亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Rings with Finite Global Gorenstein Dimensions

        2017-03-14 09:05:27
        關鍵詞:一劍婚約蓬萊

        (Department of Mathematics,Northwest Normal University,Lanzhou 730070,China)

        §1.Introduction

        A new branch in homological algebra which is known as Gorenstein homological algebra has developed rapidly during the past several years.An interesting problem in this branch is to get Gorenstein counterparts of classical homological algebra.For instance,the Auslander-Bridger Formula for Gorenstein projective dimension of modules parallels to the classical Auslander-Buchsbaum Formula for the projective dimension of modules,see[9].There is also a Gorenstein counterpart for the global dimension.Bennis and Mahdou proved an equality in[3]

        The common value of this equality is called the global Gorenstein dimension ofRand is denoted by Ggldim(R).Recently,Emmanouil[6]also obtained this equality.

        It is well known that the equality for global dimension holds since both projective and injective dimensions of modules are characterized by vanishing of derived functors Ext.However,Bennis and Mahdou established the global Gorenstein dimension by applying strongly Gorenstein projective and injective modules they introduced in[2]and Emmanouil got the equality by comparing Gorenstein projective and injective dimensions with two invariants introduced by Gedrich and Gruenberg[8],the projective lengths of injectiveR-modules spli(R)and the injective lengths of projectiveR-modules silp(R).As far as the methods used to determine the global Gorenstein dimension are concerned,they do not parallel to the one used to determine the global dimension in classical homological algebra.

        In this paper,we intend to give a new proof of global Gorenstein dimension by vanishing of Gorenstein derived functors,serving as a case to support the metatheorem[12]:every result in classical homological algebra has a counterpart in Gorenstein homological algebra.To this end,the ring having finite global Gorenstein projective and injective dimensions,called generalized Gorenstein ring,is considered.Some examples are given to show that generalized Gorenstein rings are non-trivial generalizations of Gorenstein rings and rings with finite global dimension.WhenRis a generalized Gorenstein ring,Gorenstein projective and injective dimensions for anyR-module are characterized by vanishing of Holm’s Gorenstein Ext-functors.Then,the equality for global Gorenstein dimension follows immediately.

        §2.Rings with Finite Global Gorenstein Dimensions

        Throughout,Rdenotes a ring with unity,and modules are leftR-modules.Recall that anR-moduleMis Gorenstein projective provided that there exists a totally acyclic complex of projective modules(i.e.an exact sequence P=···→P1→P0→P?1→···of projective modules with HomR(P,Q)exact for any projective moduleQ),such thatM=Z0(P)=Ker(P0→P?1).The Gorenstein projective dimension,GpdRM,of anR-moduleMis defined by declaring that GpdRM≤nif and only if,Mhas a Gorenstein projective resolution of lengthn.Dually,Gorenstein injective modules and Gorenstein injective dimension of modules are defined.

        Lemma 2.1LetRbe a ring.The following statements are equivalent.

        (1)sup{GpdR(M)|Mis anR-module}is finite.

        (2)sup{GidR(M)|Mis anR-module}is finite.

        (3)Both spli(R)and silp(R)are finite.

        Proof(1)(3)For any injectiveR-moduleE,we have pdR(E)=GpdR(E)by[13,Theorem 2.2]and hence spli(R)<∞.It is easy to see from[11,Theorem 2.20]that every projective module has finite injective dimension,so silp(R)<∞.

        Similarly,the equivalence between(2)and(3)holds.

        Definition 2.2If a ringRsatisfies one of the above equivalent conditions,thenRis called a generalized Gorenstein ring.

        A ring with finite global dimension is obviously a generalized Gorenstein ring.It follows from[7]that ifRis Gorenstein(i.e.,a left and right noetherian ring with finite left and right self-injective dimensions),thenRis a generalized Gorenstein ring.The following examples show that generalized Gorenstein rings are not necessarily be Gorenstein or not be of finite global dimension.We remark that for finitely generated modules over two-sided noetherian rings,the conditions in Lemma 2.1 are equivalent to Gorenstein rings and are symmetrical,that is,which hold for right modules[14,Theorem 1.4].

        Example 2.3

        (1)For a domainAof field of quotientsK,letK[[t]]be the power series ring with coefficients inKandA[[t))be the subring ofK[[t]]consisting of the series with constant term inA.Now takeAto be a noetherian local ring of global dimension two in whichKhas projective dimension one.ThenA[[t))is a local ring of global dimension two which is neither a valuation domain nor a noetherian ring([15,p383]),i.e.,A[[t))is a generalized Gorenstein ring but is not Gorenstein.

        (2)By[4,Example 2.8],letSn=S[X1,X2,···,Xn]be the polynomial ring innindeterminates over a non-noetherian hereditary ringS.LetRi=Si?1?Si?1be the trivial extension ofSi?1bySi?1fori≥1(such thatS0=S).ThenRihas global Gorenstein dimensionifor everyi≥1,i.e.,Riis a generalized Gorenstein ring.WhereasRiis a non-noetherian coherent ring and hence is not Gorenstein.

