亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        實(shí)驗(yàn)增溫對(duì)西藏高原玉米田土壤呼吸的影響

        2017-04-01 02:38:01付剛鐘志明
        關(guān)鍵詞:玉米田實(shí)驗(yàn)研究

        付剛,鐘志明

        中國(guó)科學(xué)院地理科學(xué)與資源研究所//生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室//拉薩高原生態(tài)系統(tǒng)研究站,北京 100101

        實(shí)驗(yàn)增溫對(duì)西藏高原玉米田土壤呼吸的影響

        付剛,鐘志明*

        中國(guó)科學(xué)院地理科學(xué)與資源研究所//生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室//拉薩高原生態(tài)系統(tǒng)研究站,北京 100101

        青藏高原農(nóng)業(yè)區(qū)正經(jīng)歷著明顯的氣候變暖,但氣候變暖如何影響高寒農(nóng)業(yè)生態(tài)系統(tǒng)碳循環(huán)目前仍不明確。土壤呼吸是第二大陸地生態(tài)系統(tǒng)碳通量,高寒農(nóng)業(yè)生態(tài)系統(tǒng)土壤呼吸對(duì)氣候變暖的響應(yīng)的不確定性限制了氣候變化背景下人類對(duì)青藏高原高寒生態(tài)系統(tǒng)碳循環(huán)的預(yù)測(cè)能力。2015年4月在西藏玉米田采用開(kāi)頂式生長(zhǎng)箱進(jìn)行模擬增溫試驗(yàn),旨在探究氣候變暖對(duì)土壤呼吸及其溫度敏感性的影響。在2015年玉米生長(zhǎng)季節(jié)的5—8月份,利用Li8100土壤通量觀測(cè)系統(tǒng)測(cè)定了6次土壤呼吸日變化(8:00—20:00),并利用HOBO微氣候觀測(cè)系統(tǒng)觀測(cè)了5 cm深處的土壤溫度和土壤濕度。結(jié)果表明,實(shí)驗(yàn)增溫顯著提高了5 cm深處的土壤溫度(t=11.93,P=0.000),增幅為3.22 ℃,同時(shí)顯著降低了5 cm深處的土壤含水量,降幅為0.04 m3·m-3(t=4.87,P=0.008)。對(duì)照和模擬增溫處理的土壤呼吸速率分別為6.79 μmol·m-2·s-1和7.34 μmol·m-2·s-1,兩者間無(wú)顯著差異(F=1.65,P=0.235)。盡管如此,土壤呼吸仍存在著顯著的日變化(F=137.66,P=0.000)和季節(jié)變異(F=54.48,P=0.000)。對(duì)照和模擬增溫處理的土壤呼吸溫度敏感性分別為1.70和1.77,兩者間也無(wú)顯著差異(t=2.69,P=0.100)。土壤溫度解釋了36%的對(duì)照處理的土壤呼吸變異,而土壤溫度和土壤濕度共同解釋了62%的土壤呼吸變異。因此,3.22 ℃的土壤增溫沒(méi)有顯著改變土壤呼吸及其溫度敏感性,這與3.22 ℃的土壤增溫引起了土壤濕度的降低有關(guān)。

        被動(dòng)增溫;土壤含水量;溫度敏感性;青藏高原

        土壤呼吸(soil respiration,Rs)是全球第二大陸地生態(tài)系統(tǒng)碳通量,僅小于植被光合作用(Raich et al.,1995)。土壤呼吸的一個(gè)極小的變化都可能影響全球碳平衡(Cox et al.,2000;Peng et al.,2015a)。就排放到大氣中的CO2而言,農(nóng)業(yè)土壤是重要的貢獻(xiàn)者,在全球碳循環(huán)中扮演著重要角色。與森林和草地生態(tài)系統(tǒng)相比,農(nóng)業(yè)土壤富含土壤有機(jī)質(zhì),土壤水分條件較好以及通氣狀況良好,農(nóng)業(yè)土壤對(duì)氣候變化可能有更強(qiáng)的響應(yīng)(Lal,2004)。在1995—2004年,中國(guó)農(nóng)業(yè)生態(tài)系統(tǒng)的土壤呼吸大約占全中國(guó)陸地生態(tài)系統(tǒng)土壤呼吸的22.2%,且農(nóng)田的土壤呼吸溫度敏感性大于草地(Yu et al.,2010)。與全中國(guó)其他地區(qū)相比,有關(guān)青藏高原農(nóng)田生態(tài)系統(tǒng)對(duì)氣候變化的響應(yīng)實(shí)驗(yàn)研究很少(Zhong et al.,2016)1-8,而高寒農(nóng)田是農(nóng)田生態(tài)系統(tǒng)的重要組成部分。因此,準(zhǔn)確定量化青藏高原高寒農(nóng)田生態(tài)系統(tǒng)土壤呼吸對(duì)氣候變化的響應(yīng)對(duì)理解全球氣候變化和預(yù)測(cè)大氣CO2濃度變化意義重大(Liang et al.,2004)。

