夏玄,龔振平
(東北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,哈爾濱 150030)
氮素與豆科作物固氮關(guān)系研究進展
夏玄,龔振平
(東北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,哈爾濱 150030)
氮素與根瘤固氮結(jié)合可達高產(chǎn),兩者矛盾對根瘤固氮產(chǎn)生不利影響。氮素影響根瘤固氮作用機制仍不明確。文章在現(xiàn)有研究成果基礎(chǔ)上,總結(jié)氮素與大豆根瘤固氮關(guān)系研究發(fā)展進程;綜述不同氮素形態(tài)和氮素濃度對根瘤形成和生長、根瘤固氮酶活性影響及相關(guān)機制研究動態(tài);闡述氮素抑制根瘤固氮碳水化合物爭奪、抑制根瘤氧供給、硝酸鹽毒害、反饋調(diào)節(jié)及其他可能抑制機制;提出氮素抑制結(jié)瘤氮濃度界限模糊化,不同氮素形式、豆科種類氮素抑制機制差異化及詳細抑制機制不明確等問題。
氮素;根瘤;抑制;機制
豆科作物與根瘤菌通過復(fù)雜相互作用,形成豆科作物獨特高效生物固氮體系。但豆科作物尤其是大豆,單純依靠根瘤固氮無法達到高產(chǎn)目標。氮肥施入尤為重要。氮素與根瘤固氮存在正負相關(guān)并存的復(fù)雜關(guān)系。土壤中某種鹽類阻礙根瘤正常生長,如硝酸鹽類[1]。探索氮素與根瘤固氮關(guān)系可提高共生固氮能力,優(yōu)化作物管理措施,克服化合態(tài)氮對根瘤固氮不利影響,促使兩者可持續(xù)協(xié)調(diào)發(fā)展。目前氮素影響根瘤作用機制仍無明確結(jié)論,國外取得成果較多,國內(nèi)發(fā)展相對滯后。本文總結(jié)氮素與大豆根瘤固氮關(guān)系成果,旨在探究兩者作用機制提供理論基礎(chǔ)。
1.1 氮素對大豆根瘤形成和生長影響
1.1.1 氮素形態(tài)對根瘤形成和生長影響
氮素形態(tài)主要為硝態(tài)氮、銨態(tài)氮和尿素。劉莉等對不同品種大豆接種根瘤菌與根毛侵染試驗研究認為,高濃度化合態(tài)氮通過早期阻礙根瘤菌對根毛侵染而抑制根瘤菌與大豆共生關(guān)系建立,抑制影響程度排序為:(NH4)2SO4>NH4NO3>KNO3,抑制結(jié)瘤作用NO3-濃度高于NH4+濃度[2]。Guo等以尿素、硝酸鹽、銨鹽及硝酸銨為氮源,在兩種濃度(5和10 mmol·L-1)下研究氮素對蠶豆(Fababean)、白羽扇豆(White lupin)、苜蓿根瘤形成、生長、固氮酶活性影響,高濃度較低濃度抑制效果更明顯,而NH4Cl抑制根瘤最嚴重,5 mmol·L-1濃度尿素抑制根瘤效果最輕[3]。嚴君等施用不同形態(tài)氮肥研究表明,不同形態(tài)氮源對根瘤干重、數(shù)量有促進作用,增加根瘤中含氮量和氮積累量,根瘤干重及數(shù)量變化表現(xiàn)為銨態(tài)氮>蛋白氮(豆粉)>硝態(tài)氮>氨基酸態(tài)氮(甘氨酸)>酰胺態(tài)氮(尿素)>不施氮肥[4]。Gan等研究認為,在低濃度下與硝酸銨、硝態(tài)氮相比,單獨施用銨態(tài)氮使大豆具有更高生物積累量、根瘤干重、總氮積累量[5]。董守坤等采用15N標記法以硫酸銨為氮源研究表明,隨氮濃度增加,根瘤干重呈先升后降變化趨勢,當營養(yǎng)液氮濃度為3.57 mmol·L-1(50 mg·L-1)時,有利于根瘤生長[6]。宋海星等研究表明,銨態(tài)氮較硝態(tài)氮有利于大豆生長,前者對根瘤固氮抑制作用明顯低于后者[7]。Svenning等利用水培法研究氮素對白三葉草結(jié)瘤影響認為,NH4+與NO3-在20 mmol·L-1濃度恒定不變條件下,以NH4+為氮源處理較以NO3-為氮源處理固氮量大[8]。Rys和Phung以NH4Cl、Na-NO3和NH4NO3為氮源研究表明,NH4NO3對三葉草根瘤重量、固氮酶活性影響抑制最嚴重,而NH4+降低溶液pH,未對根瘤數(shù)量、重量和固氮酶活性及植株生長產(chǎn)生較大影響[9]。Wahab和Abd-Alla對兩種大豆Clark和Crauford作KNO3和NH4Cl不同施氮量試驗(0、16、32、64、128 kg N·hm-2),在較低施氮水平下兩個大豆品種生長和結(jié)瘤均明顯增加,NH4+更適合作為臨時氮源提高根瘤數(shù)量和重量[10]。Gulden和Vessey研究認為,低濃度NH4+促進豌豆根瘤形成及生長,一旦將NH4+移除,相關(guān)植株生長率,結(jié)瘤數(shù)量、重量及固氮酶活性均與未施加NH4+處理相似[11]。Imsande將大豆經(jīng)不同濃度NO3-和NH4+連續(xù)培養(yǎng),相同濃度下NO3-抑制根瘤重量及固氮酶活性程度均高于NH4+,試驗控制pH,說明NH4+抑制結(jié)瘤并非酸毒害結(jié)果[12]。
由氮素形態(tài)對結(jié)瘤抑制試驗可見,不同形態(tài)氮對結(jié)瘤和固氮酶活性抑制效果不同,硝態(tài)氮對根瘤生長發(fā)育及固氮酶活性抑制作用較銨態(tài)氮更嚴重。暗示硝態(tài)氮、銨態(tài)氮抑制大豆根瘤形成至少有兩種機制作用。以往研究中NO3-對結(jié)瘤和固氮影響研究較多,對NH4+研究相對較少[13-14],兩者對豆類作物結(jié)瘤固氮影響差異性比較研究較少[15-16]。
1.1.2 氮素濃度對根瘤形成和生長影響
氮素抑制結(jié)瘤固氮濃度問題是研究熱點,尤其是較高濃度氮對結(jié)瘤及根瘤固氮抑制作用。
