葉 東, 邢德剛, 曾 志, 陳麗新, 王立偉
(1廣東藥科大學(xué)基礎(chǔ)學(xué)院生理學(xué)系,廣東 廣州 510006;暨南大學(xué)醫(yī)學(xué)院 2藥理學(xué)系, 3生理學(xué)系,廣東 廣州 510632)
沉默ClC-3氯通道基因?qū)eLa細(xì)胞周期分布的影響*
葉 東1, 邢德剛1, 曾 志1, 陳麗新2△, 王立偉3△
(1廣東藥科大學(xué)基礎(chǔ)學(xué)院生理學(xué)系,廣東 廣州 510006;暨南大學(xué)醫(yī)學(xué)院2藥理學(xué)系,3生理學(xué)系,廣東 廣州 510632)
目的: 探討沉默HeLa細(xì)胞的ClC-3氯通道基因后細(xì)胞周期分布的變化及其作用機(jī)制。方法: 依照siRNA設(shè)計(jì)原則構(gòu)建沉默ClC-3基因的ClC-3 siRNA并轉(zhuǎn)染HeLa細(xì)胞;實(shí)驗(yàn)分為空白對(duì)照組(control組)、轉(zhuǎn)染試劑對(duì)照組(Lipo組)、陰性對(duì)照組(negative siRNA組)和ClC-3 siRNA組。采用real-time PCR檢測(cè)ClC-3 siRNA的沉默效率;流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期分布情況;Western blot檢測(cè)ClC-3蛋白及相關(guān)細(xì)胞周期蛋白(cyclin)D1、細(xì)胞周期蛋白依賴激酶(cyclin-dependent kinase, CDK)4、CDK6、P21和P27等表達(dá)。結(jié)果: ClC-3 siRNA成功沉默HeLa細(xì)胞的ClC-3基因。和其它組相比,ClC-3 siRNA組的細(xì)胞周期被阻抑在G0/G1期。ClC-3 siRNA組的cyclin D1、CDK4和CDK6蛋白表達(dá)水平明顯下降,P21和P27蛋白表達(dá)水平明顯上升。結(jié)論: 沉默HeLa細(xì)胞ClC-3氯通道基因可影響cyclin D1、CDK4、CDK6、P21和27蛋白的表達(dá)水平,阻抑HeLa細(xì)胞周期停滯在G0/G1期。
ClC-3氯通道; HeLa細(xì)胞; 細(xì)胞周期; 細(xì)胞周期蛋白依賴激酶; P21; P27
細(xì)胞周期調(diào)控是機(jī)體最嚴(yán)密的調(diào)控機(jī)制之一,與細(xì)胞增殖、分化、凋亡和癌變等生理病理過程密切相關(guān)。近年來對(duì)細(xì)胞周期的研究取得了許多突破性進(jìn)展,發(fā)現(xiàn)并確立了細(xì)胞周期蛋白(cyclin)、細(xì)胞周期蛋白依賴激酶(cyclin-dependent kinase,CDK)和細(xì)胞周期蛋白依賴性激酶抑制因子(cyclin-dependent kinase inhibitor,CKI)在細(xì)胞周期調(diào)控過程中的重要作用。三者之間相互作用,組成細(xì)胞周期調(diào)控系統(tǒng),即cyclin-CDK-CKI系統(tǒng)。生長(zhǎng)失調(diào)是腫瘤的根本特點(diǎn),細(xì)胞發(fā)生癌變伴隨著cyclin D1、P21、P27等周期調(diào)控蛋白表達(dá)的異常。研究顯示氯離子通道在細(xì)胞周期和細(xì)胞增殖的調(diào)節(jié)中發(fā)揮重要作用[1-2]。ClC-3是電壓依賴氯通道家族中的重要成員,作為容積敏感性氯電流廣泛表達(dá)[3-4]。關(guān)于ClC-3氯通道的研究表明ClC-3氯通道不僅僅只發(fā)揮離子通道的作用,還參與很多細(xì)胞重要的生理活動(dòng)[5-7]。另外,ClC-3氯通道蛋白的表達(dá)和分布是呈現(xiàn)細(xì)胞周期依賴性的,提示ClC-3可能參與細(xì)胞癌變以及腫瘤細(xì)胞周期調(diào)控。我們前期研究顯示ClC-3的表達(dá)減少可以抑制鼻咽癌細(xì)胞的增殖,細(xì)胞增殖因?yàn)榧?xì)胞周期進(jìn)程阻滯而被抑制,提示氯通道在腫瘤細(xì)胞周期調(diào)控中起著重要作用[8]。本研究旨在探究ClC-3氯通道蛋白參與HeLa細(xì)胞周期調(diào)控的機(jī)制,系統(tǒng)研究ClC-3氯通道蛋白與相關(guān)周期蛋白CDK4、CDK6、cyclin D1以及P21、P27在mRNA、蛋白質(zhì)表達(dá)水平的交互影響,探討CDK4、CDK6、cyclin D1、P21以及P27和ClC-3氯通道蛋白在調(diào)節(jié)細(xì)胞通過G0/G1期進(jìn)入S期過程中的相互作用及作用途徑。
