張旭彤,王孝慶,王中蘇,張英,曹紅,李軍
(溫州醫(yī)科大學(xué)附屬第二醫(yī)院 麻醉科,浙江 溫州 325027)
姜黃素抑制β淀粉樣蛋白致小膠質(zhì)瘤細(xì)胞神經(jīng)炎癥反應(yīng)
張旭彤,王孝慶,王中蘇,張英,曹紅,李軍
(溫州醫(yī)科大學(xué)附屬第二醫(yī)院 麻醉科,浙江 溫州 325027)
目的:采用β-淀粉樣蛋白(Aβ25-35)致小鼠小膠質(zhì)瘤細(xì)胞(BV2細(xì)胞)炎癥建立阿爾茨海默?。ˋD)模型,觀察高遷移率族蛋白1(HMGB1)與糖基化終末產(chǎn)物受體(RAGE)介導(dǎo)炎癥反應(yīng)的關(guān)系,并探討姜黃素(Cur)對(duì)BV2細(xì)胞活力、HMGB1、RAGE、IL-1β、TNF-α、NF-κB表達(dá)的影響。方法:將對(duì)數(shù)生長(zhǎng)期的BV2細(xì)胞分為4組。對(duì)照組:不做任何處理;Aβ25-35模型組:40 μmol/L Aβ25-35刺激24 h;Aβ25-35+RAGE受體阻斷組:抗RAGE抗體10 μmol/L預(yù)處理1 h后,加入40 μmol/L Aβ25-35刺激24 h;Aβ25-35+Cur治療組:姜黃素10 μmol/L預(yù)處理1 h后,加入40 μmol/L Aβ25-35刺激24 h。孵育24 h后行細(xì)胞形態(tài)學(xué)觀察,CCK8檢測(cè)細(xì)胞活性,Western blot法檢測(cè)細(xì)胞HMGB1、NF-κB、RAGE蛋白的表達(dá)情況,ELISA法檢測(cè)上清液HMGB1、IL-1β、TNF-α的含量。結(jié)果:與對(duì)照組相比,Aβ25-35模型組、Aβ25-35+RAGE受體阻斷組細(xì)胞活力明顯下降,胞內(nèi)HMGB1表達(dá)明顯升高(P<0.05),總NF-κB表達(dá)增加(P<0.05),上清液中IL-1β和TNF-α含量升高(P<0.05)。與Aβ25-35模型組、Aβ25-35+RAGE受體阻斷組相比,Aβ25-35+Cur治療組細(xì)胞內(nèi)HMGB1、RAGE、NF-κB表達(dá)明顯下降(P<0.05),上清液中HMGB1、IL-1β、TNF-α含量明顯下降(P<0.05)。結(jié)論:姜黃素可減輕Aβ25-35引起的BV2細(xì)胞炎癥反應(yīng),其機(jī)制與抑制HMGB1表達(dá)及核外釋放、抑制NF-κB通路有關(guān),與RAGE表達(dá)下調(diào)部分相關(guān)。
阿爾茨海默?。唤S素;淀粉樣β蛋白;BV2細(xì)胞;高遷移率族蛋白質(zhì)類;糖基化終末產(chǎn)物受體
阿爾茨海默?。ˋlzheimer’s disease,AD)是一進(jìn)行性認(rèn)知障礙和記憶力損害的中樞神經(jīng)退行性疾病。在美國(guó),AD已成為第六大致死性疾病,在65歲以上的人群中為第五大致死性疾病[1]。高遷移率族蛋白1(high mobility group box 1,HMGB1)是存在于真核細(xì)胞核內(nèi)的非組蛋白染色體結(jié)合蛋白,可直接促進(jìn)炎癥介質(zhì)釋放,部分受糖基化終末產(chǎn)物受體(receptor for advanced glycation end product,RAGE)調(diào)控。研究發(fā)現(xiàn),AD患者腦組織HMGBl水平增高,能抑制β淀粉樣蛋白(amyloid beta-protein,Aβ)的清除并加強(qiáng)Aβ的毒性作用[2]。姜黃素(Curcumin)是從姜黃的根莖中提取出來(lái)的一種脂溶性酚類色素,具有抗炎、抗氧化、抗斑塊、清除氧自由基等多種藥理作用。前期研究[3]發(fā)現(xiàn),姜黃素可下調(diào)HMGB1表達(dá)及抑制HMGB1的核外釋放,從而減輕Aβ25-35引起的PC12細(xì)胞毒性。本研究采用高度純化的BV2細(xì)胞株作為體外小膠質(zhì)瘤細(xì)胞模型,用Aβ25-35誘導(dǎo)活化BV2細(xì)胞建立AD炎癥模型,探討HMGB1、RAGE在AD中的重要性及姜黃素的抗炎機(jī)制,為姜黃素用于AD治療提供實(shí)驗(yàn)基礎(chǔ)和理論依據(jù)。