Daimon等研究指出,氮濃度在14 mmol·L-1以上,根瘤數(shù)量和重量均受到顯著抑制[17]。Guo等指出,5和10 mmol·L-1硝酸鹽、銨鹽混合物和尿素均抑制豆科作物根瘤生長,濃度越高抑制效果越明顯[3]。Gan等研究表明,10 mmol·L-1氮濃度無論是硝態(tài)氮、銨態(tài)氮還是硝酸銨,均顯著降低大豆根瘤數(shù)量、根瘤重量以及總固氮量[5]。Macduff等通過0、10、100和1 000 mmol·L-1不同濃度NO3-對固氮抑制試驗表明,隨NO3-濃度增加固氮抑制越嚴重,即使在提供最低氮濃度10 mmol·L-1水平下,增加NO3-固氮無提高[18]。Carroll等認為在5.5和5 mmol·L-1氮濃度條件下,大豆根生長及結(jié)瘤受到抑制[19-20]。Serraj等提出3 mmol·L-1KNO3可完全抑制大豆結(jié)瘤[21]。較高濃度氮抑制結(jié)瘤及固氮,低濃度氮促進或降低結(jié)瘤及固氮研究已有報道。Gulden和Vessey通過砂培試驗報道,銨鹽在大豆結(jié)瘤過程起負面影響,但與0和2 mmol·L-1銨鹽處理相比,0.5和1 mmol·L-1銨鹽使大豆植株結(jié)瘤和固氮效果更佳[13]。Daimon等利用溶液培養(yǎng)試驗發(fā)現(xiàn),3.5和7 mmol·L-1對根瘤形成起促進作用,而在0.7 mmol·L-1下根瘤數(shù)量下降,但根瘤鮮重提高[17]。通過溶液培養(yǎng)大豆植株結(jié)瘤在4 mmol·L-1KNO3和2 mmol·L-1(NH4)2SO4中受抑制,其中4 mmol·L-1KNO3根瘤干重顯著受抑制,顯著抑制早晚兩階段根瘤發(fā)展[12]。張榮銑等在水培條件下研究不同NO3-濃度對大豆結(jié)瘤固氮影響發(fā)現(xiàn),0.71 mmol·L-1(10 mg·kg-1)NO3-使根瘤干重增加43%;而≥2.14 mmol·L-1(30 mg·kg-1)時,根瘤干重受抑制[22]。Gan等將大于5 mmol·L-1氮設(shè)為高濃度氮,認為1和3.75 mmol·L-1為低濃度氮,試驗表明低濃度氮顯著提高大豆根瘤數(shù)量、根瘤重量及每株大豆總固氮量[5]。Streeter等指出大豆適于生長在復(fù)合氮量較小環(huán)境中,建議砂培培養(yǎng)氮濃度為1~2 mmol·L-1[23]。Gibson和Harper提出,當NO3-濃度1 mmol·L-1時,大豆根瘤形成及根瘤固氮酶活性均受到延緩和阻礙[24]。
1.2 氮素對大豆根瘤固氮影響的局部性和系統(tǒng)性
1.2.1 氮素對根瘤固氮酶活性影響
根瘤固氮酶是衡量根瘤固氮活性重要指標。乙炔還原法推進了氮與抑制根瘤關(guān)系研究。Minchin等認為乙炔還原法存在誤導(dǎo)結(jié)果問題,對多種處理比較無效[25]。但Schuller等指出,利用乙炔還原法和15N標記法研究硝酸鹽對大豆根瘤固氮影響結(jié)果一致[26]。乙炔還原法測定根瘤固氮酶活性已廣泛應(yīng)用,但氮素抑制固氮酶活性機制仍不明確。
研究指出,在硝酸鹽存在條件下,固氮效率明顯降低[27-29]。Streeter利用砂培供給大豆15 mmol·L-1硝態(tài)氮7 d,在供氮1 d后固氮酶活性受抑制,與對照相比,隨時間推移固氮酶活性抑制程度達80%[30]。Skrdleta等用珍珠巖培養(yǎng)豌豆,供給20 mmol·L-1硝態(tài)氮處理,固氮酶活性同樣在1 d受顯著抑制,而根瘤生長(根瘤干重)則在開始處理后3 d受抑制[31]。硝酸鹽施入豆科作物生長介質(zhì)后,通過NO3-還原酶還原成NO2-,NO2-直接抑制固氮酶活性[32],或形成NO混合物阻礙固氮進程[33]。
1.2.2 氮素對大豆根瘤形成和固氮酶活性影響的局部性與系統(tǒng)性
Hinson利用土壤盆栽,將大豆根系分為兩份,其中一側(cè)大豆根系施氮,抑制另一側(cè)不施氮根瘤重量,但并未抑制根瘤數(shù)量[34]。Carroll和Gresshoff利用相似方法研究硝酸鹽對白三葉草結(jié)瘤及固氮影響,根部直接施氮產(chǎn)生局部性抑制根瘤形成現(xiàn)象[35]。Silsbury等供給小型草地三葉草(Small swards of subterranean clover)1和5 mmol·L-1NO3-與0 mmol·L-1對照相比,三葉草固氮酶活性明顯降低,而植株和根部NO3-含量明顯增加,不能證明NO3-對固氮酶活性影響是NO2-積累而致毒害作用;利用盆栽分根法,將三葉草根平分成兩部分,一側(cè)根供給15 mmol·L-1NO3-,與兩側(cè)均不施氮處理相比,施氮側(cè)根瘤固氮酶活性在處理2 d后迅速降低,而與施氮側(cè)對應(yīng)的不施氮側(cè)固氮酶活性降低,僅滯后2 d。試驗結(jié)果認為,固氮和硝酸還原補充整株植株降低氮素,而NO3-抑制固氮通過系統(tǒng)性調(diào)節(jié)[36]。研究指出根瘤發(fā)展及固氮酶活性由系統(tǒng)性生理控制[37]。Kohls等報道,根毛受抑制導(dǎo)致根瘤產(chǎn)生受抑制,而硝酸鹽對根毛抑制局部影響,推斷硝酸鹽抑制結(jié)瘤形成局部影響[38]。Arnone等通過分根法研究表明,硝酸鹽抑制根瘤形成和發(fā)育是局部性的,抑制固氮酶活性則是系統(tǒng)性的[39]。