中農(nóng)田生產(chǎn)系統(tǒng)排放占28.09%,養(yǎng)殖場排放占71.91%。糞便貯存管理、飼料生產(chǎn)和加工、腸道發(fā)酵、氮素生產(chǎn)和施用等生產(chǎn)環(huán)節(jié)是農(nóng)場溫室氣體的主要排放源,分別占總排放量的34.66%、21.24%、15.48%和20.08%。生產(chǎn)1 t小麥和玉米籽粒的溫室氣體排放量分別為1 059.39和411.92 kg;生產(chǎn)1 kg牛奶(原奶)和FPCM的溫室氣體排放量分別為1.04和1.14 kg,低于全球平均水平;生產(chǎn)1 kg活體豬和肉牛的溫室氣體排放量分別為2.58和10.00 kg,與國內(nèi)其他集約化養(yǎng)殖場的排放量相當。
農(nóng)場中,化肥氮生產(chǎn)和施用、外購大量的玉米等精飼料原料及糞便貯存過程排放了大量的溫室氣體,是減排的潛力所在。通過情景分析,在減少化肥氮施用、增加進入沼氣發(fā)酵池糞便等情形下,可直接或間接減少大量的溫室氣體排放,減排潛力巨大。另外,加強糞便貯存管理和改善飼料結(jié)構(gòu),也是直接或間接減排的重要措施。
[1] 董紅敏,李玉娥,陶秀萍,等.中國農(nóng)業(yè)源溫室氣體排放與減排技術(shù)對策[J].農(nóng)業(yè)工程學報,2008,24(10):269-273.[DONG Hong-min,LI Yu-e,TAO Xiu-ping,etal.China Greenhouse Gas Emissions From Agricultural Activities and Its Mitigation Strategy[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(10):269-273.]
[2] STEINFELD H,GERBER P,WASSENAAR T,etal.Livestock′s Long Shadow[M].Rome,Italy:FAO,2006:97-110.
[3] EDENHOFER O,PICHS-MADUGA R,SOKONA Y,etal.Climate Change 2014:Mitigation of Climate Change:Contribution of Working Group Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Cambridge,UK:Cambridge University Press,2014:1435.
[4] 屈寶香,周旭英,張華,等.黃淮海地區(qū)種植業(yè)結(jié)構(gòu)調(diào)整與水資源關(guān)系研究[J].中國農(nóng)業(yè)資源與區(qū)劃,2003,24(5):29-32.[QU Bao-xiang,ZHOU Xu-ying,ZHANG Hua,etal.Studies of the Relation Between Structural Adjustment of Plant Industry and Water Resources in Huang-Huai-Hai Region[J].Journal of China Agricultural Reources and Regional Planning,2003,24(5):29-32.]
[5] 國家統(tǒng)計局.中國統(tǒng)計年鑒[M].北京:中國統(tǒng)計出版社,2015.[National Bureau of Statistics.China Statistical Yearbook[M].Beijing:China Statistics Press,2015.]
[6] 梁龍,陳源泉,高旺盛,等.華北平原冬小麥-夏玉米種植系統(tǒng)生命周期環(huán)境影響評價[J].農(nóng)業(yè)環(huán)境科學學報,2009,28(8):1773-1776.[LIANG Long,CHEN Yuan-quan,GAO Wang-sheng,etal.Life Cycle Environmental Impact Assessment in Winter Wheat-Summer Maize System in North China Plain[J].Journal of Agro-Environment Science,2009,28(8):1773-1776.]
[7] 梁龍,王大鵬,吳文良,等.基于低碳農(nóng)業(yè)的清潔生產(chǎn)與生態(tài)補償:以山東桓臺為例[J].中國農(nóng)業(yè)資源與區(qū)劃,2011,32(6):98-102.[LIANG Long,WANG Da-peng,WU Wen-liang,etal.Cleaner Production and Ecological Compensation Based on Low-Carbon Agriculture[J].Chinese Journal of Agricultural Reources and Regional Planning,2011,32(6):98-102.]
[8] 王玉英,胡春勝.施氮水平對太行山前平原冬小麥-夏玉米輪作體系土壤溫室氣體通量的影響[J].中國生態(tài)農(nóng)業(yè)學報,2011,19(5):1122-1128.[WANG Yu-ying,HU Chun-sheng.Soil Greenhouse Gas Emission in Winter Wheat/ Summer Maize Rotation Ecosystem as Affected by Nitrogen Fertilization in the Piedmont Plain of Mount Taihang,China[J].Chinese Journal of Eco-Agriculture,2011,19(5):1122-1128.]