        (3)LetRbe a non-semisimple quasi-Frobenius ring(e.g.k(x)/(x2)for a fieldk).Consider the polynomial ringR[x]in one indeterminate.

        ThenR[x]is a generalized Gorenstein ring,which is noetherian and is not of finite global dimension.Indeed,sinceRis quasi-Frobenius,everyR-module is Gorenstein projective(injective)and it follows from[5,Theorem 2.1]thatR[x]is a generalized Gorenstein ring(precisely,R[x]is a ring of global Gorenstein dimension one).Moreover,Ris noetherian and henceR[x]is also noetherian by the well-known Hilbert basis theorem.Note that the projective dimension of a Gorenstein projective module is either zero or infinite[7,Theorem 10.2.3]and the global dimension ofRcan not be zero(Ris non-semisimple).This implies that the global dimension ofRis infinite.It follows immediately from an equality gldim(R[x])=gldim(R)+1(see[16,Theorem 4.3.7])thatR[x]has infinite global dimension.

        LetM,NbeR-modules.It follows from[11,Theorem 2.10]that if GpdR(M)<∞thenMhas a proper Gorenstein projective resolution,i.e.,a HomR(GP,?)-exact exact sequence G=···→G1→G0→M→0withGiGorenstein projective and then it is defined inis the deleted complex.Dually,if GidR(N)<∞,then one defines(M,N):=Hn(HomR(M,E·)),where E·is a deleted complex of a coproper Gorenstein injective coresolution ofN.Since both proper Gorenstein projective resolution and coproper Gorenstein injective coresolution are unique up to homotype by a version of comparison theorem,the functors are well defined.

        The following is due to Holm[10,Theorem 3.6],which implies that the Gorenstein Extfunctor is balanced.This is crucial in Definition 2.4.

        LemmaFor allR-modulesMandNwith GpdR(M)<∞and GidR(N)<∞,there are isomorphisms

        It seems to be reasonable to describe Gorenstein projective and injective dimensions ofR-modules by vanishing of(?,?)under the assumption thatRis a generalized Gorenstein ring.We remark that similar notions of Gorenstein Ext-functors have been introduced by Avramov and Martsinkovsky[1]for finitely generated modules of finiteG-dimension over a noetherian ring,and by Enochs and Jenda[1,12.1]when the ring is Gorenstein.By analogy with[7,Proposition 4.6]and its dual,there exist long exact sequences for the functorsGExt?(?,?).

        Lemma 2.5

        (1)Let 0→M′→M→M′′→0 be a HomR(GP,?)-exact sequence ofR-modules with finite Gorenstein projective dimension.Then for anyR-moduleNwith GidR(N)<∞,there is an exact sequence

        (2)Let 0→N′→N→N′′→0 be a HomR(?,GI)-exact sequence ofR-modules with finite Gorenstein injective dimension.Then for anyR-moduleMwithGpdR(M)<∞,there is an exact sequence

        The following are analogous to the ones in classical homological algebra.

        Theorem 2.6LetRbe a generalized Gorenstein ring.For anR-moduleMand a nonnegative integern,the following statements are equivalent.

        thatKnis a direct summand ofGn.HenceKn∈GP.

        可是等訂下婚約,父親要他重返蓬萊成婚,他又知悔了,跑了。他何嘗不曾“少年心性,心思機巧”,覺得天下的事、天下的人、天下的情,都當不得他一拳一劍,不在話下。誠心正意何其難,少年老成何其無趣,我又何必苛責這幾個孩子。

        (3)=?(4).In the following,the lower row is a proper Gorenstein projective resolution and then there exist vertical arrows making the diagram commutative

        By the associated exact sequence

        we haveif and only ifKn∈GP.This completes the proof.

        Dually,we have the following.

        Theorem 2.7LetRbe a generalized Gorenstein ring.For anR-moduleNand a nonnegative integern,the following statements are equivalent.

        (3)For any coproper Gorenstein injective coresolution 0→N→E·,theR-moduleLn=Coker(En?2?→En?1)is Gorenstein injective.

        (4)For any Gorenstein injective coresolution 0?→N?→E′·,theR-moduleL′n=Coker(E′n?2?→E′n?1)is Gorenstein injective.

        Then,we have a new proof for Bennis and Mahdou’s equality by combining Lemma 2.1 with theorems 2.6~2.7.The argument here is a Gorenstein counterpart of the one which is used to determine the global dimension.

        Corollary 2.8LetRbe a ring.The following equality holds:

        RemarkIfRis a generalized Gorenstein ring,Emmanouil established the equality spli(R)=silp(R)=Ggldim(R)in[6,Theorem 4.1]by comparing these invariants.Moreover,ifRis a ring with finite global dimension,then it is immediately from[11,Proposition 2.27]that spli(R)=silp(R)=Ggldim(R)=gldim(R).