Tanaka等在水培條件下利用分根法將大豆根平分成兩部分,一側(cè)大豆根供給濃度為0、2.14、7.14、14.28 mmol·L-1硝態(tài)氮,隨施氮濃度增加,大豆根生長和吸收硝態(tài)氮速率增加,但根瘤干重和固氮酶活性受阻,顯著降低;當?shù)獫舛仍?.14 mmol· L-1以下時,對應(yīng)不施氮根的根瘤干重和固氮酶活性并未受到顯著影響甚至起促進作用;當施氮根一側(cè)氮濃度在14.28 mmol·L-1時,不施氮一側(cè)根瘤干重和固氮酶活性受不利影響[40]。Daimon等利用盆栽分根法對花生一側(cè)根施用14 mmol·L-1硝態(tài)氮處理,施用硝態(tài)氮5 d后,在一側(cè)根施氮不影響不施氮一側(cè)根瘤數(shù)量和重量,但施氮側(cè)根瘤固氮酶活性明顯低于另一側(cè);在施氮處理30 d后,硝態(tài)氮抑制同時影響施氮及不施氮組。因此,認為植株供氮30 d后,硝態(tài)氮對根瘤固氮酶活性抑制影響是系統(tǒng)性的;而短期供氮5 d后對根瘤固氮酶活性抑制則是非系統(tǒng)性的[41]。
氮素抑制結(jié)瘤固氮試驗,多集中于硝酸鹽,因供給土壤各種形態(tài)氮多數(shù)會通過揮發(fā)淋濕消化作用迅速轉(zhuǎn)化成硝酸鹽[42]。
較高濃度硝酸鹽如何抑制根瘤固氮具體原因與機制仍不明確,但研究表明硝酸鹽對根瘤菌侵染、根瘤形成和發(fā)展及根瘤固氮酶活性等各階段均有消極影響,各過程作用機制不同,機理研究見表1。
表1 氮素抑制根瘤固氮機理Table 1Inhibition mechanism of nitrogen on nodule nitrogen fixation
2.1 碳水化合物爭奪機制
Orcutt和Wilson發(fā)現(xiàn)高濃度硝酸鹽可降低大豆葉、莖、根中還原糖和蔗糖含量[43]。Stephens等在離體大豆根瘤、Houwaard在完整豌豆植株中發(fā)現(xiàn),蔗糖可緩解硝酸鹽抑制根瘤固氮酶活性[44-45]。Wong研究表明,葡萄糖、蔗糖、果糖緩解硝酸鹽抑制扁豆根瘤固氮酶活性[46]。Small等利用14C標記研究認為,豆科作物吸收同化氮素時,消耗碳水化合物,供給根部及根瘤碳水化合物減少[47-48]。Bacanamwo和Harper研究認為,NO3-抑制大豆固氮酶活性程度與植株組織中N和C濃度水平有關(guān),與根瘤中可利用碳水化合物及根瘤中碳氮比呈正相關(guān)[49]。然而,Singleton和Van利用密閉分根系統(tǒng)將根平分為兩部分,對兩側(cè)根作施氮和不施氮處理,分別通空氣和Ar(氬氣)與O2混合氣(Ar 80%,O220%),研究發(fā)現(xiàn),施氮一側(cè)根與不施氮一側(cè)根相比可接受主要光合產(chǎn)物碳水化合物,與光合產(chǎn)物爭奪假設(shè)相反[50]。綜上所述,碳水化合物機制研究仍存疑點。
2.2 抑制根瘤氧供給機制
Minchin等利用流入式系統(tǒng)(Flow-through),供給白三葉草(Trifolium repens)20 mmol·L-1NO3-發(fā)現(xiàn),根瘤固氮酶活性降低同時伴隨O2擴散障礙增加[51]。Carroll等分別供給大豆7.5和10 mol·L-1濃度KNO3使其產(chǎn)生高氮脅迫,在供O2濃度由21%提升到60%時,根瘤固氮酶活性提高。硝酸鹽使根瘤中O2供給受阻礙而抑制根瘤活性[52]。Minchin等分別供給菜豆和豇豆10 mmol·L-1NO3-,處理3 d,利用流入式系統(tǒng)調(diào)節(jié)O2供給濃度,隨O2濃度增加,兩種豆類作物根瘤固氮酶活性呈增加趨勢,兩種豆類根瘤菌和細胞液中均含有硝酸還原酶,在處理期間硝酸還原酶活性提升1.5~2倍,硝酸還原酶活性隨處理時間推移而上升。因此,認為NO3-抑制根瘤固氮分為兩個步驟:①提升O2擴散阻礙,②NO3-進入菌類區(qū)域從新陳代謝上產(chǎn)生抑制和破壞[53]。Arrese-Igor等對紫花苜蓿研究支持該觀點,但均缺乏O2擴散阻礙直接測定[54-55]。
2.3 硝酸鹽毒害機制
硝酸鹽對根毛形成有毒害性。Munns和Wahab等分別利用紫花苜蓿和豌豆、蠶豆、豇豆、菜豆為試驗材料,施加硝態(tài)氮后對根毛侵染和卷曲度研究發(fā)現(xiàn),硝態(tài)氮抑制根毛形成及根瘤菌侵染,影響結(jié)瘤數(shù)量[56-57]。積累的硝態(tài)氮可在轉(zhuǎn)化成亞硝態(tài)或NO后是必需元素,也可作為某種分子信號發(fā)揮調(diào)節(jié)作用[58-59],影響結(jié)瘤和固氮。Becana和Wasfi等通過研究不同氮濃度與根瘤硝酸還原酶關(guān)系認為,硝酸鹽抑制根瘤固氮酶活性可能與NO2-在根瘤中積累產(chǎn)生毒害機制有關(guān)[60-61]。Nelson利用硝酸還原酶缺乏的豌豆突變品種研究認為,NO3-在根瘤中同化積累并未直接參與根瘤固氮酶活性抑制過程[62]。Chen等研究化合態(tài)氮對根瘤衰老影響也認為,硝酸鹽并未通過硝酸還原酶與固氮酶競爭光合產(chǎn)物而誘導(dǎo)根部根瘤衰老[63]。目前,亞硝酸鹽毒害機制相比其他機制無更強說服力。
2.4 反饋調(diào)節(jié)機制