[9] 史磊剛,陳阜,孔凡磊,等.華北平原冬小麥-夏玉米種植模式碳足跡研究[J].中國人口·資源與環(huán)境,2011,21(9):93-98.[SHI Lei-gang,CHEN Fu,KONG Fan-lei,etal.The Carbon Footprint of Winter Wheat-Summer Maize Cropping Pattern on North China Plain[J].Chian Population,Resources and Environment,2011,21(9):93-98.]
[10]SALEEM M A M.Nutrient Balance Patterns in African Livestock Systems[J].Agriculture,Ecosystems and Environment,1998,71(1/2/3):241-254.
[11]TORKAMANI J.Using a Whole-Farm Modeling Approach to Assess Prospective Technologies Under Uncertainty[J].Agricultural Systems,2005,85(2):138-154.
[12]張穎,夏訓峰,李中和,等.規(guī)?;B(yǎng)牛場糞便處理生命周期評價[J].農(nóng)業(yè)環(huán)境科學學報,2010,29(7):1423-1427.[ZHANG Ying,XIA Xun-feng,LI Zhong-he,etal.Life Cycle Assessment of Manure Treatment in Scaled Cattle Farms[J].Journal of Agro-Environment Science,2010,29(7):1423-1427.]
[13]陳瑞蕊,王一明,胡君利,等.畜禽糞便管理系統(tǒng)中甲烷的產(chǎn)排特征及減排對策[J].土壤學報,2012,49(4):815-823.[CHEN Rui-rui,WANG Yi-ming,HU Jun-li,etal.Methane Emission and Mitigation Strategies in Animal Manure Management System[J].Acta Pedologica Sinica,2012,49(4):815-823.]
[14]孫亞男,劉繼軍,馬宗虎.規(guī)模化奶牛場溫室氣體排放量評估[J].農(nóng)業(yè)工程學報,2010,6(26):296-301.[SUN Ya-nan,LIU Ji-jun,MA Zong-hu.Evaluation of Greenhouse Gas Emissions From Scale Dairy Farm[J].Transactions of the Chinese Society of Agricultural Engineering,2010,26(6):296-301.]
[15]馬宗虎,王美芝,丁露雨,等.規(guī)?;馀S蕡鰷厥覛怏w排放的生命周期評估[J].農(nóng)業(yè)環(huán)境科學學報,2010,29(11):2244-2252.[MA Zong-hu,WANG Mei-zhi,DING Lu-yu.etal.Emissions of Greenhouse Gases From an Industrial Beef Feedlot Farm as Evaluated by a Life-Cycle Assessment Method[J].Journal of Agro-Environment Science,2010,29(11):2244-2252.]
[16]馬宗虎,南國良.規(guī)模豬場厭氧-好氧糞污處理系統(tǒng)溫室氣體減排量評估[J].中國沼氣,2008,26(5):3-8.[MA Zong-hu,NAN Guo-liang.Evaluation of Greenhouse Gas Emission Reductions From Implementation of Anaerobic-Aerobic Waste Treatment System on Swine Farm[J].China Biogas,2008,26(5):3-8.]
[17]王效琴,梁東麗,王旭東,等.運用生命周期評價方法評估奶牛養(yǎng)殖系統(tǒng)溫室氣體排放量[J].農(nóng)業(yè)工程學報,2012,28(13):179-184.[WANG Xiao-qin,LIANG Dong-li,WANG Xu-dong,etal.Estimation of Greenhouse Gas Emissions From Dairy Farming Systems Based on LCA[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(13):179-184.]
[18]ISO 14040,Environmental Management-Life Cycle-Assessment-Principles and Framework[S].
[19]陳莎,楊孝光,任麗娟,等.生命周期評價應用于溫室氣體排放的研究進展[J].環(huán)境科學與技術(shù),2011,34(6):164-169.[CHEN Sha,YANG Xiao-guang,REN Li-juan,etal.Research and Progress of Application LCA in GHG Emission[J].Environmental Science & Technology,2011,34(6):164-169.]
[20]FUKUSHIMA Y,CHEN S P.A Decision Support Tool for Modifications in Crop Cultivation Method Based on Life Cycle Assessment:A Case Study on Greenhouse Gas Emission Reduction in Taiwanese Sugarcane Cultivation[J].The International Journal of Life Cycle Assessment,2009,14(7):639-655.