1 細(xì)胞
本實(shí)驗(yàn)采用的HeLa細(xì)胞購自ATCC細(xì)胞庫,由本實(shí)驗(yàn)室保存。
2 主要試劑
DMEM細(xì)胞培養(yǎng)基和新生小牛血清購自Gibco;胰酶-EDTA購自Sigma;實(shí)驗(yàn)所用的ClC-3 siRNA為對(duì)應(yīng)于人體來源基因的siRNA雙鏈,由上海吉瑪制藥技術(shù)有限公司合成,其序列見表1;轉(zhuǎn)染試劑脂質(zhì)體LipofectamineTM2000購自Invitrogen;SYBR?PrimeScriptTMRT-PCR試劑盒購自TaKaRa;抗ClC-3和cyclin D1抗體購自Abcam;抗CDK4、CDK6、P21和P27抗體購自CST;抗GAPDH抗體購自中國博士德生物科技有限公司;HRP標(biāo)記的山羊抗兔IgG (H+L)與山羊抗小鼠IgG (H+L) 購自于ProteinTech Group。
表1 小分子干擾RNA序列
3 主要方法
3.1 HeLa細(xì)胞的培養(yǎng)和傳代 HeLa細(xì)胞接種于25 mL的培養(yǎng)瓶中生長(zhǎng);當(dāng)細(xì)胞長(zhǎng)到約80%~90%時(shí),將培養(yǎng)瓶?jī)?nèi)原培養(yǎng)液倒出,并用PBS洗2遍;棄去PBS液,加入含EDTA的胰酶進(jìn)行消化;將細(xì)胞放置于培養(yǎng)箱2~3 min,待細(xì)胞變圓且相互分離即可;倒出含胰酶細(xì)胞液,加入新鮮的DMEM培養(yǎng)基,用吸管將細(xì)胞輕輕吹打成單個(gè)細(xì)胞懸液;將吹打完全的細(xì)胞懸液分至2個(gè)新的培養(yǎng)瓶中,放置5% CO2、37 ℃培養(yǎng)箱中繼續(xù)進(jìn)行培養(yǎng)。
3.2 ClC-3 siRNA轉(zhuǎn)染HeLa細(xì)胞 本研究采用siRNA轉(zhuǎn)染技術(shù),操作過程如下:按照常規(guī)細(xì)胞培養(yǎng)方法培養(yǎng)HeLa細(xì)胞;轉(zhuǎn)染前1 d將對(duì)數(shù)生長(zhǎng)期的細(xì)胞接種于6孔板中,并用不含抗生素的培養(yǎng)液培養(yǎng)細(xì)胞;當(dāng)細(xì)胞生長(zhǎng)到融合度達(dá)50%~60%時(shí)進(jìn)行細(xì)胞轉(zhuǎn)染;轉(zhuǎn)染前先用無血清培養(yǎng)液稀釋ClC-3 siRNA和稀釋轉(zhuǎn)染試劑LipofectamineTM2000,并將2者混勻成轉(zhuǎn)染復(fù)合體,在室溫下靜置5~10 min;用無血清培養(yǎng)液將孔板中的細(xì)胞洗2~3次,并在每孔中加2 mL培養(yǎng)液;將以上制得的200 μL轉(zhuǎn)染復(fù)合體加到培養(yǎng)孔板中進(jìn)行轉(zhuǎn)染(其中siRNA的最終濃度100 nmol/L),在正常培養(yǎng)條件下繼續(xù)培養(yǎng);繼續(xù)培養(yǎng)6 h后棄去原培養(yǎng)液,加入新鮮的含血清、不含抗生素的正常培養(yǎng)液繼續(xù)培養(yǎng)。除siRNA轉(zhuǎn)染組外,另外設(shè)置空白對(duì)照組(control組)、轉(zhuǎn)染試劑對(duì)照組(Lipo組)和陰性對(duì)照組(negative siRNA組)。
3.3 流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期分布 ClC-3 siRNA轉(zhuǎn)染HeLa細(xì)胞繼續(xù)培養(yǎng)48 h后,用胰酶將細(xì)胞消化制成細(xì)胞懸液,收集細(xì)胞;用4 ℃預(yù)冷的PBS沖洗細(xì)胞,1 000×g、4 ℃離心5 min、3次;再用 0.5 mL PBS將細(xì)胞重新制成均勻的細(xì)胞懸液,并加入預(yù)冷的70%乙醇,小心混勻;4 ℃固定4 h后,用流式細(xì)胞術(shù)分析檢測(cè)細(xì)胞周期的分布。
