夏艷陽,崔理華
1.武漢中科水生環(huán)境工程股份有限公司,湖北 武漢 430071 2.華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣東 廣州 510642
復(fù)合垂直流-水平流人工濕地系統(tǒng)除氮效果的影響因素
夏艷陽1,崔理華2*
1.武漢中科水生環(huán)境工程股份有限公司,湖北 武漢 430071 2.華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣東 廣州 510642
氮;復(fù)合垂直流-水平流人工濕地;水力負(fù)荷;溶解氧;植物;季節(jié)
人工濕地系統(tǒng)是20世紀(jì)70年代發(fā)展起來的污水處理工藝,利用系統(tǒng)中基質(zhì)、水生植物、微生物的物理、化學(xué)和生物三重協(xié)同作用,通過基質(zhì)過濾、吸附、沉淀、離子交換、植物吸收和微生物分解來實(shí)現(xiàn)對(duì)污水的高效凈化[1]。人工濕地具有投資和運(yùn)行費(fèi)用低、處理效果穩(wěn)定、出水水質(zhì)好等優(yōu)點(diǎn),并且具有良好的生態(tài)、社會(huì)、經(jīng)濟(jì)效益。人工濕地應(yīng)用非常廣泛,在生活污水、農(nóng)業(yè)和畜牧業(yè)廢水、垃圾場滲濾液以及水產(chǎn)養(yǎng)殖廢水、污水處理廠尾水等方面均有應(yīng)用[2-6]。
1.1 復(fù)合垂直流-水平流人工濕地中試系統(tǒng)
復(fù)合垂直流-水平流人工濕地中試系統(tǒng)如圖1所示。從圖1可以看出,該系統(tǒng)由垂直流(VF)和水平流(HF)組成。每套系統(tǒng)均包含2組相同規(guī)格的垂直流-水平流池,1組種植植物(風(fēng)車草和美人蕉),另1組無植物作為對(duì)照。
圖1 復(fù)合垂直流-水平流人工濕地中試系統(tǒng)示意Fig.1 Profile of integrated vertical-flow and horizontal-flow constructed wetlands pilot system
垂直流系統(tǒng)規(guī)格為100 cm×100 cm×85 cm,水平流系統(tǒng)規(guī)格為200 cm×100 cm×80 cm。試驗(yàn)組中垂直流系統(tǒng)和水平流系統(tǒng)分別種植風(fēng)車草和美人蕉,種植密度為12兜/m2。
1.2 供試污水
試驗(yàn)所用污水來自某廠的化糞池,其水質(zhì)如表1所示。
表1 供試污水水質(zhì)
注:樣本數(shù)為12。
1.3 水樣采集與數(shù)據(jù)處理
采用Duncan方法分析各階段試驗(yàn)數(shù)據(jù),最小顯著法(LSD)比較多個(gè)樣本的平均值。
2.1 水力負(fù)荷(HRL)對(duì)系統(tǒng)除氮效果的影響
圖2 復(fù)合垂直流-水平流人工濕地系統(tǒng)在高、中、低水力負(fù)荷條件下對(duì)和TN的去除效果in high, middle, low load
2.2 間歇式灌水或充氧對(duì)系統(tǒng)除氮效果的影響
相對(duì)于連續(xù)灌水而言,間歇式灌水可有效提供系統(tǒng)硝化作用所需的氧氣,從而提高系統(tǒng)氮的硝化作用。吳振斌等[16]在復(fù)合垂直流人工濕地系統(tǒng)中采用間歇式灌水,每天分8次進(jìn)水,每次停留2 h,結(jié)果表明,系統(tǒng)對(duì)氮的去除效果較好。彭舉威等[17]的研究表明,間歇式進(jìn)出水可最大程度地利用床體上層的大氣復(fù)氧,緩解了水生植物根系放氧不足的矛盾。適當(dāng)縮短間歇周期,可以提高系統(tǒng)處理廢水的能力。
圖3 不同停留時(shí)間、氧氣是否充足條件下系統(tǒng)對(duì)的去除效果in different HLR under aerobic or anoxia
2.2.2 TN的去除效果
由2.2.1節(jié)可知,系統(tǒng)經(jīng)過改良增加了通氣閥并采取了間歇式灌水后,系統(tǒng)的硝化效果得到了提高,從而為系統(tǒng)的反硝化作用提供了充足的硝化氮源,可提高TN的去除效果。
系統(tǒng)運(yùn)行前期,由于充氧不足,其硝化和反硝化效果并不明顯;經(jīng)過改良,增強(qiáng)了充氧條件,改善了系統(tǒng)進(jìn)水方式,其硝化和反硝化效果得到顯著提高。從圖4可以看出,在停留時(shí)間為23、1和2 d條件下,氧氣不足時(shí),系統(tǒng)對(duì)TN的去除率分別為31.00%、25.66%和33.70%;氧氣充足時(shí),系統(tǒng)對(duì)TN的去除率提高到77.20%、76.85%和78.15%。氧氣是否充足對(duì)系統(tǒng)去除TN的效果有顯著影響。由此可知,在設(shè)計(jì)人工濕地參數(shù)時(shí),要盡可能為系統(tǒng)提供充足的氧源,如改進(jìn)灌水方式、增加通氣閥或增加打氣系統(tǒng)等,都是有效提高人工濕地溶解氧濃度的實(shí)際運(yùn)用方式,為人工濕地更好地運(yùn)用于生產(chǎn)實(shí)踐提供有效的技術(shù)參數(shù),同時(shí)有助于解決目前人工濕地除氮效果較差的問題。