[21]BASSET-MENS C,KELLIHER F M,LEDGARD S,etal.Uncertainty of Global Warming Potential for Milk Production on a New Zealand Farm and Implications for Decision Making[J].The International Journal of Life Cycle Assessment,2009,14(7):630-638.
[22]CASEY J W,HOLDEN N M.Quantification of GHG Emissions From Sucker-Beef Production in Ireland[J].Agricultural Systems,2006,90(1/3):79-98.[23]NGUYEN T L T,HERMANSEN J E,MOGENSEN L.Environmental Consequences of Different Beef Production Systems in the EU[J].Journal of Cleaner Production,2010,18(8):756-766.
[24]VERGé X P C,DYER J A,DESJARDINS R L,etal.Greenhouse Gas Emissions From the Canadian Beef Industry[J].Agricultural Systems,2008,98(2):126-134.
[25]梁龍,陳源泉,高旺盛.基于生命周期的循環(huán)農(nóng)業(yè)系統(tǒng)評價[J].環(huán)境科學,2010,31(11):2795-2803.[LIANG Long,CHEN Yuan-quan,GAO Wang-sheng.Integrated Evaluation of Circular Agriculture System:A Life Cycle Perspective[J].Environmental Science,2010,31(11):2795-2803.]
[26]梁龍,陳源泉,高旺盛.我國農(nóng)業(yè)生命周期評價框架探索及其應用:以河北欒城冬小麥為例[J].中國人口·資源與環(huán)境,2009,19(5):154-160.[LIANG Long,CHEN Yuan-quan,GAO Wang-sheng.Framework Study and Application of Agricultural Life Cycle Assessment in China:A Case Study of Winter Wheat Production in Luancheng of Hebei[J].Chian Population,Resources and Environment,2009,19(5):154-160.]
[27]國家發(fā)展和改革委員會價格司.全國農(nóng)產(chǎn)品成本收益資料匯編2014[M].北京:中國統(tǒng)計出版社,2014.[The National Development and Reform Commission,Price Department.The National Agricultural Cost-Benefit Data Assembly,2014[M].Beijing:China Statistics Press,2014.]
[28]段茂盛,王革花.畜禽養(yǎng)殖場沼氣工程的溫室氣體減排效益及利用清潔發(fā)展機制(CDM)的影響分析[J].太陽能學報,2003,24(3):386-389.[DUAN Mao-sheng,WANG Ge-hua.Greenhouse Gas Mitigation Benefits of Biogas Project in Licestock Farms[J].Acta Energiae Solaris Sinica,2003,24(3):386-389.]
[29]IPCC.IPCC Guidelines for National Greenhouse Gas Inventories[S].Hayama,Japan:IGES,2006.[30]張強,巨曉棠,張福鎖.應用修正的IPCC 2006方法對中國農(nóng)田N2O排放量的重新估算[J].中國生態(tài)農(nóng)業(yè)學報,2010,18(1):7-13.[ZHANG Qiang,JU Xiao-tang,ZHANG Fu-suo.Re-Estimation of Direct Nitrous Oxide Emission From Agricultural Soils of China via Revised IPCC 2006 Guideline Method[J].Chinese Journal of Eco-Agriculture,2010,18(1):7-13.]
[31]趙榮芳,陳新平,張福鎖.華北地區(qū)冬小麥-夏玉米輪作體系的氮素循環(huán)與平衡[J].土壤學報,2009,46(4):684-697.[ZHAO Rong-fang,CHEN Xin-ping,ZHANG Fu-suo.Nitrogen Cycling and Balance in Winter-Wheat-Summer-Maize Rotation System in the North China Plain[J].Acta Pedologica Sinica,2009,46(4):684-697.]
[32]Methane Recovery in Agricultural and Agro Industrial Activities-Version 14(AMS-Ⅲ.D),Version 10,2016.7.28[EB/OL].[2016-04-16].http:∥cdm.unfccc.int/filestorage/C/D/M/CDMWF_AM_LM875Z64MVHWOE3JVL4BGGIC4SRUBE/AMS_III.D._ver10.pdf?t=RGt8b2lpbTRufDCd2IMIvSQCrCZnKjnisRdw.
[33]馮莽.我國化肥生產(chǎn)能耗及消費之現(xiàn)狀分析[EB/OL].(2005-04-28)[2016-04-16].http:∥www.ampcn.com/news/detail/9249.asp.[FENG Mang.Analysis of Energy Consumption and Consumption of Fertilizer Production in China[EB/OL].(2005-04-28)[2016-04-16].http:∥www.ampcn.com/news/detail/9249.asp.]