1.1 材料
1.1.1 BV2細(xì)胞株:購(gòu)自中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)細(xì)胞中心。
1.1.2 藥物和試劑:Aβ25-35(A4559)、姜黃素(C1386)購(gòu)于美國(guó)Sigma公司;DMEM培養(yǎng)基和胎牛血清購(gòu)自美國(guó)Gibco公司;CCK8檢測(cè)試劑購(gòu)于日本同仁化學(xué)研究所;多克隆抗RAGE抗體(af1179)、小鼠HMGB1、IL-1β、TNF-α ELISA檢測(cè)試劑盒購(gòu)于美國(guó)R&D公司;HMGB1抗體(ab18256)、RAGE抗體(ab3611)、NF-κB抗體(ab7970)購(gòu)于美國(guó)Abcam公司;小鼠多克隆抗β-actin抗體(ap0060)購(gòu)自上海Bioworld公司。
1.2 方法
1.2.1 試劑配制:Aβ25-35配成終濃度為500 μmol/L的溶液,分裝后-20 ℃保存,使用前提早7 d置于37 ℃水浴箱中孵育,即為“老化”狀態(tài);姜黃素用DMSO溶解,配成終濃度為20 mmol/L的溶液,DMSO終濃度不超過(guò)0.1%,分裝后-20 ℃保存。
1.2.2 BV2細(xì)胞培養(yǎng):BV2細(xì)胞培養(yǎng)于DMEM培養(yǎng)基(含5%胎牛血清、100 μg/mL青霉素以及100 μg/mL鏈霉素),按1×104個(gè)細(xì)胞/mL密度接種到培養(yǎng)瓶,置于37 ℃,5% CO2培養(yǎng)箱中培養(yǎng),每2 d換液1次,BV2細(xì)胞為半貼壁生長(zhǎng),細(xì)胞匯集至70%~80%時(shí),按1∶3或1∶4傳代,傳代6~7次后,多數(shù)細(xì)胞轉(zhuǎn)為貼壁生長(zhǎng),取第10~第20代細(xì)胞進(jìn)行實(shí)驗(yàn)。
1.2.3 細(xì)胞分組:將對(duì)數(shù)期生長(zhǎng)的BV2細(xì)胞分為4組。對(duì)照組:不做任何處理;Aβ25-35模型組: 40 μmol/L Aβ25-35刺激24 h;Aβ25-35+RAGE受體阻斷組:抗RAGE抗體10 μmol/L預(yù)處理1 h后,加入40 μmol/L Aβ25-35刺激24 h;Aβ25-35+Cur治療組:姜黃素10 μmol/L預(yù)處理1 h后,加入40 μmol/L Aβ25-35刺激24 h。24 h后,收集細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.4 CCK8法測(cè)細(xì)胞活力:取對(duì)數(shù)生長(zhǎng)期的BV2細(xì)胞,經(jīng)胰酶消化后,吹打成單細(xì)胞懸液,將各組細(xì)胞按5×103個(gè)細(xì)胞/100 μL的密度接種于96孔板上,邊緣孔用無(wú)菌PBS填充,防止液體蒸發(fā)。16~24 h后,細(xì)胞單層鋪滿孔底,小心吸去孔內(nèi)培養(yǎng)液,換液,各組加入不同濃度梯度的藥物。孵育24 h后,每孔加入10 μL的CCK溶液,在培養(yǎng)箱內(nèi)孵育1 h,用酶標(biāo)儀測(cè)定在450 nm處的吸光度。細(xì)胞活力=(各處理組吸光度-空白組吸光度)/(對(duì)照組吸光度-空白組吸光度)。
1.2.5 細(xì)胞形態(tài)學(xué)觀察:各組細(xì)胞孵育24 h后,置于倒置顯微鏡上觀察,比較各組細(xì)胞密度、生長(zhǎng)狀態(tài)和突起情況。
1.2.6 Western blot法檢測(cè)各組細(xì)胞HMGB1、RAGE、NF-κB表達(dá):按照Bradford試劑盒及文獻(xiàn)[3]的方法測(cè)定??贵w濃度分別為:兔抗HMGB1抗體1∶1 000,兔抗RAGE抗體1∶1 000,兔抗NF-κB抗體1∶2 000,小鼠多克隆抗β-actin抗體1∶1 000,HRP標(biāo)記的羊抗兔IgG抗體1∶5 000。用AlphaEase FC軟件分析條帶光密度。用Quantityone 4.6.2圖像分析軟件分析目的蛋白、內(nèi)參蛋白的平均光密度值,作半定量比值測(cè)定分析。