根瘤形成由反饋調(diào)節(jié)系統(tǒng)性控制(Autoregulation of nodulation),即反饋機制AON,其調(diào)控信號有諸多觀點[64-66]。Caetano-Anollés等認為AON調(diào)節(jié)開始由根部皮層細胞分裂誘導(dǎo)產(chǎn)生某種信號,該信號或通過木質(zhì)部液傳輸至植株地上部,經(jīng)地上部誘導(dǎo)相關(guān)消極調(diào)節(jié)反應(yīng),最終根瘤發(fā)展進一步受阻,反饋抑制在控制根瘤數(shù)量方面是系統(tǒng)性反應(yīng)[67-68]。Ito等通過顯微鏡觀察葉片細胞發(fā)現(xiàn),超結(jié)瘤大豆NOD1-3和NOD3-7與野生型大豆相比,葉片細胞數(shù)量和葉面積均顯著小于后者,但葉細胞面積間無顯著差異,因此認為葉片細胞數(shù)量少導(dǎo)致超結(jié)瘤大豆NOD1-3和NOD3-7葉面積小。Ito發(fā)現(xiàn)野生型大豆接種根瘤菌處理的葉片(最初完全展開葉片)細胞數(shù)量和細胞面積均顯著大于不接種根瘤菌處理,提出AON調(diào)節(jié)信號或許與葉片增殖細胞控制系統(tǒng)有關(guān)假設(shè),認為結(jié)瘤野生類型大豆AON機制可促進葉片數(shù)量增加[69]。Neo等研究羽扇豆(Lupinus albus)結(jié)瘤韌皮部谷氨酰胺指出,結(jié)瘤反饋機制通過硝酸鹽作用機制中產(chǎn)物(如谷氨酰胺)產(chǎn)生影響[70]。Searle等證明大豆AON被受體激酶GmNARK(Glycine max nodule autoregulation receptor kinase)調(diào)節(jié),而這種受體激酶與擬南芥CLAVATA1(CLV1)調(diào)節(jié)類似,CLV1通過莖尖短距離信號控制莖細胞增殖在蛋白質(zhì)復(fù)合體中發(fā)揮作用,葉片中GmNARK表達在長距離與根瘤及次生根溝通中有重要作用[71]。Wang等則通過不同濃度硝酸鹽處理,分析擬南芥硝酸鹽誘導(dǎo)基因,認為積累硝態(tài)氮NO3-及NO2-可能作為某種分子信號在植株生長發(fā)育過程中產(chǎn)生調(diào)節(jié)[58]。Reid等通過5、10 mmol·L-1硝酸鹽誘導(dǎo)條件下,正常大豆與超結(jié)瘤大豆互相嫁接,認為根部NARK(受體激酶)可能局部調(diào)節(jié)結(jié)瘤,而NARK(受體激酶)是進一步觸發(fā)地上部抑制產(chǎn)物和抑制根瘤發(fā)展的信號產(chǎn)物[72]。
Francisco等通過Enrei與其突變體En6500地上部與根部相互嫁接,以Enrei為地上部,以En6500為地下部,En6500超結(jié)瘤和硝酸鹽耐受特性均被廢除,相反,以En6500為地上部,以Enrei為地下部,En6500具有超結(jié)瘤性且對硝酸鹽耐受性重新恢復(fù)。根瘤可自動調(diào)節(jié),硝酸抑制結(jié)瘤由地上部分控制,在根瘤形成前即產(chǎn)生阻礙[73]。某些大豆品種超結(jié)瘤突變體結(jié)瘤對硝酸鹽忍耐性極強,在較高硝酸鹽濃度下仍表現(xiàn)較高數(shù)量結(jié)瘤,這可能因AON調(diào)節(jié)機制缺乏,AON由地上部分系統(tǒng)控制而非根部[74-76]。Day等通過11種超結(jié)瘤大豆與結(jié)瘤正常Bragg品種地上部與地下部分相互嫁接,研究供給7.5 mmol·L-1KNO3和不供給條件下根瘤數(shù)量。發(fā)現(xiàn)7.5 mmol·L-1KNO3濃度下,以超結(jié)瘤為嫁接的地上部分,無論地下部分是哪個品系,根瘤數(shù)量仍表現(xiàn)超結(jié)瘤數(shù)量,對氮素不敏感;而以正常結(jié)瘤品系Bragg為嫁接地上部分,以超結(jié)瘤為嫁接地下部分則表現(xiàn)根瘤數(shù)量受7.5 mmol·L-1KNO3強烈抑制。硝酸鹽對大豆根瘤形成和發(fā)展影響依靠硝酸鹽和自動反饋調(diào)節(jié)信號相互作用。在超結(jié)瘤突變體中自動反饋調(diào)節(jié)信號改變或缺失,致使突變體對硝酸鹽不敏感[77]。Hamaguchi等通過大豆野生品種與對氮素具有耐受性大豆超結(jié)瘤品種在不同氮濃度條件下作地上和地下部分嫁接,認為超結(jié)瘤大豆對氮素忍耐性及結(jié)瘤由地上部分控制,由地下部分調(diào)節(jié)緩沖。以結(jié)瘤大豆與不結(jié)瘤大豆相互嫁接試驗得出不同結(jié)果[78]。Delves等利用不結(jié)瘤品種nod49分別與結(jié)瘤正常品系Bragg及超結(jié)瘤品系nts382作地上和地下部分嫁接試驗,結(jié)果表明以不結(jié)瘤品系nod49為嫁接地下部分,以Bragg或者nts382為嫁接地上部分,根瘤數(shù)量皆為0;而以nod49為嫁接地上部分,Bragg為嫁接地下部分,根瘤數(shù)量與Bragg相差不多略有減少,以超結(jié)瘤品系nts382為嫁接地下部分雖有較多結(jié)瘤,但根瘤數(shù)量較nts382減少近3/4。因此,認為不結(jié)瘤品系nod49不結(jié)瘤由根部控制,地上部分對根部結(jié)瘤產(chǎn)生影響[65]。Francisco等利用結(jié)瘤正常品系Enrei、超結(jié)瘤突變品系En6500與不結(jié)瘤品系Enll5、En1282、Enl314分別作地上部和地下部互相嫁接,嫁接結(jié)論與Delves等一致,即不結(jié)瘤品系為嫁接地下部分時,無論地上部嫁接是正常品系還是超結(jié)瘤品系,根瘤數(shù)量均表現(xiàn)為0,而以不結(jié)瘤品系為嫁接地上部分,以結(jié)瘤正常品系Enrei為嫁接地下部分,根瘤數(shù)量比Enrei略減,以超結(jié)瘤突變體En6500為嫁接地下部分雖有結(jié)瘤,但結(jié)瘤數(shù)量比超結(jié)瘤En6500減少近25倍[73]。Carroll等對超結(jié)瘤及氮素忍耐品種篩選后及不同氮濃度條件下試驗認為,超結(jié)瘤大豆品系nts382受根瘤發(fā)展調(diào)節(jié)基因影響,與硝酸鹽同化基因無關(guān)[79]。表明從基因角度分析AON與氮素抑制結(jié)瘤關(guān)系機制需深入探究。