圖4 不同停留時(shí)間、氧氣是否充足條件下系統(tǒng)對(duì)TN的去除效果Fig.4 The removal rates of TN in CW in different HLR under aerobic or anoxia
2.3 植物對(duì)系統(tǒng)除氮效果的影響
停留時(shí)間∕d系統(tǒng)平均濃度∕(mg∕L)去除率∕%2∕3對(duì)照58.797.01植物62.006.971對(duì)照58.017.20植物61.327.082對(duì)照61.455.70植物65.025.13
注:樣本數(shù)均為12。
2.3.2 TN的去除效果
植物對(duì)系統(tǒng)去除TN效果的影響見表3。從表3可以看出,有植物系統(tǒng)對(duì)TN的去除效果要比對(duì)照系統(tǒng)好,但二者差異并不顯著(P>0.05)。同樣,因?yàn)橹参锏纳L量不是很大,根系也不很發(fā)達(dá),從而對(duì)硝化-反硝化作用產(chǎn)生的影響較小,因此,植物并不是系統(tǒng)去除TN的主要影響因子。
表3 植物對(duì)系統(tǒng)去除TN效果的影響
注:同表2。
2.4 季節(jié)對(duì)系統(tǒng)除氮效果的影響
不同季節(jié)對(duì)系統(tǒng)去除氮的影響很大,溫度的變化會(huì)對(duì)植物的生長和微生物的繁殖及其活性有一定的影響。在去除氮污染物過程中硝化細(xì)菌和反硝化細(xì)菌對(duì)溫度的變化極其敏感。
停留時(shí)間∕d去除率∕%冬季春季夏季秋季2∕336.01b43.95b84.63a83.86a133.15b39.78b79.33a81.39a246.54b53.57b80.44a78.34a
注:數(shù)據(jù)為3次重復(fù)試驗(yàn)的平均值;采用Duncan法進(jìn)行多重比較,同一停留時(shí)間下含相同字母表示差異不顯著。
2.4.2 TN的去除效果
從表5可以看出,夏季系統(tǒng)對(duì)TN的去除率最高,達(dá)86.62%,春季系統(tǒng)對(duì)TN的去除率最低,只有28.28%~48.65%,二者有顯著差異(P<0.05)。由于冬季系統(tǒng)剛運(yùn)行,微生物數(shù)量很少且活性較低,植物也剛種植,因TN數(shù)據(jù)不穩(wěn)定,未進(jìn)行比較。春季氣溫回升,但不及夏秋季節(jié),且系統(tǒng)也開始穩(wěn)定,這時(shí)系統(tǒng)對(duì)TN的去除率雖比冬季要好,但仍較低。夏季氣溫上升到最高點(diǎn),且此時(shí)植物穩(wěn)定生長,微生物數(shù)量和活性也達(dá)到頂峰,因此該季節(jié)系統(tǒng)對(duì)TN的去除效果最好。秋季氣溫回落,植物的生長減慢,硝化細(xì)菌和反硝化細(xì)菌對(duì)溫度變化非常敏感,硝化細(xì)菌和反硝化細(xì)菌繁殖率及其活性都不及夏季,因此系統(tǒng)對(duì)TN的去除效果減弱,去除率下降。細(xì)菌的硝化作用只是改變氮在濕地中的存在形式,氮的最終去除是通過反硝化作用完成的。而且,濕地植物的生長為細(xì)菌的反硝化作用提供了碳源,然而細(xì)菌的反硝化作用受溫度的影響很大。有研究表明[19],在溫度為10~30 ℃時(shí),高溫有利于反硝化作用,最佳溫度為30 ℃左右。綜上,TN的去除主要靠微生物的作用,季節(jié)的變化影響了微生物的繁殖和活性,因此季節(jié)的變化對(duì)系統(tǒng)去除TN效果影響很大。
表5 季節(jié)對(duì)系統(tǒng)去除TN效果的影響
注:同表4。冬季因系統(tǒng)剛運(yùn)行,數(shù)據(jù)不穩(wěn)定,而未考慮。
(2)在2/3、1和2 d停留時(shí)間條件下,氧氣不足時(shí),系統(tǒng)對(duì)TN的去除率分別為31.00%、25.66%和33.70%;系統(tǒng)改良增加了通氣閥,并由連續(xù)式灌水換成間歇式灌水以后,對(duì)TN的去除率提高到77.20%、76.85%和78.15%。氧氣是否充足對(duì)系統(tǒng)去除TN的效果有顯著影響。
[1] HAMMER D A.Constructed wetlands for wastewater treatment:municipal[M].Michigan:Lewis Publishers Inc,1989.