1.2.7 ELISA法測(cè)定上清液HMGB1、IL-1β、TNF-α含量:收集細(xì)胞上清液200 μL,按照小鼠HMGB1、IL-1β、TNF-α ELISA檢測(cè)試劑盒說(shuō)明書(shū)處理,以空白孔調(diào)零,450 nm波長(zhǎng)依序測(cè)量各孔的吸光度,畫(huà)出標(biāo)準(zhǔn)曲線。根據(jù)樣品OD值在該曲線圖上查出相應(yīng)HMGB1、IL-1β、TNF-α含量。
1.3 統(tǒng)計(jì)學(xué)處理方法 應(yīng)用SPSS16.0及GraphPad Prism5統(tǒng)計(jì)學(xué)軟件進(jìn)行統(tǒng)計(jì)分析并作圖。計(jì)量數(shù)據(jù)用±s表示,用Shapiro-Wilk法行正態(tài)性檢驗(yàn),用Leven法行方差齊性檢驗(yàn),多組計(jì)量資料比較采用單因素方差分析,方差齊則組內(nèi)兩兩比較采用最小顯著差異(LSD)法,否則采用Dunnett’s T3檢驗(yàn),不同濃度Aβ25-35對(duì)BV2細(xì)胞不同作用時(shí)間點(diǎn)存活率的影響采用重復(fù)測(cè)量資料的方差分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 Aβ25-35對(duì)BV2細(xì)胞存活率的影響 在BV2細(xì)胞培養(yǎng)基中加入Aβ25-35,細(xì)胞活力明顯下降。在6、12、24 h細(xì)胞存活率隨著Aβ25-35濃度增加而降低,而在36 h后,Aβ25-35濃度對(duì)細(xì)胞存活率影響不大。本實(shí)驗(yàn)盡量考慮延長(zhǎng)損傷時(shí)間,故確定24 h為藥物的作用時(shí)間點(diǎn)(見(jiàn)表1)。通過(guò)計(jì)算得出,其半數(shù)致死濃度(IC50)為42.1 μmol/L,為此選擇Aβ25-35的造模濃度為40 μmol/L。
表1 不同濃度Aβ25-35對(duì)BV2細(xì)胞不同作用時(shí)間點(diǎn)存活率的影響(n=5,±s)
表1 不同濃度Aβ25-35對(duì)BV2細(xì)胞不同作用時(shí)間點(diǎn)存活率的影響(n=5,±s)
與濃度為0時(shí)比:aP<0.05
1.00±0.001.00±0.001.00±0.001.00±0.00 5 0.68±0.10a0.78±0.100.84±0.02a0.95±0.02 100.64±0.12a0.75±0.130.76±0.02a0.95±0.02 200.62±0.12a0.69±0.07a0.71±0.04a0.94±0.03 300.52±0.16a0.59±0.10a0.62±0.05a0.94±0.03 400.43±0.12a0.53±0.11a0.55±0.04a0.92±0.04a濃度(μmol/L)6 h12 h24 h36 h 0
2.2 姜黃素對(duì)BV2細(xì)胞存活率的影響 不同姜黃素濃度(0、1.25、2.5、5、10、20 μmol/L)作用24 h后BV2細(xì)胞存活率分別為(1.00±0.00、0.97±0.05、1.10±0.09、1.10±0.13、0.92±0.09、0.58± 0.03)。20 μmol/L對(duì)細(xì)胞的毒性明顯強(qiáng)于其他各濃度組(P<0.05),細(xì)胞活力下降可達(dá)57.8%。因此選擇對(duì)BV2細(xì)胞沒(méi)有抑制作用的最高姜黃素濃度為10 μmol/L,與陰性對(duì)照組相比差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