        青藏高原的農(nóng)業(yè)區(qū)主要位于半干旱的河谷區(qū)域(Yang et al.,1996),由于海拔高(3000~4500 m)和溫度低,這些地區(qū)是典型的高寒農(nóng)業(yè)區(qū)(Zhang et al.,2000)。由于青藏高原具有高寒和干燥的特點(diǎn),其農(nóng)業(yè)生態(tài)系統(tǒng)非常脆弱,且其農(nóng)業(yè)區(qū)正經(jīng)歷著明顯的氣候變暖(Shen et al.,2014)。原位控制增溫實(shí)驗(yàn)?zāi)軌驗(yàn)槿驓夂蜃兓芯刻峁┮欢ǖ睦碚摶A(chǔ)和數(shù)據(jù)支持,然而,目前在青藏高原農(nóng)業(yè)區(qū)開(kāi)展原位控制增溫的實(shí)驗(yàn)研究還很少見(jiàn)(付剛等,2016)1093。有關(guān)青藏高原農(nóng)田生態(tài)系統(tǒng)土壤呼吸對(duì)原位控制增溫的響應(yīng)研究也只限于西藏青稞Highland barley農(nóng)田土壤呼吸的初始響應(yīng)(Zhong et al.,2016)1-8。雖然針對(duì)青稞農(nóng)田的研究表明模擬增溫并沒(méi)有顯著改變青稞農(nóng)田土壤呼吸及其溫度敏感性(Zhong et al.,2016)1,但是前人的很多研究均表明模擬增溫顯著改變了青藏高原高寒草地和森林生態(tài)系統(tǒng)的土壤呼吸(Lin et al.,2011;Xu et al.,2010)。有關(guān)青藏高原的整合分析也表明,增溫將顯著促進(jìn)土壤呼吸(Zhang et al.,2015)。此外,前人的一些研究表明,模擬增溫顯著促進(jìn)了溫帶和亞熱帶農(nóng)田生態(tài)系統(tǒng)的土壤呼吸(Liu et al.,2012;Reth et al.,2009)。然而,氣候變暖如何影響青藏高原農(nóng)業(yè)生態(tài)系統(tǒng)土壤呼吸目前仍不清楚,需要增加更多的有關(guān)模擬增溫對(duì)青藏高原農(nóng)田生態(tài)系統(tǒng)土壤呼吸的影響研究。

        定量化玉米生態(tài)系統(tǒng)對(duì)氣候變化的響應(yīng)在定量化氣候變化如何影響全球農(nóng)業(yè)生態(tài)系統(tǒng)中扮演著重要角色。作為一種適應(yīng)性強(qiáng)的農(nóng)作物,玉米在西藏自治區(qū)也有種植,2009年的種植面積為4020 hm2(分別占同期糧食作物和農(nóng)作物總播種面積的2.4%和1.7%)(李玲等,2014;李勇等,2014)。目前有關(guān)玉米田對(duì)原位控制增溫的實(shí)驗(yàn)研究只分析了玉米物候和生物量與增溫的關(guān)系(付剛等,2016)1093,而缺少土壤呼吸對(duì)增溫的響應(yīng)研究。因此,本研究基于西藏自治區(qū)拉薩市達(dá)孜縣農(nóng)業(yè)生態(tài)實(shí)驗(yàn)站玉米田模擬增溫實(shí)驗(yàn)平臺(tái),分析了土壤呼吸及其溫度敏感性對(duì)增溫的響應(yīng)?;谇叭说难芯浚╖hong et al.,2016)1,本研究假設(shè)增溫不會(huì)顯著促進(jìn)土壤呼吸,同時(shí)也不會(huì)顯著降低土壤呼吸溫度敏感性。