        [1]AVRAMOV L L,MARTSINKOVSKY A.Absolute,relative and Tate cohomology of modules of finite Gorenstein dimensions[J].Proc London Math Soc,2002,84:393-440.

        [2]BENNIS D,MAHDOU N.Strongly Gorenstein projective,injective and flat modules[J].J Pure Appl Algebra,2007,210:437-445.

        [3]BENNIS D,MAHDOU N.Global Gorenstein dimensions[J].Proc Amer Math Soc,2010,138:461-465.

        [4]BENNIS D,MAHDOU N.Global Gorenstein dimensions and cotorsion dimension of rings[J].Comm Algebra,2009,37:1709-1718.

        [5]BENNIS D,MAHDOU N.Global Gorenstein dimensions of polynomial rings and of direct products of rings[J].Houston J Math,2009,35:1019-1028.

        [6]EMMANOUIL I.On the finiteness of Gorenstein homological dimensions[J].J Algebra,2012,372:376-396.

        [7]ENOCHS E E,JENDA O M G.Relative Homological Algebra[M].New York:Walter De Gruyter,2000.

        [8]GEDRICH T V,GRUENBERG K W.Complete cohomological functors of groups[J].Topology Appl,1987,25:203-223.

        [9]CHRISTENSEN L W.Gorenstein Dimensions[M].Berlin:Springer-Verlag,2000.

        [10]HOLM H.Gorenstein derived functors[J].Proc Amer Math Soc,2004,132:1913-1923.

        [11]HOLM H.Gorenstein homological dimensions[J].J Pure Appl Algebra,2004,189:167-193.

        [12]HOLM H.Gorenstein Homological Algebra[D].Denmark:University of Copenhagen,2004.

        [13]HOLM H.Rings with finite Gorenstein injective dimension[J].Proc Amer Math Soc,2004,132:1279-1283.

        [14]HUANG Chong-hui,HUANG Zhao-yong.Torsionfree dimension of modules and self-injective dimension of rings[J].Osaka J Math,2012,49(1):21-35.

        [15]VASCONCELOS W V.The local rings of global dimension two[J].Proc Amer Math Soc,1972,35:381-386.

        [16]WEIBEL C A.An Introduction to Homological Algebra[M].New York and Melbourne:Cambridge,1994.

        [17]YANG Xiao-yan.n-strongly Gorenstein projective and injective and flat modules[J].Chin Quart J Math,2014,29(4):553-564.

        猜你喜歡
        一劍婚約蓬萊
        Tunable valley filter efficiency by spin–orbit coupling in silicene nanoconstrictions*
        蓬萊迎曦
        寶藏(2020年10期)2020-11-19 01:47:32
        煙臺 身在蓬萊就是仙
        藝術品鑒(2020年6期)2020-08-11 09:36:24
        婚約彩禮的法律規(guī)制研究
        河北農機(2020年10期)2020-01-08 23:16:18
        改革開放以來婚約的訂立與解除(1978—2000)
        蓬萊凝翠
        寶藏(2018年1期)2018-04-18 07:39:26
        岱山五云縹緲隔蓬萊
        中國三峽(2017年1期)2017-06-09 11:09:41
        對我國婚約制度探析
        婚約解除與離婚
        手機軟件熱辣秀
        日本精品啪啪一区二区| 亚洲熟妇av乱码在线观看| 久久精品国产一区二区蜜芽| 精品国产一区二区三广区| 自拍偷自拍亚洲精品第按摩| 三年中文在线观看免费大全| 免费无码肉片在线观看| 亚洲成a人片在线观看高清| 国产麻豆一区二区三区在| 亚洲av无码乱码在线观看牲色| 少妇人妻200篇白洁| 国产精品丝袜美女在线观看| 精品国产av一区二区三区| 免费观看mv大片高清| 国产在线不卡一区二区三区| 五月天综合社区| 国产福利一区二区三区在线观看 | 欧美又大又色又爽aaaa片 | 麻豆tv入口在线看| 日本高清一区二区三区水蜜桃| 超高清丝袜美腿视频在线| 亚洲熟女少妇精品综合| 又大又粗又爽18禁免费看 | 2021年性爱喷水视频| 97精品熟女少妇一区二区三区| 又粗又硬又大又爽免费视频播放| 中文字幕一区二区三区久久网站 | 天天爽天天爽天天爽| 日韩中文字幕无码av| 噜噜中文字幕一区二区| 国产午夜精品一区二区三区| 无码一区二区三区AV免费换脸| 日日麻批视频免费播放器| 国产日产精品_国产精品毛片| 国产乱人伦精品一区二区| 人妻系列影片无码专区| 午夜精品久久99蜜桃| 巨茎中出肉欲人妻在线视频| av一区无码不卡毛片| 9l国产自产一区二区三区| 无码人妻h动漫中文字幕|