2.3 倒置顯微鏡下各組BV2細(xì)胞形態(tài)學(xué)改變 對(duì)照組BV2細(xì)胞在孵育4 h左右即能貼壁,胞體較小,少量細(xì)胞有突起,突起細(xì)?。ㄒ?jiàn)圖1A);Aβ25-35模型組貼壁速度明顯慢于對(duì)照組,細(xì)胞出現(xiàn)聚集狀態(tài),胞體伸出一個(gè)或多個(gè)樹(shù)枝狀突起,連接周圍細(xì)胞,突起粗大(見(jiàn)圖1B);Aβ25-35+RAGE受體阻斷組和Aβ25-35+ Cur治療組的細(xì)胞胞體肥大,核仁明顯,細(xì)胞間以突觸相連(見(jiàn)圖1C-D)。
圖1 倒置顯微鏡下各組BV2細(xì)胞形態(tài)學(xué)改變(×100)
2.4 Western blot法檢測(cè)結(jié)果 與對(duì)照組相比,Aβ25-35模型組Aβ25-35活化誘導(dǎo)后,HMGB1、RAGE和NF-κB灰度值明顯升高(P<0.05)。Aβ25-35+RAGE受體阻斷組加入RAGE受體阻斷劑后,與Aβ25-35模型組相比,HMGB1、RAGE和NF-κB灰度值差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),但均明顯高于對(duì)照組(P<0.05)。與Aβ25-35模型組、Aβ25-35+RAGE受體阻斷組相比,Aβ25-35+Cur治療組HMGB1、RAGE和NF-κB灰度值明顯下降(P<0.05)。見(jiàn)表2。
2.5 ELISA法檢測(cè)結(jié)果 與對(duì)照組相比,Aβ25-35模型組在Aβ25-35活化誘導(dǎo)24 h后,上清液中HMGB1、IL-1β、TNF-α含量明顯升高(P<0.05)。Aβ25-35+ RAGE受體阻斷組與Aβ25-35模型組相比TNF-α有所下降(P<0.05),其余指標(biāo)差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。Aβ25-35+Cur治療組與Aβ25-35模型組相比,HMGB1、IL-1β、TNF-α明顯下降(P<0.05);與對(duì)照組相比,HMGB1、TNF-α有所升高(P<0.05),IL-1β變化差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),見(jiàn)表3。
表2 各組細(xì)胞活化誘導(dǎo)24 h后HMGB1、RAGE、NF-κB蛋白表達(dá)(n=7,±s)
表2 各組細(xì)胞活化誘導(dǎo)24 h后HMGB1、RAGE、NF-κB蛋白表達(dá)(n=7,±s)
與對(duì)照組比:aP<0.05;與Aβ25-35模型組比:bP<0.05;與Aβ25-35+RAGE受體阻斷組比:cP<0.05
組別HMGB1RAGENF-κB對(duì)照組0.81±0.160.88±0.100.86±0.09 Aβ25-35模型組1.18±0.06a1.16±0.11a1.20±0.15aAβ25-35+RAGE受體阻斷組1.14±0.15a1.11±0.16a1.13±0.15aAβ25-35+Cur治療組0.90±0.14bc0.86±0.10bc0.87±0.20bc
表3 各組細(xì)胞活化誘導(dǎo)24 h后上清液中HMGB1、IL-1β、TNF-α含量比較(n=7,±s,ng/L)
表3 各組細(xì)胞活化誘導(dǎo)24 h后上清液中HMGB1、IL-1β、TNF-α含量比較(n=7,±s,ng/L)
與對(duì)照組比:aP<0.05;與Aβ25-35模型組比:bP<0.05;與Aβ25-35+RAGE受體阻斷組比:cP<0.05
組別HMGB1IL-1βTNF-α對(duì)照組726.4± 65.426.4±4.521.0±4.1aAβ25-35模型組1 393.5±160.0a51.1±8.4a44.4±2.3aAβ25-35+RAGE受體阻斷組1 204.5±238.654.7±6.2a35.1±4.3abAβ25-35+Cur治療組988.2±217.6abc30.1±6.1bc25.2±3.7abc