2.5 其他可能抑制機制
Tanner和Anderson提出氮素通過減少額外的吲哚乙酸(IAA)濃度抑制結(jié)瘤[80]。Bano和Harper等通過研究大豆接種前后木質(zhì)部、韌皮部及葉片中激素變化表明,在接種根瘤菌6 h后,木質(zhì)部ABA(脫落酸)濃度增加,而韌皮部和葉片部ABA濃度在接種48~96 h后發(fā)生變化,認為激素在根部結(jié)瘤自動調(diào)節(jié)方面發(fā)揮重要作用[81]。Ligero等研究認為,NO3-對根瘤抑制作用可通過乙烯抑制劑(Aminoethoxyvinylglycine,AVG)消除,提出NO3-抑制影響通過植物激素乙烯介導(dǎo),指出內(nèi)源乙烯在根瘤自動調(diào)節(jié)系統(tǒng)中發(fā)揮重要作用[82]。Zhang等對擬南芥發(fā)現(xiàn)硝酸鹽對植物激素反應(yīng)產(chǎn)生影響,因此硝酸鹽對豆科作物可通過植物激素產(chǎn)生間接影響[83]。Caba等認為硝酸鹽降低野生品種和突變品種結(jié)瘤和不結(jié)瘤大豆植物激素水平,根生長未改變[84]。Fei和Vessey以蒺藜苜蓿(Medicago truncatula)為試驗材料研究發(fā)現(xiàn),低濃度銨態(tài)氮促進苜蓿結(jié)瘤(根瘤數(shù)量和重量),而ABA(脫落酸)活性蛋白激酶和GA(赤霉素)調(diào)節(jié)蛋白基因編碼對不同濃度硝態(tài)氮和銨態(tài)氮回應(yīng)較少,但在多種處理間乙烯反應(yīng)的連接因子基因表達明顯增加。3個生長素相關(guān)基因和3個細胞分裂素相關(guān)基因則表現(xiàn)對硝態(tài)氮和銨態(tài)氮不同回應(yīng)。雖然根部有較高比例的細胞分裂素和生長素,但不能說明其促進結(jié)瘤潛在機制[85]。Peters等研究指出,在根瘤菌中結(jié)瘤基因被寄主植株根中的信號混合物類黃酮和異黃酮激活[86-87]。Redmond等指出,根部黃酮類物質(zhì)誘導(dǎo)結(jié)瘤基因表達,并與根瘤菌內(nèi)部信號交流[88]。Cho和Harper利用PVC管將大豆根平分為兩部分,施用5 mmol·L-1硝態(tài)氮的一側(cè)根,根瘤數(shù)量、重量、固氮酶活性均顯著小于應(yīng)用0 mmol·L-1硝態(tài)氮一側(cè)根,施氮側(cè)根異黃酮濃度明顯較低,因此推測氮最初對結(jié)瘤處抑制是因異黃酮水平降低[89]。這也暗示氮素對根瘤抑制機制與多類植物激素有關(guān),而在其中發(fā)揮重要作用激素的具體調(diào)節(jié)機制仍需深入研究。
自1916年Fred指出氮素阻礙根瘤發(fā)展以來,氮素抑制豆類作物根瘤固氮研究受到關(guān)注,但具體抑制機制并無實質(zhì)性突破。目前,氮素抑制豆類作物根瘤固氮仍無定論。
①由氮素形態(tài)對結(jié)瘤抑制試驗可見,不同形態(tài)氮對結(jié)瘤和固氮酶活性抑制效果不同,硝態(tài)氮對根瘤生長發(fā)育及固氮酶活性抑制作用較銨態(tài)氮更強。揭示硝態(tài)氮、銨態(tài)氮抑制大豆根瘤形成至少有兩種作用機制。銨態(tài)氮抑制根瘤固氮機制與硝態(tài)氮是否有重疊交叉過程尚待深入研究。
②氮濃度研究結(jié)果可見,氮濃度界限不清,對大豆結(jié)瘤及固氮產(chǎn)生影響的濃度范圍模糊,濃度范圍界定仍需系統(tǒng)化、標準化研究。
③分根和局部供氮方法研究認為,氮素抑制根瘤形成與發(fā)育存在局部性,而固氮酶活性則存在系統(tǒng)性。但仍有疑點,如氮素抑制根瘤形成短期與長期條件下是否均呈局部性,不同氮素濃度下抑制作用是否可逆,在不同氮素形式下恢復(fù)是否不同,氮素抑制根瘤局部性是否與不同生長介質(zhì)影響有關(guān)等。分根法研究氮素與根瘤抑制關(guān)系具有優(yōu)勢,但介質(zhì)中溶液培養(yǎng)試驗較多,其他介質(zhì)環(huán)境試驗較少,氮素對結(jié)瘤抑制多方面影響研究仍無實質(zhì)性突破。
④豆類作物種類眾多,符合某種抑制機制的豆類作物是否符合其他抑制機制。多種豆類作物是否擁有一種或幾種共同抑制機制,或差異共存,有待深入研究。
[1]Fred E B,Graul E J.The Effect of soluble nitrogenous salts on nodule formation[J].Agronomy Journal,1916,8(5):316-328.
[2]劉莉,周俊初,陳華癸.不同化合態(tài)氮濃度對大豆根瘤菌結(jié)瘤和固氮作用的影響[J].中國農(nóng)業(yè)科學(xué),1998(4):87-89.
[3]Guo R Q,Silsbury J H,Graham R D.Effect of four nitrogen compounds on nodulation and nitrogen fixation in faba bean,white pupin and medic plants[J].Australian Journal of Plant Physiology, 1992,19:501-508.
[4]嚴君,韓曉增,王守宇,等.不同形態(tài)氮對大豆根瘤生長及固氮的影響[J].大豆科學(xué),2009(4):674-677.