[34]國家發(fā)展和改革委員會應對氣候變化司.2015年中國區(qū)域電網(wǎng)基準線排放因子[EB/OL].[2016-04-16].http:∥wenku.baidu.com/link?url=idbSvNzz2fLSl1WXiEmtIL1amhQTHmtqqQ6g1cp-oU1X3W4wF2Wdu5LSe745rwjCkYGCgdV0pXJm2gQ19IMK-nRKnkq0w5OOCiDCQjfKki&qq-pf-to=pcqq.c2c.[National Development and Reform Commission to Deal With Climate Change Division.Baseline emission factors of China′s Regional Power Grid in 2015[EB/OL].[2016-04-16].http:∥wenku.baidu.com/link?url=idbSvNzz2fLSl1WXiEmtIL1amhQTHmtqqQ6g1cp-oU1X3W4wF2Wdu5LSe745rwjCkYGCgdV0pXJm2gQ19IMK-nRKn-kq0w5OOCiDCQjfKki&qq-pf-to=pcqq.c2c.]
[35]BASSET-MENS C,VAN DER WERF H M G.Scenario-Based Environmental Assessment of Farming System:The Case of Pig Production in France[J].Agriculture,Ecosystems and Environment,2005,105(1/2):127-144.
[36]BLONK H,LAFLEUR M C C,VAN ZEIJTS H.Towards an Environmental Infrastructure of the Dutch Food Industry:Exploring the Information Conversion of Five Food Commodities[M].Amsterdam,Holland:IVAM Environmental Research,1997:28.
[37]周軍.生豬養(yǎng)殖規(guī)模與主產(chǎn)地移動、溫室氣體排放研究:基于江蘇省調(diào)查數(shù)據(jù)[D].南京:南京農(nóng)業(yè)大學,2012.[ZHOU Jun.Study on Pig Breeding Scale and Origin Mobile,Greenhouse Gas Emissions-Based on the Suevey Data of Jiangsu Province[D].Nanjing:Nanjing Agricultural University,2012.]
[38]VRIES M D,BOER I J M D.Comparing Environment Impacts for Livestock Products:A Review of Life Cycle Assessments[J].Livestock Science,2010,128(1):1-11.
[39]WANG X Q,KRISTENSEN T,MOGENSEN L,etal.Greenhouse Gas Emissions and Land Use From Confinement Dairy Farms in the Guanzhong Plain of China:Using a Life Cycle Assessment Approach[J].Journal of Cleaner Production,2016,113(2):577-586.
[40]GERBER P J,STEINFELD H,HENDERSON B,etal.Tackling Climate Change Through Livestock:A Global Assessment of Emissions and Mitigation Opportunities[R].Rome,Italy:Food and Agriculture Organization of the United Nations,2013.
[41]吉艷芝,馮萬忠,郝曉然,等.不同施肥模式對華北平原小麥-玉米輪作體系產(chǎn)量及土壤硝態(tài)氮的影響[J].生態(tài)環(huán)境學報,2014,23(11):1725-1731.[JI Yan-zhi,FENG Wan-zhong,HAO Xiao-ran,etal.Effects of Different Fertilization Pattern on the Yield of the Rotation System of Wheat and Maize and Soil Nitrate Accumulation in North China Plain[J].Ecology and Environmental Sciences,2014,23(11):1725-1731.]
[42]王曉娟,賈志寬,梁連友,等.旱地施有機肥對土壤水分和玉米經(jīng)濟效益影響[J].農(nóng)業(yè)工程學報,2012,28(6):144-149.[WANG Xiao-juan,JIA Zhi-kuan,LIANG Lian-you,etal.Effects of Organic Fertilizer Application on Soil Moisture and Economic Returns of Maize in Dryland Farming[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(6):144-149.]
[43]馬永喜,王穎.規(guī)模化畜牧養(yǎng)殖廢棄物處理的環(huán)境經(jīng)濟優(yōu)化研究:基于生態(tài)經(jīng)濟模型的分析[J].農(nóng)業(yè)現(xiàn)代化研究,2014,35(3):340-344.[MA Yong-xi,WANG Ying.Optimization of Environmental and Economic Effects in Waste Treatment of Intensive Livestock Production:An Analysis Based on “Ecological Economic” Model[J].Research of Agricultural Modernization,2014,35(3):340-344.]
[44]CHINH N Q.Dairy Cattle Development:Environmental Consequences and Pollution Control Options in Hanoi Province,North Vietnam[R].Singapore:The Economy and Environment Program for Southeast Asia (EEPSEA),2005:6.