[2] 方志堅(jiān),錢午巧,包武.人工濕地處理畜牧場污水的研究進(jìn)展[J].安徽農(nóng)學(xué)通報(bào),2012,18(17):119-121. FANG Z J,QIAN W Q,BAO W.The research progress of artificial wetland treatment livestock farm wastewater[J].Anhui Agricultural Science Bulletin,2012,18(17):119-121.
[3] OGATA Y,ISHIGAKI T,EBIE Y,et al.Water reduction by constructed wetlands treating waste landfill leachate in a tropical region[J].Waste Management,2015,44:164-171.
[4] ?AKIR R,GIDIRISLIOGLU A,?EBI U.A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters[J].Journal of Environmental Management,2015,164:121-128.
[5] VYMAZAL J.Constructed wetlands for treatment of industrial wastewaters:a review[J].Ecological Engineering,2014,73:724-751.
[6] 盧少勇,金相燦,余剛.人工濕地的氮去除機(jī)理[J].生態(tài)學(xué)報(bào),2006,26(8):2670-2677. LU S Y,JIN X C,YU G.Nitrogen removal mechanism of constructed wetland[J].Acta Ecologica Sinica,2006,26(8):2670-2677.
[7] GREEN M,FRIEDLER E,SAFRAI S.Enhanging nitrification invertical flow constructed wetland utilizing a passive air pump[J].Water Research,1998,32(12):3513-3520.
[8] SAEED T,SUN G.A review on nitrogen and organics removalmechanisms in subsurface flow constructed wetlands:dependency on environmental parameters,operating conditions and supportingmedia[J].Journal of Environmental Management,2012,112:429-448.
[9] SPIELES D J,MITSCH W J.The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems[J].Ecological Engineering,1999,14(1/2):77-91.
[10] KADLEC R H,KNIGHT R L.Treatment wetlands[M].Florida:CRC Lewis Publisher,1996:1-5.
[11] VYMAZAL J.Removal of nutrients in various types of constructed wetland[J].Science of the Total Environment,2007,380(1/2/3):48-65.
[12] 劉慎坦,王國芳,謝祥峰,等.不同基質(zhì)對(duì)人工濕地脫氮效果和硝化及反硝化細(xì)菌分布的影響[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,41(2):400-405. LIU S T,WANG G F,XIE X F,et al.Effect of matrixon denitrification efficiency and distribution of nitrifying and denitrifying bacteria in constructed wetlands[J].Journal of Southeast University (Natural Science Edition),2011,41(2):400-405.
[13] 盧少勇,張彭義,余剛,等.人工濕地處理農(nóng)業(yè)徑流的研究進(jìn)展[J].生態(tài)學(xué)報(bào),2007,27(6):2627-2635. LU S Y,ZHANG P Y,YU G,et al.Research progress of constructed wetland treating agricultural runoff[J].Acta Ecologica Sinica,2007,27(6):2627-2635.
[14] 吳振斌,任明迅,付貴萍,等.垂直流人工濕地水力學(xué)特點(diǎn)對(duì)污水凈化效果的影響[J].環(huán)境科學(xué),2001,22(5):45-49. WU Z B,REN M X,FU G P,et al.The influence of hydraulic characteristics on waste water purifying efficiency in vertical flow constrcuted wetlands[J].Environmental Science,2001,22(5):45-49.
[15] 王世和,王薇,俞燕.水力條件對(duì)人工濕地處理效果的影響[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,33(3):359-362. WANG S H,WANG W,YU Y.Influence of hydraulic condition on treatment effect of constructed wetland[J].Journal of Southeast University (Natural Science Edition),2003,33(3):359-362.