[5]Gan Y,Stulen I,Keulen H V,et al.Low concentrations of nitrate and ammonium stimulate nodulation and N2fixation while inhibiting specific nodulation(nodule DW g-1 root dry weight)and specific N2fixation(N2fixed g-1 root dry weight)in soybean[J].Plant and Soil,2004,258(1):281-292.
[6]董守坤,劉麗君,孫聰姝,等.利用15N標記研究氮素水平對大豆根瘤生長的影響[J].植物營養(yǎng)與肥料學(xué)報,2011(4):985-988.
[7]宋海星,申斯樂,馬淑英,等.硝態(tài)氮和氨態(tài)氮對大豆根瘤固氮的影響[J].大豆科學(xué),1997(4):8-12.
[8]Svenning M M,Junttila O,Macduff J H.Differential rates of inhibition of N2fixation by sustained low concentrations of NH4+and NO3-in northern ecotypes of white clover(Trifolium repens L.)[J]. Journal of Experimental Botany,1996,47(6):729-738.
[9]Rys G J,Phung T.Effect of nitrogen form and counterion on establishment of the Rhizobium trifolii-Trifolium repens symbiosis[J]. Journal of Experimental Botany,1984,35(12):1811-1819.
[10]Wahab A M A,Abd-Alla M H.Effect of different rates of N-fertilizers on nodulation,nodule activities and growth of two field grown cvs.of soybean[J].Nutrient Cycling in Agroecosystems, 1995,43(1):37-41.
[11]Gulden R H,Vessey J K.The stimulating effect of ammonium on nodulation in Pisum sativum L.is not long lived once ammonium supply is discontinued[J].Plant and Soil,1997,195(1):195-205.
[12]Imsande J.Inhibition of nodule development in soybean by nitrate or reduced nitrogen[J].Journal of Experimental Botany, 1986,37(3):348-355.
[13]Gulden R H,Vessey J K.Low concentrations of ammonium inhibit specific nodulation(nodule number g-1,root DW)in soybean (Glycine max[L.]Merr.)[J].Plant and Soil,1998,198(2):127-136.
[14]Forde B G,Clarkson D T.Nitrate and ammonium nutrition of plants:Physiological and molecular perspectives[J].Adv Bot Res, 1999,30(8):1-90.
[15]Saravitz C H,Chaillou S,Musset J,et al.Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean:is the effect located in roots or shoots?[J].Journal of Experimental Botany, 1994,45(11):1575-1584.
[16]Hansen A P,Rerkasem B,Lordkaew S.Does ammonium uptake influence xylem sap composition in Phaseolus vulgaris L.and Glycine max(L.)Merill?[J].Experientia,1995,51(11):1085-1089.
[17]Daimon H,Hori K,Shimizu A,et al.Nitrate-Induced inhibition of root nodule formation and nitrogenase activity in the peanut (Arachis hypogaea L.)[J].Plant Production Science,1999,2(2): 81-86.
[18]Macduff J H,Jarvis S C,Davidson I A.Inhibition of N2fixation by white clover(Trifolium repens L.)at low concentrations of NO3-in flowing solution culture[J].Plant and Soil,1996,180(2):287-295.
[19]Carroll B J,Gresshoff P M.A supernodulation and nitrate-tolerant symbiotic(Nts)soybean mutant[J].Plant Physiology,1985,78 (1):34-40.
[20]Saito A,Tanabata S,Tanabata T,et al.Effect of nitrate on nodule and root growth of soybean(Glycine max(L.)Merr.)[J].International Journal of Molecular Sciences,2014,15(3):4464-4480.
[21]Serraj R,Drevon J J,Obaton M,et al.Variation in nitrate tolerance of nitrogen fixation in soybean(Glycine max)—Bradyrhizobium symbiosis[J].Journal of Plant Physiology,1992,140(3):366-371.
[22]張榮銑,Laren R R,Bruce N S.硝態(tài)氮對于大豆幼苗生長、根瘤固氮及光合產(chǎn)物運轉(zhuǎn)的影響[J].南京農(nóng)學(xué)院學(xué)報,1984(2): 1-8.
[23]Streeter J,Wong P P.Inhibition of legume nodule formation and N2fixation by nitrate[J].Critical Reviews in Plant Sciences,1988, 7(1):1-23.
[24]Gibson A H,Harper J E.Nitrate effect on nodulation of soybean by Bradyrhizobium japonicum[J].Crop Science,1985,25(3):497-501.
[25]Minchin F R,Witty J F.Further errors in the acetylene reduction assay:Effects of plant disturbance[J].Journal of Experimental Botany,1986,37(10):1581-1591.
[26]Schuller K A,Gresshoff P M.Enzymes of ammonia assimilation and ureide biosynthesis in soybean nodules:Effect of nitrate[J]. Plant Physiology,1986,80(3):646-650.
[27]Arrese-Igor C,Minchin F R,Gordon A J,et al.Possible causes of the physiological decline in soybean nitrogen fixation in the presence of nitrate[J].Journal of Experimental Botany,1997,48(4): 905-913.
[28]Chamber-Pérez M A,Camacho-Martínez M,Soriano-Niebla J J. Nitrate-reductase activities of Bradyrhizobium,spp.in tropical legumes:Effects of nitrate on O2,diffusion in nodules and carbon costs of N2,fixation[J].Journal of Plant Physiology,1997,150(1-2):92-96.
[29]Serrano A,Chamber M.Nitrate reduction in Bradyrhizobium sp.(Lupinus)strains and its effects on their symbiosis with Lupinus luteus.[J].Journal of Plant Physiology,1990,136(2):240-246.
[30]Streeter J G.Nitrate inhibition of legume nodule growth and activity.II.Short-term studies with high nitrate supply[J].Plant Physiol,1985,77:325-328.
[31]Skrdleta V,Gaudinová A,Němcová M,et al.Symbiotic dinitrogen fixation as affected by short-term application of nitrate to nodulated Pisum sativum L.[J].Folia Microbiologica,1980,25(2):155-161.
[32]Kennedy I R,Rigaud J,Trinchant J C.Nitrate reductase from bacteroids of Rhizobium japonicum:Enzyme characteristics and possible interaction with nitrogen fixation[J].Biochimica Et Biophysica Acta,1975,397(1):24-35.
[33]Kato K,Kanahama K,Kanayama Y.Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in lotus root nodules[J].Journal of Plant Physiology,2010,167(3):238-241.
[34]Hinson K.Nodulation responses from nitrogen applied to soybean half-root systems[J].Agronomy Journal,1975,67:799-804.