研究表明,多種因素所致小膠質(zhì)瘤細(xì)胞激活引發(fā)的神經(jīng)炎癥反應(yīng)在AD的發(fā)生發(fā)展中扮演重要角色。神經(jīng)炎癥反應(yīng)可引起認(rèn)知損害、神經(jīng)細(xì)胞β-淀粉樣前體蛋白(myloid beta precursor protein,APP)表達(dá)和Aβ的沉積[4]?;仡櫺匝芯堪l(fā)現(xiàn),長(zhǎng)期服用非甾體抗炎藥(non-steroidal antiinflammatory drugs,NSAIDs)能夠延緩AD的發(fā)生并減輕癥狀[5]。小膠質(zhì)瘤細(xì)胞介導(dǎo)的中樞神經(jīng)炎癥反應(yīng)是AD的重要病理標(biāo)志,在AD中小膠質(zhì)瘤細(xì)胞能通過(guò)吞噬作用抑制Aβ沉積和聚集,防止斑塊的形成[6]。然而隨著疾病的發(fā)展,小膠質(zhì)瘤細(xì)胞產(chǎn)生過(guò)多的炎癥因子、氧化產(chǎn)物,形成惡性循環(huán),最終失去Aβ清除能力,引起神經(jīng)元的毒性作用,加快疾病進(jìn)程[7]。因此小膠質(zhì)瘤細(xì)胞的生長(zhǎng)狀態(tài)對(duì)加重或預(yù)防神經(jīng)退行性疾病至關(guān)重要。
本實(shí)驗(yàn)采用的BV2細(xì)胞株基本具備了原代小膠質(zhì)瘤細(xì)胞的形態(tài)學(xué)、表型及各項(xiàng)功能特點(diǎn),相對(duì)較易培養(yǎng),被國(guó)外許多學(xué)者所應(yīng)用。Aβ25-35是Aβ1-42的活性片段,于37 ℃水浴箱孵育5~7 d,即為“聚集”狀態(tài)。但目前有關(guān)BV2細(xì)胞與Aβ相互作用的研究鮮見(jiàn)報(bào)道。本實(shí)驗(yàn)結(jié)果顯示,在一定時(shí)間內(nèi),BV2細(xì)胞活性隨著Aβ25-35濃度增大而減小,但在36 h后無(wú)明顯變化,可能與培養(yǎng)基中營(yíng)養(yǎng)物質(zhì)消耗造成細(xì)胞缺乏營(yíng)養(yǎng)支持有關(guān)。故本實(shí)驗(yàn)選擇24 h為造模時(shí)間,造模濃度為40 μmol/L,結(jié)果顯示,Aβ25-35模型組貼壁速度明顯慢于對(duì)照組,細(xì)胞出現(xiàn)聚集狀態(tài),胞體伸出一個(gè)或多個(gè)樹(shù)枝狀突起,連接周圍細(xì)胞,證實(shí)Aβ25-35具有致神經(jīng)炎性作用,離體AD炎癥細(xì)胞模型成功建立。
在大腦中,炎癥刺激伴隨著HMGB1的釋放,后者可進(jìn)一步促進(jìn)炎癥反應(yīng)[8]。HMGB1誘導(dǎo)小膠質(zhì)瘤細(xì)胞活化促進(jìn)炎癥反應(yīng)的潛在機(jī)制及細(xì)胞信號(hào)傳導(dǎo)通路尚未明確。研究[9]表明,HMGB1能激活星形膠質(zhì)細(xì)胞,通過(guò)RAGE-MAPK/ERK1/2信號(hào)通路,引起IκB磷酸化降解而激活NF-κB,促進(jìn)MMP-9、COX-2、炎癥因子等生物活性分子的表達(dá)。本研究用老化狀態(tài)下的Aβ25-35(40 μmol/L,24 h)處理BV2細(xì)胞,可增加HMGB1蛋白表達(dá),同時(shí)促進(jìn)細(xì)胞外分泌。RAGE屬于跨膜蛋白,能結(jié)合多種配體,但HMGB1是其親和力最高的配體。RAGE可介導(dǎo)小膠質(zhì)細(xì)胞神經(jīng)炎癥、Aβ蓄積而損害小鼠學(xué)習(xí)記憶功能[10],且可使細(xì)胞產(chǎn)生氧化應(yīng)激或炎癥反應(yīng),正反饋加強(qiáng)RAGE的表達(dá)。本實(shí)驗(yàn)采用抗RAGE抗體阻斷RAGE,發(fā)現(xiàn)HMGB1、RAGE、NF-κB表達(dá)與模型組無(wú)顯著差異,經(jīng)排除抗體的劑量及作用時(shí)間因素,分析出現(xiàn)此結(jié)果的原因可能與HMGB1致炎作用是多途徑多通路有關(guān),阻斷RAGE并不能抑制HMGB1誘導(dǎo)炎癥反應(yīng),但炎癥反應(yīng)又可導(dǎo)致RAGE表達(dá)增加。CHAVAN等[11]得出了相同結(jié)果,他們采用腦內(nèi)注射重組HMGB1后,對(duì)RAGE基因敲除大鼠的觀察表明HMGB1介導(dǎo)的大鼠記憶損害可以通過(guò)RAGE途徑。本研究顯示姜黃素可抑制HMGB1和RAGE的表達(dá),HMGB1的作用受體RAGE雖是炎癥反應(yīng)的關(guān)鍵之一,但并不是唯一通路。