[45]馬榮華,丁一凡,南國良,等.基于CDM的規(guī)模豬場大型沼氣工程經(jīng)濟評價[J].中國畜牧雜志,2008,44(17):50-52.[MA Rong-hua,DING Yi-fan,NAN Guo-liang,etal.Economic Evaluation of Large Scale Biogas Project Based on the CDM[J].Chinese Journal of Animal Science,2008,44(7):50-52.]
[46]VANOTTI M B,SZOGI A A,VIVES C A.Greenhouse Gas Emission Reduction and Environmental Quality Improvement From Implementation of Aerobic Waste Treatment Systems in Swine Farms[J].Waste Management,2008,28(4):759-766.
[47]李玉娥,董紅敏,萬運帆,等.規(guī)?;B(yǎng)雞場CDM項目減排及經(jīng)濟效益估算[J].農(nóng)業(yè)工程學報,2009,25(1):194-198.[LI Yu-e,DONG Hong-min,WAN Yun-fan,etal.Emission Reduction From Clean Development Mechanism Projects on Intensive Livestock Farms and Its Economic Benefits[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(1):194-198.]
[48]羅一鳴,李國學,SCHUCHARDT F,等.過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J].農(nóng)業(yè)工程學報,2012,28(22):235-242.[LUO Yi-ming,LI Guo-xue,SCHUCHARDT F,etal.Effects of Additive Superphosphate on NH3,N2O and CH4Emissions During Pig Manure Composting[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(22):235-242.]
[49]陶金沙,李正東,劉福理,等.添加小麥秸稈生物質(zhì)炭對豬糞堆肥腐熟程度及溫室氣體排放的影響[J].土壤通報,2014,45(5):1233-1240.[TAO Jin-sha,LI Zheng-dong,LIU Fu-li,etal.Effects of Wheat Straw Biochar on Maturity Extent and Greenhouse Gases Emissions During Swine Manure Composting[J].Chinese Journal of Soil Science,2014,45(5):1233-1240.]
(責任編輯: 許 素)
Estimation of Greenhouse Gas Emissions in Scaled Crop-Livestock Integrated Farms in North China Plain.
SHIPeng-fei,ZHENGYuan-yuan,YANGDong-yu,DANGJing,WANGGui-yan
(College of Agronomy, Agricultural University of Hebei, Baoding 071001, China)
The North China Plain is one of the most important crop and livestock production regions, and large-scaled crop and livestock integrated farms are common and typical of the region and thought to be an effective way to solve the environment pollution. Emission of greenhouse gases from the crop and livestock system is already accepted as a main cause of climate change. The objective of this study is to quantify greenhouse gas (GHG) emission from a farm of such a nature in the North China Plain. The life-cycle-based assessment method was used to estimate GHG emission during the operation of the farm by referring to the calculation methodology and emission coefficients specified in the “IPCC 2006 National Guide for and List of GHG” . Results show that the annual total GHG emission from the farm was 32 528.02 t (CO2-equivalence, the same below), among which the farming system contributed 28.09%, and the livestock system did 71.91%. During the operation of the farm, the processes of livestock waste handling and storage, animal feed production and processing, intestinal fermentation and nitrogen production and application were the main sources of GHG emission, contributing 34.66%, 21.24%, 15.48% and 20.08% to the total, respectively. The production of 1 kg of wheat and maize grains emitted 1 059.39 and 411.92 kg, respectively; the production of 1 kg of raw milk and 1 kg of fat-protein corrected milk (FPCM) did 1.04 and 1.14 kg, respectively, which was lower than the average of the world; and production of 1 kg of live pig and beef cattle did 2.58 and 10.00 kg, respectively, similar to those from other intensive animal farms in the country. Scenario analysis shows that to reduce N (fertilizer) application rate, improve the capacity of handling and treating livestock waste, intensify N management and modify feed composition may directly or indirectly mitigate GHG emissions from such farms.
mixed farm; farm level; greenhouse gas; emission reduction potential
2016-04-18
國家科技支撐計劃(2012BAD14B07-06-02)
X511
A
1673-4831(2017)03-0207-08
10.11934/j.issn.1673-4831.2017.03.003
石鵬飛(1989—),男,陜西榆林人,碩士生,主要研究方向為集約持續(xù)農(nóng)作制度。E-mail: spf1023@sina.com
① 通信作者E-mail: guiyanwang@sina.com