[35]Carroll B J,Gresshoff P M.Nitrate inhibition of nodulation and nitrogen fixation in white clover[J].Zeitschrift Fü Pflanzenphysiologie,1983,110(1):77-88.
[36]Silsbury J H,Catchpoole D W,Wallace W.Effects of nitrate and ammonium on nitrogenase(C2H2reduction)activity of swards of subterranean clover,Trifolium subterraneum L.[J].Functional Plant Biology,1986,13(2):257-273.
[37]Pankhurst C E.Effect of plant nutrient supply on nodule effectiveness and rhizobium strain competition for nodulation of Lotus pedunculatus[J].Plant and Soil,1981,60(3):325-339.
[38]Kohls S J,Baker D D.Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants[J].Plant and Soil,1989,118(1):171-179.
[39]Arnone J A,Kohls S J,Baker D D.Nitrate effects on nodulation and nitrogenase activity of actinorhizal Casuarina studied in splitroot systems.[J].Soil Biology&Biochemistry,1994,26(5):599-606.
[40]Tanaka A,Fujlta K,Terasawa H.Growth and dinitrogen fixation, of soybean root system affected by partial exposure to nitrate[J]. Soil Science and Plant Nutrition,1985,31(4):637-645.
[41]Daimon H,Yoshioka M.Responses of root nodule formation and nitrogen fixation activity to nitrate in a split-root system in peanut(Arachis hypogaea L.)[J].Journal of Agronomy and Crop Science,2001,187(2):89-95.
[42]Zaman M,Saggar S,Blennerhassett J D,et al.Effect of urease and nitrification inhibitors on N transformation,gaseous emissions of ammonia and nitrous oxide,pasture yield and N uptake in grazed pasture system[J].Soil Biology&Biochemistry,2009,41(6): 1270-1280.
[43]Orcutt F S,Wilson P W.The effect of nitrate-nitrogen on the carbohydrate metabolism of inoculated soybeans[J].Soil Science, 1935,39(4):289-296.
[44]Stephens B D,Neyra C A.Nitrate and nitrite reduction in relation to nitrogenase activity in soybean nodules and Rhizobium japonicum bacteroids.[J].Plant Physiology,1983,71(4):731-735.
[45]Houwaard F.Influence of ammonium and nitrate nitrogen on nitrogenase activity of pea plants as affected by light intensity and sugar addition[J].Plant and Soil,1980,54(2):271-282.
[46]Wong P P.Nitrate and carbohydrate effects on nodulation and nitrogen fixation(acetylene reduction)activity of lentil(Lens esculenta Moench)[J].Plant Physiology,1980,66(1):78-81.
[47]Small J G C,Leonard O A.Translocation of14C labeled photosynthate in nodulated legumes as influenced by nitrate nitrogen[J]. Amer J Bot,1969,56(2):187-194.
[48]Khan A A,Khan A A.Effects of nitrate nitrogen on growth,nodulation and distribution of14C-labelled photosynthates in cowpea[J]. Plant and Soil,1981,63(2):141-147.
[49]Bacanamwo M,Harper J E.Regulation of nitrogenase activity in Bradyrhizobium japonicum soybean symbiosis by plant N status as determined by shoot C:N ratio[J].Physiologia Plantarum, 1996,98(3):529-538.
[50]Singleton P W,Van K C.Effect of localized nitrogen availability to soybean half-root systems on photosynthate partitioning to roots and nodules[J].Plant Physiology,1987,83(3):552-556.
[51]Minchin F R,Minguez M I,Sheehy J E,et al.Relationships between nitrate and oxygen supply in symbiotic nitrogen fixation by white clover[J].Journal of Experimental Botany,1986,37(8): 1103-1113.
[52]Carroll B J,Hansen A P,Mcneil D L,et al.Effect of oxygen supply on nitrogenase activity of nitrate-and dark-stressed soybean (Glycine max(L.)Merr.)plants[J].Functional Plant Biology,1987, 14(6):679-687.
[53]Minchin F R,Becana M,Sprent J I.Short-term inhibition of legume N2fixation by nitrate:II.Nitrate effects on nodule oxygen diffusion[J].Planta,1989,180(1):46-52.
[54]Arrese-Igor C,García-Plazaola J I,Hernández A,et al.Effect oflow nitrate supply to nodulated lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolism[J]. Physiologia Plantarum,1990,80(2):185-190.
[55]Arrese-Igor C,Royuela M,Aparicio-Tejo P M.Denitrification in lucerne nodules and bacteroids supplied with nitrate[J].Physiologia Plantarum,1992,84(4):531-536.
[56]Munns D N.Nodulation of Medicago sativa in solution culture:Ⅲ.Effects of nitrate on root hairs and infection[J].Plant&Soil, 1968,29(1):33-47.
[57]Wahab A M A,Zahran H H,Abd-Alla M H.Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer[J].Folia Microbiologica, 1996,41(4):303-308.
[58]Wang R,Xing X,Crawford N.Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots[J].Plant Physiology,2007,145(4):1735-1745.
[59]Forde B G.Local and long range signalling pathways regulating plant response to nitrate[J].Annual Review of Plant Biology, 2002,53(1):203-224.
[60]Becana M,Aparicio-Tejo P M,Sánchez-Díaz M.Nitrate and nitrite reduction by alfalfa root nodules:Accumulation of nitrite in Rhizobium melioti,bacteroids and senescence of nodules[J]. Physiologia Plantarum,1985,64(3):353-358.
[61]Wasfi M,Prioul J L.A comparison of inhibition of French-bean and soybean nitrogen fixation by nitrate,1%oxygen or direct assimilate deprivation[J].Physiologia Plantarum,1986,66(3):481-490.
[62]Nelson L M,Edie S A.Effect of nitrate on nitrogen fixation and nodule carbohydrate and organic acid concentrations in pea mutants deficient in nitrate reductase[J].Physiologia Plantarum, 1988,73(4):534-540.
[63]Chen P C,Phillips D A.Induction of root nodule senescence by combined nitrogen in Pisum sativum L.[J].Plant Physiology, 1977,59(3):440-442.
[64]Kosslak R M,Bohlool B B.Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side[J].Plant Physiology,1984,75(1):125-130.
[65]Delves A C,Mathews A,Day D A,et al.Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors[J]. Plant Physiology,1986,82(2):588-590.
