亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類非線性偏微分方程的多孤子解

        2017-04-05 07:56:07張智欣
        關(guān)鍵詞:數(shù)理孤子李偉

        李 偉,張智欣

        (渤海大學 數(shù)理學院,遼寧 錦州 121013)

        一類非線性偏微分方程的多孤子解

        李 偉,張智欣

        (渤海大學 數(shù)理學院,遼寧 錦州 121013)

        許多重要的自然科學問題和工程問題都可以歸結(jié)為非線性偏微分方程。從傳統(tǒng)的角度來看,非線性偏微分方程的多孤子解是很難得到的。經(jīng)過幾十年的研究和探索,已經(jīng)發(fā)現(xiàn)了一些構(gòu)造精確解的方法。借助于科爾-霍普夫變換和Af+B=0方法,獲得了Burgers方程和KP方程的多孤子解。該方法能夠解決一系列偏微分方程。

        科爾-霍普夫變換;Af+B=0方法;多孤子解

        1 Introduction

        Soliton is an important feature of nonlinearity and can be found in many scientific applications.Many systematic methods are used for studying the nonlinear evolution equations that give rise to solitons.The inverse scattering method, the Backlund transformation method, the Darboux transformation method, the Hirota bilinear method[1-5], and the Hereman-Nuseir method[6] are the most commonly used methods.The Hirota’s bilinear method is rather heuristic and possesses significant features that make it practical for the determination of multiple soliton solutions[7-13].developed a modified form of the Hirota’s method that facilitates the computational work.The computer symbolic systems such as Maple, Mathematica can be used to overcome the tedious calculations.

        In this work, we will examine two kinds of equations that play a significant role in this field.The Burgers equation, theKPequation that will be examined, reads

        (1)

        (2)

        In this work we will employ the Cole-Hopf transformation method and theAf+B=0 method to handle these two equations.We aim to obtain multiple-kink solutions for each equation.

        2 The Af+B=0 method

        We will consider the NPED

        (3)

        Our specific practice:

        We first use the Cole-Hopf transformation

        (4)

        that will carry (3) to

        Af+B=0

        (5)

        whereA,Bare the functions offx,ft,fxx,ftt,fxt, …, do not containf.

        We set up

        (6)

        then the solution of (6) is solution of(5).

        1) for single solution, we use

        (7)

        Substituting (7) into (6) and solvingr1, we findr1=r1(p1).

        2) for two-solition solutions, we use

        (8)

        Substituting (8) into (5) and solvinga12, we finda12=a12(p1,p2).

        3) for three-solition solutions, we use

        (9)

        Substituting (9) into (5) and solvingb123, we findb123=b123(p1,p2,p3).

        3 The Burgers equation

        We first use the Cole-Hopf transformation

        that will carry (1) to

        (11)

        We set up

        (12)

        For single solution, we use

        (13)

        Substituting (13) into (12) and solving r1, we find

        (14)

        wherep1is arbitrary constant.

        Substituting (13) and (14) into (10) give the single-kink solution

        (15)

        Therefore, we assume that the two-kink solutions for

        (16)

        wherep1,p2are arbitrary constants.

        Substituting (16) into (11) and solvinga12, we find

        (17)

        Substituting (16) and (17) into (10) give the two-kink solutions

        (18)

        For three-solition solutions, we set

        (19)

        Substituting (19) into (11) and solvingb123, we find

        (20)

        Substituting (19) and (20) into (10) give the three-kink solutions

        (21)

        4 The KP equation

        We use the Cole-Hopf transformation

        (22)

        that will carry the KP equation(2) to

        (23)

        We set up

        (24)

        For single solution, we use

        (25)

        Substituting (25) into (24) and solvingr1, we find

        (26)

        wherep1,q1are arbitrary constants.

        Substituting (25) and (26) into (22) give the single-kink solution

        (27)

        Therefore, we assume that the two-kink solutions for

        (28)

        wherep1,p2are arbitrary constants.

        Substituting (28) into (23) and solvinga12, we find

        (29)

        Substituting (28) and (29) into (22) give the two-kink solutions

        (30)

        wherep1,p2are arbitrary constants.

        For three-solition solutions, we set

        (31)

        Substituting (31) into (23) and solvingb123, we find

        (32)

        Substituting (31) and (32) into (22) give the three-kink solutions

        (33)

        wherepi(i=1, 2, 3) are arbitrary constants.

        5 Discussions

        Two models, the Burgers equation, and theKPequation are studied.Multiple-kink solutions are formally derived for each equation.The results obstained we generalized to some equation.

        [1] ABLOWITZ M J,KAUP D J,NEWELL A C,et al.The Inverse scattering transform Fourier analysis for nonlinear problems Stud[J].Appl Math,1974,53:249-315.

        [2] ESTEVEZ P G,CONDE E,GORDOA P R.Unified approach to Miura,Backlund and Draboux transformations for nonlinear partial differential equations[J].Nonlinear Math.Phys.1998,5(1):82-114.

        [3] HIROTA R.The Direct Method in Soliton Theory[M].Cambridge:Cambridge University Press,2004.