        1 材料與方法

        1.1 研究地概況與實(shí)驗(yàn)設(shè)計(jì)

        本研究區(qū)域(91°21'E,29°41'N,海拔3688 m)位于西藏自治區(qū)拉薩市農(nóng)業(yè)生態(tài)試驗(yàn)站。年平均溫度7.9 ℃,年均降水量425 mm,90%的降水集中于6—9月(Zhong et al.,2016)2。自20世紀(jì)70年代開(kāi)始試驗(yàn)區(qū)土壤被用于農(nóng)作物種植。試驗(yàn)共設(shè)置兩個(gè)增溫處理(對(duì)照:C;增溫3.22 ℃:W),每個(gè)處理3次重復(fù)。2015年4月22日在試驗(yàn)地布設(shè)了開(kāi)頂式生長(zhǎng)箱。開(kāi)頂式生長(zhǎng)箱高2.10 m,寬2.00 m,長(zhǎng)3 m。每個(gè)小區(qū)間隔約為5~6 m。2015年4月22日播種玉米,9月19日收割,行間距約20 cm。

        1.2 土壤溫度和土壤含水量監(jiān)測(cè)

        在每個(gè)小區(qū)中間設(shè)置1套微氣候觀測(cè)系統(tǒng)(HOBO weather station,Onset Computer,Bourne,MA,USA),用于監(jiān)測(cè)5 cm深處的土壤溫度(soil temperature,Ts)和土壤濕度(soil moisture,SM)。

        1.3 土壤呼吸測(cè)定

        于2015年玉米生長(zhǎng)季節(jié)的5—8月,利用帶有半徑為20 cm的不透明的調(diào)查室的開(kāi)路式碳通量觀測(cè)系統(tǒng)(LI-8100,LI-COR Biosciences,Lincoln,NE,USA)測(cè)定土壤呼吸(Zhong et al.,2016)3,每月測(cè)定2次(非生長(zhǎng)季未進(jìn)行觀測(cè))。2015年5月,將半徑為20 cm、高5 cm的PVC環(huán)打入每個(gè)樣方的中間位置土壤約2~3 cm深處。由于PVC環(huán)位于兩行玉米之間,所以PVC環(huán)內(nèi)并不包括玉米地上部分。分別于5月25日、6月16日、7月3日、7月18日、8月1日、8月31日測(cè)定土壤呼吸的日變化(8:00—20:00),每2小時(shí)測(cè)定1次。在測(cè)量土壤呼吸的前1天將土壤環(huán)內(nèi)的雜草齊地面刈割,并將刈割掉的雜草地上部分取走,以排除雜草地上部分呼吸。

        1.4 統(tǒng)計(jì)分析

        對(duì)于每一個(gè)處理,首先將Rs和SM取對(duì)數(shù),然后利用多重逐步回歸分析分析Rs和Ts、SM的關(guān)系。根據(jù)Rs=aebTs分析每一個(gè)處理Rs的溫度敏感性,a表示當(dāng)Ts=0時(shí)Rs的值,b能反映Rs溫度敏感性(Q10)(Shen et al.,2015)。采用重復(fù)測(cè)量方差分析對(duì)土壤呼吸進(jìn)行了相關(guān)統(tǒng)計(jì)分析,所有的統(tǒng)計(jì)分析都通過(guò)SPSS(Version 16.0;SPSS Inc.,Chicago,IL)完成。

        2 結(jié)果和討論

        實(shí)驗(yàn)增溫顯著提高了土壤溫度(t=11.93,P=0.000),增幅為3.22 ℃,增溫顯著降低了土壤濕度(t=4.87,P=0.008),降幅為18.0%(-0.04 m3·m-3)(圖1)。實(shí)驗(yàn)增溫對(duì)土壤濕度的負(fù)效應(yīng)與以往的野外增溫觀測(cè)結(jié)果一致(Allison et al.,2008;Arnold et al.,1999;Hartley et al.,2007;Poll et al.,2013)。Xu et al.(2013)和Bai et al.(2013)通過(guò)整合分析,分別發(fā)現(xiàn)實(shí)驗(yàn)增溫降低了9.25%和4.1%的農(nóng)業(yè)生態(tài)系統(tǒng)的土壤濕度。實(shí)驗(yàn)增溫引起的土壤濕度的降低與實(shí)驗(yàn)增溫增強(qiáng)了土壤蒸散有關(guān)(Peng et al.,2015b)。