Aβ能促進(jìn)小膠質(zhì)瘤細(xì)胞分泌IL-1、IL-6、TNF-α、NO、活性氧(ROS),導(dǎo)致神經(jīng)元凋亡[12]。激活的小膠質(zhì)瘤細(xì)胞首先釋放IL-1β、TNF-α,后者的級(jí)聯(lián)釋放損傷神經(jīng)元,進(jìn)一步釋放IL-6[13]。其中IL-1增加Aβ的生成[14],TNF-α加重Aβ的沉積,減弱小膠質(zhì)瘤細(xì)胞降解Aβ的能力,抑制Aβ清除。本研究結(jié)果表明,Aβ25-35活化誘導(dǎo)BV2細(xì)胞后,上清液中IL-1β、TNF-α分泌增多,而姜黃素預(yù)處理能抑制NF-κB的表達(dá)和IL-1β、TNF-α的分泌,提示姜黃素是一種抗炎藥物,能抑制小膠質(zhì)瘤細(xì)胞釋放炎癥介質(zhì)。有研究[15]表明,姜黃素的作用機(jī)制是通過(guò)磷酸化結(jié)合蛋白絡(luò)氨酸磷酸酶2(SHP-2)抑制JAK2/STAT3信號(hào)轉(zhuǎn)導(dǎo)通路;也有研究[16]表明,其作用是通過(guò)JNK/p38MAPK抑制IκB磷酸化而抑制NF-κB轉(zhuǎn)錄。
綜上所述,本實(shí)驗(yàn)表明姜黃素可減輕Aβ25-35引起的BV2細(xì)胞炎癥反應(yīng),其機(jī)制與抑制HMGB1表達(dá)及核外釋放、抑制NF-κB通路有關(guān),與RAGE表達(dá)下調(diào)部分相關(guān)。
[1] Alzheimer’s Association. 2013 Alzheimer’s disease facts and f gures[J]. Alzheimers Dement, 2013, 9(2): 208-245.
[2] TAKATA K, KITAMURA Y, KAKIMURA J, et al. Role of high mobility group protein-1 (HMG1) in amyloid-beta homeostasis[J]. Biochem Biophys Res Commun, 2003, 301 (3): 699-703.
[3] 張英, 雍慧媛, 史小婷, 等. 姜黃素對(duì)Aβ25-35致PC12細(xì)胞損
傷的保護(hù)作用[J]. 中華醫(yī)學(xué)雜志, 2013, 93(35): 2826-2830.
[4] LEE J W, YONG K L, DONG Y Y, et al. Neuro-infammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation[J]. J Neuroinfammation, 2008, 5(2): 1-14.
[5] COMBS C K, JOHNSON D E, KARLO J C, et al. Infammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinfammatory responses and neurotoxicity by PPARgamma agonists[J]. J Neurosci, 2000, 20 (2): 558-567.
[6] KRAUS B, WOLFF H, HEILMANN J, et al. Influence of Hypericum perforatum extract and its single compounds on amyloid-beta mediated toxicity in microglial cells[J]. Life Sci, 2007, 81(11): 884-894.
[7] HALE C, VéNIANT M, WANG Z, et al. Structural characterization and pharmacodynamic effects of an orally active 11beta-hydroxysteroid dehydrogenase type 1 inhibitor[J]. Chem Biol Drug Des, 2008, 71(1): 36-44.