[16] 吳振斌,徐光來,周培疆,等.復(fù)合垂直流人工濕地對(duì)不同氮污水的凈化[J].環(huán)境科學(xué)與技術(shù),2004,27(增刊1):30-32. WU Z B,XU G L,ZHOU P J,et al.Study on purification of different nitrogen contaminated wastewater in integrated vertical flow constructed wetland[J].Environmental Science & Technology,2004,27(Suppl 1):30-32.
[17] 彭舉威,崔玉波,趙可.間歇流人工濕地處理啤酒廢水的特性[J].吉林建筑工程學(xué)院學(xué)報(bào),2004,21(3):4-6. PENG J W,CUI Y B,ZHAO K.Brevery wastewater treatment using batch flow constructed wetlands[J].Journal of Jilin Architectural and Civil Engineering Institute,2004,21(3):4-6.
[18] 吳建強(qiáng),黃沈發(fā),丁玲,等.人工濕地中的SND機(jī)理以及DO、pH對(duì)其的影響[J].環(huán)境污染與防治,2005,27(6):476-478. WU J Q,HUANG S F,DING L,et al.Mechanism on simultaneous nitrification and denitrification (SND) in constructed weltands with emphasis on DO and pH effect[J].Environmental Pollution & Control,2005,27(6):476-478.
[19] 陳家長,何堯平,孟順龍,等.表面流人工濕地在池塘養(yǎng)殖循環(huán)經(jīng)濟(jì)模式中的凈化效能研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(5):1898-1904. CHEN J Z,HE Y P,MENG S L,et al.Purification effect of free water surface constructed wetland on circular economy pattern of pond culture[J].Journal of Agro-environment Science,2007,26(5):1898-1904.□
Influential factors of nitrogen removal efficiency by the integrated vertical-flow and horizontal-flow constructed wetlands
XIA Yanyang1, CUI Lihua2
1.Wuhan Zhongke Hydrobiological Environment Engineering Co., Ltd., Wuhan 430071, China 2.College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou 510642, China
Influential factors of ammonia nitrogen () and total nitrogen (TN) removal efficiency by the integrated vertical-horizontal flow wetlands mainly include hydraulic loading rate,dissolved oxygen,plant and season,etc.The research results showed that the removal efficiency of TN andby the constructed wetland under high,mid and low-loads hydraulic loading rate were 58. 28%,61. 71%,63. 94%,and 71. 71%,59. 74%,68. 37%,respectively.Removal efficiency ofand TN under well-oxygenated conditions were obviously improved from 40%-50% to 80% and 30% to 70%,respectively.Despite the 3%-4% higher removal ofand TN from the influent sewage in the system vegetated with plants,no significant differences in performance were observed between units with or without plants (P>0.05).removal efficiency in summer and autumn was significantly higher than spring and winter at different retention time (P<0.05) .TN removal efficiency in the wetland system was also remarkably different in different seasons (P<0.05) ,which reached the highest value in summer (86.62%) and the lowest value in spring (about 30%-40%) .The temperature and dissolved oxygen were the most important limiting factors forand TN removal in the integrated verticalhorizontal flow constructed wetland.
nitrogen;integrated vertical-flow and horizontal-flow constructed wetlands;hydraulic loading rate; dissolved oxygen; plant; season
2016-06-28
國家自然科學(xué)基金項(xiàng)目(41271245);廣東高校工程技術(shù)研究中心建設(shè)項(xiàng)目(2012gczxA1004);廣東省水利科技創(chuàng)新項(xiàng)目(2015-15);廣東省科技廳農(nóng)業(yè)科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2012A020100003)
夏艷陽(1976—)女,工程師,碩士,主要從事環(huán)境工程設(shè)計(jì)工作,281667713@qq.com
*通信作者:崔理華(1962—),男,教授,博士,研究方向?yàn)樗廴咎幚砉こ?,lihcui@scau.edu.cn
X703
1674-991X(2017)02-0175-06
10.3969/j.issn.1674-991X.2017.02.026
夏艷陽,崔理華.復(fù)合垂直流-水平流人工濕地系統(tǒng)除氮效果的影響因素[J].環(huán)境工程技術(shù)學(xué)報(bào),2017,7(2):175-180.
XIA Y Y, CUI L H.Influential factors of nitrogen removal efficiency by the integrated vertical-flow and horizontal-flow constructed wetlands[J].Journal of Environmental Engineering Technology,2017,7(2):175-180.