        雖然對(duì)照和增溫處理間的Rs差異極?。ㄆ骄寥篮粑俾史謩e為6.79 μmol·m-2·s-1和7.34 μmol·m-2·s-1),但是Rs的季節(jié)變化和日變化較大(表1,圖2)。同樣的現(xiàn)象也發(fā)生在藏北高寒草甸(Shen et al.,2016)、西藏青稞農(nóng)田(Zhong et al.,2016)4、溫帶農(nóng)業(yè)系統(tǒng)(Hou et al.,2014)和半干旱溫帶森林草原生態(tài)系統(tǒng)(Lellei-kovcs et al.,2008)。

        表1 土壤呼吸重復(fù)測(cè)量方差分析Table 1 Repeated measures ANOVA for the main and interactive effects of experimental warming (W), measuring date (D) and time (T) on soilrespiration (Rs, μmol·m-2·s-1) in a maize system ofTibet

        圖1 西藏玉米田(a)土壤溫度和(b)土壤含水量對(duì)實(shí)驗(yàn)增溫的響應(yīng)。Fig. 1 Response of (a) soil temperature (Ts) and (b) soil moisture (SM) to experimental warming in a maize system of the Tibet

        圖2 2015年(a)5月25日;(b)6月16日;(c)7月3日;(d)7月18日;(e)8月1日和(f)8月31日西藏玉米田土壤呼吸對(duì)實(shí)驗(yàn)增溫的響應(yīng)Fig. 2 Response of soil respiration (Rs) to experimental warming in a maize system of the Tibet in (a) May 25; (b) June 16; (c) July 3; (d) July 18; (e) August 1 and (f) August 31 of 2015

        土壤呼吸隨著土壤溫度的增加而顯著增強(qiáng)(圖3)。實(shí)驗(yàn)增溫對(duì)Q10無(wú)顯著影響(對(duì)照:1.70;增溫:1.77)(t=2.69,P=0.100)。增溫導(dǎo)致Rs的變化量與SM的變化量呈顯著正相關(guān)關(guān)系(圖4),這與西藏青稞田的研究結(jié)果一致(Zhong et al.,2016)7。Ts和SM共同解釋了增溫處理的Rs變異,而Ts單獨(dú)解釋了對(duì)照的Rs變異(表2)。這些研究表明增溫導(dǎo)致的土壤干旱削弱甚至掩蓋了土壤溫度的增加對(duì)Rs的正效應(yīng)(Shen et al.,2015)。

        前人的相關(guān)研究表明青藏高原高寒生態(tài)系統(tǒng)Rs對(duì)氣候變暖并不總是表現(xiàn)為正響應(yīng)(Shen et al.,2015;Zhong et al.,20161),本研究中增溫對(duì)Rs和Q10的不顯著影響也驗(yàn)證了這一結(jié)論,這很可能與增溫導(dǎo)致的土壤干旱有關(guān)。這種現(xiàn)象也發(fā)生在農(nóng)田系統(tǒng)(Poll et al.,2013;Wall et al.,2013)、草地系統(tǒng)(Liu et al.,2009;Wan et al.,2007)和半干旱溫帶森林草原生態(tài)系統(tǒng)(Lellei-kovcs et al.,2008)。

        3 結(jié)論

        總體而言,3.22 ℃的土壤溫度升高沒(méi)有顯著影響西藏玉米田的土壤呼吸及其溫度敏感性,這與土壤增溫導(dǎo)致的土壤濕度的降低有關(guān)。在降水保持不變的情況下,增溫會(huì)造成土壤干旱;而灌溉可緩解甚至彌補(bǔ)土壤干旱對(duì)土壤呼吸的負(fù)影響,導(dǎo)致玉米田土壤向大氣排放更多的CO2,從而加劇氣候變暖。因此,就土壤呼吸對(duì)氣候變暖的響應(yīng)而言,即使在有灌溉條件的地區(qū)也不宜過(guò)度灌溉。