[8] AGNELLO D, WANG H, YANG H, et al. HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion[J]. Cytokine, 2002, 18(4): 231-236.
[9] PEDRAZZI M, PATRONE M, PASSALACQUA M, et al. Selective proinf ammatory activation of astrocytes by highmobility group box 1 protein signaling[J]. J Immunol, 2007, 179(12): 8525-8532.
[10] FANG F1, LUE L F, YAN S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease[J]. FASEB J, 2010, 24(4): 1043-1055.
[11] CHAVAN S S, HUERTA P T, ROBBIATI S, et al. HMGB1 mediates cognitive impairment in sepsis survivors[J]. Mol Med, 2012, 18(9): 930-937.
[12] HENEKA M T, O’BANION M K. Inf ammatory processes in Alzheimer’s disease[J]. J Neuroimmunol, 2007, 184(1-2): 69-91.
[13] SCHWAB C, MCGEER P L. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders[J]. J Alzheimers Dis, 2008, 13(4): 359-369.
[14] LIAO Y F, WANG B J, CHENG H T, et al. Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway[J]. J Biol Chem, 2004, 279(47): 49523-49532.
[15] KIM H Y, PARK E J, JOE E H, et al. Curcumin suppresses janus kinase-STAT infammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia[J]. J Immunol, 2003, 171(11): 6072-6079.
[16] PARK S Y, JIN M L, KIM Y H, et al. Anti-infammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia[J]. Int Immunopharmacol, 2012, 14(1): 13-20.
(本文編輯:丁敏嬌)
Curcumin inhibits neuroinfammation mediated by amyloid beta-protein in BV2 cells
ZHANG Xutong,
WANG Xiaoqing, WANG Zhongsu, ZHANG Ying, CAO Hong, LI Jun. Department of Anesthesiology, the Second Aff liated Hospital of Wenzhou Medical University, Wenzhou, 325027
Objective:To explore the relationship between high mobility group box1 (HMGB1) and inf ammatory response of the receptor for advanced glycation end product (RAGE) with inf ammation model of Alzheimer’s disease (AD) selected Aβ25-35-induced BV2 cells for 24 hours later, to further investigate the effects of curcumin on expression of HMGB1, RAGE, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) in Aβ25-35-induced BV2 cells.Methods:Cultured BV2 cells in logarithmic growth phase were divided into 4 groups: control group (group A, non-treament), model Aβ25-35group (group B, 40 μmol/L Aβ25-35, 24 h), Aβ25-35+anti-RAGE antibody group (group C, 10 μmol/L anti-RAGE antibody 1 h before+40 μmol/L Aβ25-35, 24 h) and Aβ25-35+curcumin treatment group (group D, 8 μmol/L curcumin 1 h before+40 μmol/L Aβ25-35, 24 h). The morphological character of BV2 cells was observed 24 hours later and cells viability was examined by CCK8, the level expression of HMGB1, NF-κB, RAGE in cells were detected by western blotting. The level secretion of HMGB1, IL-1β, TNF-α were detected by ELISA 24 hours later.Results:Compared with group A, the cell viability in group B and C were signif cantly declined and the level of HMGB1 protein expression in cells was signif cantly increased (P<0.05), the expression of total NF-κB were signif cantly increased (P<0.05), IL-1β and TNF-α in supernatant were signif cantly increased (P<0.05). Compared with group B and C, the cell viability, the level of HMGB1 and NF-κB protein expression in cells signif cantly declined, HMGB1/IL-1β and TNF-α in supernatant signif cantly declined in group D (P<0.05).Conclusion:Curcumin may reduce Aβ25-35-induced neuroinfammation in BV2 cells through inhibiting HMGB1 expression/extracellular released and inhibition NF-κB pathway, partly correlated with RAGE expression down-regulatd.
Alzheimer’s disease; curcumin; amyloid beta-protein; BV2 cells; high mobility group proteins; receptor for advanced glycation end product
R614.1
A
10.3969/j.issn.2095-9400.2017.02.002
2016-03-31
國(guó)家自然科學(xué)基金資助項(xiàng)目(81271204);浙江省科技廳公益項(xiàng)目(2016C37098)。
張旭彤(1974-),男,浙江溫州人,副主任醫(yī)師,博士。
李軍,主任醫(yī)師,教授,碩士生導(dǎo)師,Email:lijun0068@163.com。