        [4] HIROTA R.Exact solutions of the Korteweg de Vries equation for multiple collisions of solitons[J].Phys Rev Lett,1971,27(18):1192-1194.

        [5] HIROTA R,SATSUMA J.N-soliton solutions of model equations for shallow water waves[J].Phys Soc Jpn,1976,40(2):611-612.

        [6] HEREMAN W,NUSEIR A.Symbolic methods to construct exact solutions of nonlinear partial differential equations[J].Math Comput Simul,1997,43:105-109.

        [7] MATSUNO Y.Bilinear Transformation Method[M].[s.n.]:Academic Press,1984.

        [8] WAZWAZ A M.Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations[J].Phys Scripta,2010,81:035005.

        [9] WAZWAZ A M.Multiple soliton solutions for coupled KdV and coupled KP Systems[J].Can J Phys,2010,87(12):1227-1232.

        [10]WAZWAZ A M.Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhanik-Novikov-Veselov equation Nonlinear Anal[J].Theory Meth Appl,2010,72:1314-1318.

        [11]WAZWAZ A M.The (2+1) and (3+1)-dimensional CBS equation:multiple soliton solutions and multiple singular soliton solutions.Multiple Zeitschrift fur Naturforschung A (ZNA),2010,65a:173-181.

        [12]WAZWAZ A M.The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves[J].Appl Math Comput,2008,201:489-503.

        [13]WAZWAZ A M.Solitary wave solutions of the the generalized shallow water wave (GSWW) equation by Hirota’s method,tanh-coth method and expfunction method[J].Appl Math Comput,2008,202:275-286.

        (責任編輯 陳 艷)

        N-Soliton Solutions for a Class of Nonlinear Partial Differential Equations

        LI Wei,ZHANG Zhi-xin

        (College of Mathematical, Bohai University, Jinzhou 121013, China)

        Many significant natural science and engineering problems can be attributed to nonlinear partial differential equation. From the traditional point of view, n-soliton solutions of partial differential equation are hard to get. After several decades of research and exploration, we have found some tectonic exact solution method. With the help of Cole-Hopf transformation method and theAf+B=0 method, n-soliton solutions of the Burgers equation and the KP equation were presented. This method could solve a series of partial differential equations.

        the Cole-Hopf transformation;Af+B=0 method; multiple-soliton solution

        2016-11-24 基金項目:國家自然科學基金資助項目(11547005)

        李偉(1977—),男, 遼寧錦州人,碩士,主要從事偏微分方程研究, E-mail:1344462965@qq.com。

        李偉,張智欣.一類非線性偏微分方程的多孤子解[J].重慶理工大學學報(自然科學),2017(3):171-174.

        format:LI Wei,ZHANG Zhi-xin.N-Soliton Solutions for a Class of Nonlinear Partial Differential Equations[J].Journal of Chongqing University of Technology(Natural Science),2017(3):171-174.

        10.3969/j.issn.1674-8425(z).2017.03.026

        O175.2

        A

        1674-8425(2017)03-0171-04

        猜你喜歡
        數(shù)理孤子李偉
        踐行“德融數(shù)理” 打造“行知樂園”
        中國德育(2022年12期)2022-08-22 06:17:24
        “田”野里的樂趣
        “制造”年獸
        一個新的可積廣義超孤子族及其自相容源、守恒律
        孟母三遷
        數(shù)理:多少人吃飯
        孩子(2019年9期)2019-11-07 01:35:49
        (3+1)維Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
        最天然呆筆記 誰說數(shù)理就一定枯燥艱深?
        兩個孤子方程的高階Painlevé截斷展開
        (3+1)維非線性方程的呼吸類和周期類孤子解
        中文字幕精品永久在线| 国产伦精品一区二区三区免费 | 色婷婷六月天| 中国老太老肥熟女视频| 中文av字幕一区二区三区| 人妻尝试又大又粗久久| 国产mv在线天堂mv免费观看| 99免费视频精品| 伊人久久大香线蕉av不变影院| 日本一区二区在线播放| 精品爆乳一区二区三区无码av| 玩弄人妻奶水无码AV在线| 国产精品久久婷婷六月丁香| 国产大片内射1区2区| 2019最新国产不卡a| 三级全黄的视频在线观看| 日产国产亚洲精品系列| 色一情一乱一伦麻豆| 亚洲国产精品久久久久秋霞1| 国产亚洲精品综合在线网址| 精品一区二区三区亚洲综合| 伊人久久大香线蕉av色| 国产亚洲日韩一区二区三区| 日本韩国黄色三级三级| 亚洲人成网站色在线入口口| 欧美成人精品三级网站| 亚洲aⅴ无码国精品中文字慕| 色综合久久人妻精品日韩| 久久久久亚洲av无码专区首 | 久久久亚洲精品蜜臀av| 插插射啊爱视频日a级| 精品午夜福利无人区乱码一区| 国产精品久久久一本精品| 亚洲一区二区三区熟妇| 国产女主播白浆在线观看| 99福利在线| 手机免费在线观看日韩av| 妺妺窝人体色www婷婷| 亚洲精品无码国模| 国产精品一区二区三区色| 凌辱人妻中文字幕一区|