        圖4 增溫導(dǎo)致的土壤呼吸的變化量與土壤含水量的變化量的關(guān)系Fig. 4 Relationship between the change of soil respiration (ΔRs) and the change of soil moisture (ΔSM) caused by experimental warming

        表2 土壤呼吸與土壤溫度、土壤濕度的多重逐步回歸分析Table 2 Stepwise multiple regression analyses between soil respiration (Rs) and soil temperature (Ts) and soil moisture (SM), showing regression coefficient, coefficient of determination (r2) , partial correlation coefficient and significance probability (P)

        ALLISON S D, TRESEDER K K. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils [J]. Global Change Biology, 14(12): 2898-2909.圖3 (a)對(duì)照和(b)增溫處理的土壤呼吸與土壤溫度的關(guān)系Fig. 3 Relationship between soil respiration (Rs) and soil temperature (Ts) for (a) the control and (b) experimental warming treatments

        ARNOLD S S, FERNANDEZ I J, RUSTAD L E, et al. 1999. Microbial response of an acid forest soil to experimental soil warming [J]. Biology and Fertility of Soils, 30(3): 239-244.

        BAI E, LI S L, XU W H, et al. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics [J]. New Phytologist, 199(2): 441-451.

        COX P M, BETTS R A, JONES C D, et al. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J]. Nature, 408 (6809): 184-187.

        HARTLEY I P, HEINEMEYER A, EVANS S P, et al. 2007. The effect of soil warming on bulk soil vs. rhizosphere respiration [J]. Global Change Biology, 13(12): 2654-2667.

        HOUR R X, OUYANG Z, WILSON G V, et al. 2014. Response of carbon dioxide emissions to warming under no-Till and conventional till systems [J]. Soil Science Society of America Journal, 78(1): 280-289.

        LAL R. 2004. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 304(5677): 1623-1627.

        LELLEI-KOVCS E, KOVACS-LANG E, KALAPOS T, et al. 2008. Experimental warming does not enhance soil respiration in a semiarid temperate forest-steppe ecosystem [J]. Community Ecology, 9(1): 29-37. LIANG N S, NAKADAI T, HIRANO T, et al. 2004. In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest [J]. Agricultural and Forest Meteorology, 123(1-2): 97-117.

        LIN X W, ZHANG Z H, WANG S P, et al. 2011. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau [J]. Agricultural and Forest Meteorology, 151(7): 792-802.

        LIU W X, ZHANG Z, WAN S Q. 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland [J]. Global Change Biology, 15(1): 184-195.

        LIU Y, CHEN S T, HU Z H, et al. 2012. Effects of simulated warming on soil respiration in a cropland under winter wheat-soybean rotation (in Chinese with English abstract) [J]. Environmental Science, 33(12): 4205-4211.

        PENG F, XU M H, YOU Q G, et al. 2015a. Different responses of soil respiration and its components to experimental warming with contrasting soil water content [J]. Arctic Antarctic and Alpine Research, 47(2): 359-368.

        PENG F, YOU Q G, XUE X, et al. 2015b. Evapotranspiration and its source components change under experimental warming in alpine meadow ecosystem on the Qinghai-Tibet plateau [J]. Ecological Engineering, 84: 653-659.

        POLL C, MARHAN S, BACK F, et al. 2013. Field-scale manipulation of soil temperature and precipitation change soil CO2flux in a temperate agricultural ecosystem [J]. Agriculture Ecosystems & Environment, 165: 88-97.

        RAICH J W, POTTER C S. 1995. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 9(1): 23-36.

        RETH S, GRAF W, REICHSTEIN M, et al. 2009. Sustained stimulation of soil respiration after 10 years of experimental warming [J]. Environmental Research Letters, DOI: 10.1088/1748-9326/1084/ 1082/024005.

        SHEN Z X, FU G, YU C Q, et al. 2014. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau [J]. Remote Sensing, 6(8): 6765-6789.

        SHEN Z X, LI Y L, FU G. 2015. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet [J]. Applied Soil Ecology, 90: 35-40.

