汪韓,王連堂
(西北大學數學學院,陜西 西安 710127)
包含q-psi函數的函數完全單調性及其應用
汪韓,王連堂
(西北大學數學學院,陜西 西安 710127)
主要證明了涉及q-digamma函數的完全單調性.通過引入經典q-理論將包含digamma函數的函數進行q-模擬,利用q-模擬函數以及級數的性質,得到了包含q-digamma函數的完全單調性.最后利用它們的完全單調性得到了有關q-digamma和q-trigamma函數的不等式.
完全單調;q-模擬;q-psi函數;不等式;q-trigamma函數
Gamma函數與psi(digamma)函數在x>0時的定義為:
psi函數是Gamma函數的對數導數,psi函數的各階導數ψ(i)(x)對于i∈N, N={1,2,3,…},被稱為polygamma函數在文獻[1]中,定義了x>0時.Gamma函數的q-模擬
q-psi函數為q-Gamma函數的對數導數,
psi函數和q-psi函數被包含在很多不等式中,見文獻[2-3],由(1)和(2)可以得到如下:
當0<q<1且x>0,
當q>1且x>0,
ψ(k)(x)的q-模擬為k∈N,被稱為q-polygamma函數,其中和分別被稱為q-trigamma函數和q-tetragamma函數對(3)式兩邊取對數后求導可得,當q>0時,有
文獻[4-5]中介紹了gamma函數及psi函數和它們的q-模擬之間的關系.
更多關于q-gamma函數的內容,見文獻[6-8].
直接從套管出口引出天然氣并加以綜合利用,見圖4。套管氣利用情況:套管氣在加熱爐中燃燒,加熱輸油管線或摻水;套管氣用于單井天然氣發(fā)電機發(fā)電。
文獻[9-10]給出了完全單調性的定義:一個函數f被稱為區(qū)間I上的完全單調函數,如果f在區(qū)間I上的各階導數滿足對于任意的x∈I且n≥0,有(?1)nf(n)(x)≥0.
完全單調函數在各個分支學科都有應用,如,解析數論、概率論、物理學,見文獻[11-13].文獻[14]證明了函數
在(0,∞)上是完全單調的,當且僅當
當x>0時,定義函數
它們的q-模擬函數為:
容易得到
(9)式的q-模擬函數的完全單調性在文獻[16-18]中被證明.近年來,研究包含psi和q-psi函數完全單調性及不等式的文獻越來越多,Gamma函數、psi函數以及他們的q-模擬的許多性質和不等式在文獻[19–23]中被得到.
本文主要證明了fq(x),Fq(x),gq(x),Gq(x)的完全單調性,并由它們的完全單調性得到了關于q-psi函數和q-polygamma函數的不等式.
引理 1當x>0時,對i∈N及q∈(0,1),有
證明對(1.4)式直接求導可得到.
引理 2當x>0,q∈(0,1)時,有
證明由(1.4)式可知,
引理 3當0<p<1時,定義函數
則hp(x)及ηp(x)在(0,∞)上大于零且單調遞增.
引理 4 當0<q<1,對i∈N,有下面式子成立
其中fq(x)和gq(x)由(11)和(13)定義.
定理 3.1當0<q<1時,(11)定義的函數fq(x)在(0,∞)上是完全單調的.
定理3.2當0<q<1時,(13)定義的函數gq(x)的二階導數在(0,∞)上是完全單調的.
推論 3.3當q>1時,(12)定義的函數 Fq(x)及(14)定義的函數 Gq(x)的二階導數在(0,∞)上是完全單調的.
推論 3.4當x∈(0,∞)時有下面不等式成立
[1]Gasper G,Rahman M.Basic Hypergeometric Series[M].Cambridge:Cambridge Universitty Press,1990.
[2]Alzer H.On some inequalities for the gammma and psi functions[J].Mathematises of Computation, 1997,66(217):373-389.
