向紅
【摘要】資料上對素數(shù)的描述都是一些文字描述及一些零碎的所謂求素數(shù)的公式,太不完整.所以,筆者試圖求得一個連續(xù)素數(shù)的初等數(shù)學通用表達式,并希望對數(shù)學愛好者有益.
【關(guān)鍵詞】素數(shù);方程;等量關(guān)系
匈牙利大數(shù)學家愛爾特希證明了貝特朗猜想:在任意兩個數(shù)N與2N之間必有一個素數(shù).契比雪夫利用極為廣泛的方法,證明了Pn的下一個素數(shù)小于2Pn,即Pn+1<2Pn.還結(jié)合了古希臘數(shù)學家埃拉托塞尼篩法,把求素數(shù)的程序用初等表達式表達出來.
由以上可以看出,求素數(shù)的實質(zhì)其實是求符合特定條件的不定方程組的解,計算與分析并重,想用簡易公式或單一方程求所有連續(xù)素數(shù)是不可能完全實現(xiàn)的,除非找到nir與air的等常量關(guān)系,即nir=kair(k為常數(shù)).
【參考文獻】
[1]梁宗臣.一萬個世界之謎(數(shù)學分冊)[M].武漢:湖北少年兒童出版社,1995.
[2]漢斯·拉德梅徹,奧托·托普利茨.數(shù)學欣賞[M].左平,譯.北京:北京出版社,1981.