        SHEN Z X, WANG J W, SUN W, et al. 2016. The soil drying along the increase of warming mask the relation between temperature and soil respiration in an alpine meadow of Northern Tibet [J]. Polish Journal of Ecology, 64(1): 125-129.

        WALL G W, MCLAIN J E T, KIMBALL B A, et al. 2013. Infrared warming affects intrarow soil carbon dioxide efflux during vegetative growth of spring wheat [J]. Agronomy Journal, 105(3): 607-618.

        WAN S, NORBY R J, LEDFORD J, et al. 2007. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland [J]. Global Change Biology, 13(11): 2411-2424.

        XU W F, YUAN W P, DONG W J, et al. 2013. A meta-analysis of the response of soil moisture to experimental warming [J]. Environmental Research Letters, DOI: 10.1088/1748-9326/1088/1084/044027.

        XU Z F, Wan C A, XIONG P, et al. 2010. Initial responses of soil CO2efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China [J]. Plant and Soil, 336(1-2): 183-195.

        YANG G H, DU E S, XU Z Y, et al. 1996. Productivity of land resources and population carrying capacity in Xizang [J]. Lhasa: Tibetan People’s Publishing House: 44-72.

        YU G, ZHENG Z, WANG Q, et al. 2010. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: the development of a geostatistical model and its simulation [J]. Environmental Science & Technology, 44(16): 6074-6080.

        ZHANG X Z, SHEN Z X, FU G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau [J]. Applied Soil Ecology, 87: 32-38.

        ZHANG X Z, ZHANG Y G, ZHOUB Y H. 2000. Measuring and modelling photosynthetically active radiation in Tibet Plateau during April-October [J]. Agricultural and Forest Meteorology, 102(2-3): 207-212.

        ZHONG Z M, SHEN Z X, FU G. 2016. Response of soil respiration to experimental warming in a highland barley of the Tibet [J]. SpringerPlus, DOI: 10.1186/s40064-40016-41761-40060.

        付剛, 鐘志明. 2016. 西藏高原玉米物候和生態(tài)特征對(duì)增溫響應(yīng)的模擬試驗(yàn)研究[J]. 生態(tài)環(huán)境學(xué)報(bào), 25(7): 1093-1097.

        李玲, 許立紅, 高麗萍, 等. 2014. 蘭州市鮮食玉米栽培技術(shù)[J]. 甘肅農(nóng)業(yè)科技, (1): 59-60.

        李勇, 何云芬. 2014. 高海拔地區(qū)玉米栽培技術(shù)[J]. 南方農(nóng)業(yè), 8(21): 33-33.

        Effect of Experimental Warming on Soil Respiration in A Maize System of Tibet

        FU Gang, ZHONG Zhiming

        Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling,
        Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

        The agricultural regions on the Tibetan Plateau are experiencing obvious climatic warming, while how climatic warming will affect carbon cycling in agricultural ecosystems remains unclear. Soil respiration is the second largest carbon flux in terrestrial ecosystems. Uncertainties about the response of soil respiration in alpine croplands to climatic warming limits our ability to predict carbon cycling in alpine ecosystems on the Tibetan Plateau under future climatic change. A field warming experiment was conducted in a maize system of the Tibet in April 2015 and the objective of this study was to investigate the effect of experimental warming on soil respiration and its temperature sensitivity. Six diurnal variations of soil respiration were measured using LI8100 soil carbon flux measurement system during the period from May to August in 2015. Soil temperature and soil moisture at depth of 5 cm were also measured using HOBO microclimate measurement system. Experimental warming increased significantly soil temperature by 3.22 ℃ (t=11.93, P=0.000), but decreased significantly soil moisture by 0.04 m3·m-3(t=4.87, P=0.008). Soil respiration under control and warming conditions was 6.79 μmol·m-2·s-1and 7.34 μmol·m-2·s-1, respectively, and there was no significant difference of soil respiration between control and warming treatments (F=1.65, P=0.235). However, there was significant diurnal variation (F=137.66, P=0.000) and seasonal variation (F=54.48, P=0.000) of soil respiration. Experimental warming did not affect temperature sensitivity of soil respiration (t=2.69, P=0.100) and temperature sensitivity of soil respiration in control and warming treatments was 1.70 and 1.77, respectively. Soil temperature explained 36% variation of soil respiration in control plots, while soil temperature and soil moisture together explained 62% variation of soil respiration. Therefore, 3.22 ℃ increase in soil temperature did not affect soil respiration and its temperature sensitivity, which was correlated with the decline in soil moisture caused by experimental warming.