[3]Necdet Batir.Some new inequalities for gamma and polygamma functions[J].J.Inequal.Pure Appl.Math., 2005:6(4):103.
[4]Koornwinder T H.Jacobi functions as limit cases of q-ultraspherical polynomials[J].J.Math.Anal.Appl., 1990,148(1):44-54.
[5]Krattenthaler C,Srivastava H M.Summations for basic hypergeometric series involving a q-analogue of the digamma function[J].Computers and Mathematics with Applications.1996,32(2):73-91.
[6]Alzer H.Sharp bounds for the ratio of q-gamma function[J].Mathematische Machrichten,2001,222:5-14.
[7]Andrews G E,Askey R A,Roy R.Special Functions[M].Cambridge:Cambridge University Press,1999.
[8]Ismai M E H,Muldoon M E.Inequalities and monotonicity properties for gamma and q-gamma functions [J].Approximation and Computation.International Series of Numerical Mathematics,Birkh¨auser,Boston, MA.,1994,119:309-323.
[9]Van Haeringen H.Completely monotonic and Related Functions[J].Faculty of Technical Mathematics and Informattics,Delft University of Technology,Delft,The Netherlands,1993(3):93-108.
[10]Widder D V.The Laplace Transform[M].Princeton:Princeton University Press,1946.
[11]Day W A.On monotonicity of the relaxation functions of viscoelastic materials[J].Proc.cambridge philos.soc.,1970,67:503-508.
[12]Feller W.An Introduction to Probablity Pheory and its Applications[M].New York:Wiley,1966.
[13]Wimp J.Sequence Transformations and Their Applications[M].New York:Academic Press,1981.
[14]Qi Feng.Three classes of logarithmically completely monotonic functions involving gamma and psi functions [J].Integral Transforms Spec.Funct.,2007,18(7):503–509.
[15]Zhao JiaoLian.A completely monotonic function relating to the q-trigamma function[J].Journal of Mathematical Inequalities,2015,9(1):53-60.
[16]Chen Chaoping,Qi Feng.Logarithmically completely monotonic functions relating to the gamma function [J].Journal of Mathematical Analisis and Aplications,2006,321(1):405-411.
[17]Stamatis Koumandos.Remarks on some completely monotonic functions[J].Journal of Mathematical Aanlysis and Applications,2006,324(2):1458-1461.
[18]Qi Feng,Cui Runping,Guo Baini.Some completely monotonic functions involving polygamma functions and an application[J].Journal of Mathematical and Applications,2005,310(1):303-308.
[19]Alzer H,Grinshpan A Z.Inequalities for the gamma and q-gamma functions[J].Journal of Approximation Theory,2007,144:67-83.
[20]Batir Necdet.Some new inequalities for gamma and polygamma functions[J].J.Inequal.Pure Appl.Math.,2005,6(4):103.
[21]Gao Peng.Some monotonicity properties of gamma and q-gamma functions[J].ISRN Mathematical Analysis,2011:1-15.
[22]Ismai M E H,Lorch L,Muldoon M E.Completely monotonic functions associated with the gamma function and its q-analogues[J].J.Math.Anal.Appl.,1986,116:1-9.
[23]Tou fi k Mansour.Some inequalities for the q-gamma function[J].J.Inequal.Pure Appl.Math.,2008,9(1):18.
Complete monotonicity functions involving the q-psi function and some applications
Wang Han,Wang Liantang
(College of Mathematics,Northwest University,Xi′an 710127,China)
In this paper,the complete monotonicity for functions involving q-digamma functions are proved, some applications of these results give inequalities containing q-digamma and q-trigamma functions.
complete monotonicity,q-analogue,q-psi function,inequality,q-trigamma function
O174.6
A
1008-5513(2017)01-0082-10
10.3969/j.issn.1008-5513.2017.01.009
2016-07-13.
陜西省自然科學基金(2010JM1017).
汪韓(1992-),碩士生,研究方向:特殊函數論.
2010 MSC:26A48