[66]Reid D E,Ferguson B J,Hayashi S,et al.Molecular mechanisms controlling legume autoregulation of nodulation[J].Annals of Botany,2011,108(5):789-795.
[67]Caetano-Anollés G,Gresshoff P M.Early induction of feedback regulatory responses governing nodulation in soybean[J].Plant Science,1990,71(1):69-81.
[68]Caetano-Anollés G,Gresshoff P M.Plant genetic control of nodulation[J].Annu Rev Microbiol,1991,45:345-382.
[69]Ito S,Kato T,Ohtake N,et al.The autoregulation of nodulation mechanism is related to leaf development[J].Plant Cell Physiol, 2008,49(1):121-125.
[70]Neo H H,Layzell D B.Phloem glutamine and the regulation of O2diffusion in legume nodules[J].Plant Physiology,1997,113(1): 259-267.
[71]Searle I R,Men A E,Laniya T S,et al.Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase[J]. Science,2003,299(5603):109-112.
[72]Reid D E,Ferguson B J,Gresshoff P M.Inoculation-and nitrateinduced CLE peptides of soybean control NARK-dependent nodule formation[J].Molecular Plant-Microbe Interactions,2011,24 (5):606-618.
[73]Francisco P B,Akao S.Autoregulation and nitrate inhibition of nodule formation in soybean cv.enrei and its nodulation mutants [J].Journal of Experimental Botany,1993,44(3):547-553.
[74]Buttery B R,Park S J.Effects of nitrogen,inoculation and grafting on expression of supernodulation in a mutant of Phaseolus vulgaris L[J].Canadian Journal of Plant Science,1990,70(2):375-381.
[75]Gremaud M F,Harper J E.Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean[J]. Plant Physiology,1989,89(1):169-173.
[76]Ohyama T,Nicholas J C,Harper J E.Assimilation of15N2and15NO3-by partially nitrate-tolerant nodulation mutants of soybean[J].Journal of Experimental Botany,1993,44(12):1739-1747.
[77]Day D A,Carroll B J,Delves A C,et al.Relationship between autoregulation and nitrate inhibition of nodulation in soybeans[J]. Physiologia Plantarum,1989,75(1):37-42.
[78]Hamaguchi H,Kokubun M,Akao S.Shoot control of nodulation is modified by the root in the supernodulating soybean mutant En6500 and its wild-type parent cultivar enrei[J].Soil Science and Plant Nutrition,1992,38(4):771-774.
[79]Carroll B J,Mcneil D L,Gresshoff P M.Isolation and propertiesof soybean[Glycine max(L.)Merr.]mutants that nodulate in the presence of high nitrate concentrations[J].Proceedings of the National Academy of Sciences of the United States of America, 1985,82(12):4162-4166.
[80]Tanner J W,Anderson I C.External effect of combined nitrogen on nodulation[J].Plant Physiology,1964,39(6):1039-1043.
[81]Bano A,Harper J E,Auge R M,et al.Changes in phytohormone levels following inoculation of two soybean lines differing in nodulation[J].Functional Plant Biology,2002,29(8):965-974.
[82]Ligero F,Caba J M,Lluch C,et al.Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine[J].Plant Physiology,1991,97(3):1221-1225.
[83]Zhang H,Jennings A,Barlow P W,et al.Dual pathways for regulation of root branching by nitrate[J].Proceedings of the National Academy of Sciences of the United States of America,1999,96 (11):6529-6534.
[84]Caba J M,Centeno M L,Fernández B,et al.Inoculation and nitrate alter phytohormone levels in soybean roots:Differences between a supernodulating mutant and the wild type[J].Planta, 2000,211(1):98-104.
[85]Fei H,Vessey J K.Stimulation of nodulation in Medicago truncatula by low concentrations of ammonium:Quantitative reverse transcription PCR analysis of selected genes[J].Physiologia Plantarum,2009,135(3):317-330.
[86]Peters N K,Frost J W,Long S R.A plant flavone,luteolin,induces expression of Rhizobium meliloti nodulation genes[J].Science, 1986,233(4767):977-980.
[87]Kosslak R M,Appelbaum E R.Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(21):7428-7432.
[88]Redmond J W,Batley M,Djordjevic M A,et al.Flavones induce expression of nodulation genes in Rhizobium[J].Nature,1986, 323:632-635.
[89]Cho M J,Harper J E.Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants[J].Plant Physiology,1991,95(4):1106-1112.
Research advance on the relationship between nitrogen and Leguminous
nitrogen fixation
XIA Xuan,GONG Zhenping(School of Agriculture,Northeast Agricultural
University,Harbin 150030,China)
The relationship between nitrogen and nodule nitrogen fixation is very delicate.It is necessary to combine the two to achieve high yield.However,the contradiction between the two has a great negative impact on nodule nitrogen fixation.However,the mechanism of how nitrogen affects root nodulation is still unclear.Based on previous studies,the research progress of the relationship between nitrogen fixation and nitrogen fixation of soybean was summarized.The effects of different nitrogen forms and nitrogen concentration on nodule formation and growth,nitrogenase activity and related mechanisms were reviewed. The mechanism of carbohydrate competition,inhibition of nitrogen supply mechanism,nitrate toxicity mechanism,feedback regulation mechanism and other possible inhibition mechanisms of nitrogen fixation were discussed.And put forward the nitrogen inhibition nodules of nitrogen boundaries blurred.Different nitrogen forms and legume species nitrogen inhibition mechanism differentiation and detailed inhibition mechanism was not clear and so on.
nitrogen;nodule;inhibition;mechanism
S565.1
A
1005-9369(2017)01-0079-10
2016-11-28
國家科技支撐項目(2014BAD11B01)
夏玄(1988-),女,博士研究生,研究方向大豆栽培生理。E-mail:731275750@qq.com
*通訊作者:龔振平,教授,博士生導(dǎo)師,研究方向為保護性耕作和大豆生理。E-mail:gzpyx2004@163.com
時間2017-1-9 15:46:07[URL]http://www.cnki.net/kcms/detail/23.1391.S.20170109.1546.012.html
夏玄,龔振平.氮素與豆科作物固氮關(guān)系研究進展[J].東北農(nóng)業(yè)大學(xué)學(xué)報,2017,48(1):79-88.
Xia Xuan,Gong Zhenping.Research advance on the relationship between nitrogen and Leguminous nitrogen fixation[J]. Journal of Northeast Agricultural University,2017,48(1):79-88.(in Chinese with English abstract)