        passive warming; soil moisture; temperature sensitivity; Tibetan Plateau

        10.16258/j.cnki.1674-5906.2017.01.008

        X16; S154.1

        A

        1674-5906(2017)01-0049-06

        付剛, 鐘志明. 2017. 實(shí)驗(yàn)增溫對(duì)西藏高原玉米田土壤呼吸的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 26(1): 49-54.

        FU Gang, ZHONG Zhiming. 2017. Effect of experimental warming on soil respiration in a maize system of Tibet [J]. Ecology and Environmental Sciences, 26(1): 49-54.

        國(guó)家自然科學(xué)基金項(xiàng)目(31370458;31600432);生態(tài)系統(tǒng)網(wǎng)絡(luò)觀測(cè)與模擬重點(diǎn)實(shí)驗(yàn)室青年創(chuàng)新研究團(tuán)隊(duì)項(xiàng)目(LENOM2016Q0002);中國(guó)科學(xué)院“西部之光人才計(jì)劃”(藏北高原高寒草甸牲畜承載力對(duì)氣候變化和放牧的響應(yīng));西藏自治區(qū)自然科學(xué)基金項(xiàng)目(西藏高寒草甸物種豐富度和地上生物量對(duì)增溫的響應(yīng));西藏草業(yè)重大專項(xiàng)(2015ZDKJZC;2016ZDKJZC);國(guó)家科技支撐計(jì)劃項(xiàng)目(2011BAC09B03);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0502005;2016YFC0502006)

        付剛(1984年生),男,副研究員,博士,研究方向?yàn)楦吆鷳B(tài)系統(tǒng)與全球變化。E-mail: fugang@igsnrr.ac.cn

        *通信作者

        2016-09-11

        猜你喜歡
        玉米田實(shí)驗(yàn)研究
        記一次有趣的實(shí)驗(yàn)
        FMS與YBT相關(guān)性的實(shí)證研究
        遼代千人邑研究述論
        視錯(cuò)覺(jué)在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        做個(gè)怪怪長(zhǎng)實(shí)驗(yàn)
        EMA伺服控制系統(tǒng)研究
        NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
        實(shí)踐十號(hào)上的19項(xiàng)實(shí)驗(yàn)
        太空探索(2016年5期)2016-07-12 15:17:55
        玉米田除草劑的那些事
        高溫干旱下的夏播玉米田害蟲(chóng)防治?
        亚洲性69影视| 久久久久无码精品国产app| 久久久久久人妻一区二区三区| 男人j进女人p免费视频| 冲田杏梨av天堂一区二区三区| 久久精品国产亚洲av高清三区| 亚洲国产精品无码久久98| 少妇太爽了在线观看| 爆乳午夜福利视频精品| 国产三区三区三区看三区| 99在线精品视频在线观看| 久久精品亚洲乱码伦伦中文| 色窝窝手在线视频| 国产在线av一区二区| 国产一精品一av一免费| 国产毛片网| 国产一区二区高清不卡在线| 中文字幕精品一区久久| 久久无码专区国产精品s| 国产成人乱色伦区小说| 中文字幕亚洲视频三区| 大肉大捧一进一出好爽视频动漫| 乱人伦中文无码视频| 被欺辱的高贵人妻被中出| 亚洲成在人线天堂网站| 无码人妻aⅴ一区二区三区| 呻吟国产av久久一区二区| 国产精品人人爱一区二区白浆 | 国产成人一区二区三区乱| 97色伦综合在线欧美视频| 久久AV中文综合一区二区| 日本一区二区三区激视频| 亚洲国产精品成人精品无码区在线 | 亚洲线精品一区二区三区八戒| 自拍av免费在线观看| 午夜精品久久久久久久| 中文天堂在线www| 国产99久久精品一区| 精品天堂色吊丝一区二区| 国产欧美一区二区精品仙草咪| 国产精品自线在线播放|