3.4 Real-time PCR實(shí)驗(yàn) ClC-3 siRNA轉(zhuǎn)染后繼續(xù)培養(yǎng)48 h;棄去培養(yǎng)液,提取細(xì)胞總RNA;對(duì)得到的HeLa細(xì)胞總RNA進(jìn)行定量后逆轉(zhuǎn)錄得到cDNA;將得到的cDNA按SYBR? PrimeScriptTMRT-PCR試劑盒的操作方法進(jìn)行real-time PCR。PCR擴(kuò)增條件為:95℃ 30 s;95℃ 5s、60℃ 20 s,40個(gè)循環(huán)。ClC-3上游引物為5’- TTGCCTACTATCACCACGAC-3’,下游引物為5’- GCATCTCCAACCCATTTACT-3’;GAPDH上游引物為5’-GGTGGTCTCCTCTGACTTCAACA-3’,下游引物為5’- GTTGCTGTAGCCAAATTCGTTGT-3’。引物由上海生工生物工程股份有限公司合成。
3.5 Western blot實(shí)驗(yàn) ClC-3 siRNA轉(zhuǎn)染后繼續(xù)培養(yǎng)48 h;棄去培養(yǎng)液,RIPA裂解法提取蛋白,收集細(xì)胞總蛋白進(jìn)行電泳;電泳完成后采用半干法進(jìn)行轉(zhuǎn)膜;轉(zhuǎn)膜后用5%脫脂奶粉室溫下孵育封閉1~1.5 h;加入用抗體稀釋液稀釋的Ⅰ抗,4 ℃孵育過夜;用TBST漂洗,重復(fù)3次,每次5~10 min;加入HRP標(biāo)記的Ⅱ抗,在室溫下孵育1 h;用TBST漂洗5~10 min、3次; 采用ECL化學(xué)發(fā)光法進(jìn)行顯影后壓片;采用相關(guān)圖像分析軟件進(jìn)行圖像分析,測(cè)定灰度值,以GAPDH為內(nèi)參照,計(jì)算相對(duì)比值。
4 統(tǒng)計(jì)學(xué)處理
采用SPSS 13.0軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組之間比較采用單因素方差分析(one-way ANOVA)處理,組間兩兩比較采用SNK-q檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 ClC-3 siRNA抑制HeLa細(xì)胞ClC-3 mRNA的表達(dá)
與control組細(xì)胞相比,ClC-3 siRNA組細(xì)胞的ClC-3 mRNA的表達(dá)明顯被抑制;而negative siRNA組、Lipo組與control組比較,ClC-3 mRNA的表達(dá)差異無統(tǒng)計(jì)學(xué)顯著性。結(jié)果表明,ClC-3 siRNA可以抑制HeLa細(xì)胞ClC-3 mRNA的表達(dá),見圖1。
Figure 1.Knockdown of the mRNA expression of ClC-3 chloride channels by ClC-3 siRNA in the HeLa cells. The expression of ClC-3 mRNA in control cells and the cells treated with ClC-3 siRNA for 48 h was analyzed. Mean±SD.n=3.*P<0.05vscontrol.
圖1 ClC-3 siRNA抑制HeLa細(xì)胞ClC-3 mRNA的表達(dá)
2 ClC-3 siRNA抑制HeLa細(xì)胞ClC-3蛋白的表達(dá)
在ClC-3 siRNA轉(zhuǎn)染HeLa細(xì)胞后繼續(xù)培養(yǎng)48 h,收集細(xì)胞總蛋白,進(jìn)行Western blot檢測(cè),分析ClC-3氯通道蛋白的表達(dá)變化,實(shí)驗(yàn)結(jié)果如圖2所示。與control組細(xì)胞相比較,ClC-3 siRNA組細(xì)胞的ClC-3氯通道蛋白的表達(dá)明顯被抑制;而negative siRNA組、Lipo組與control組相比,ClC-3蛋白表達(dá)的差異無統(tǒng)計(jì)學(xué)顯著性。
Figure 2. Knockdown of ClC-3 chloride channel protein expression by ClC-3 siRNA in the HeLa cells. The protein expression of ClC-3 and the GAPDH was determined. The upper and lower panels show the representative blotting and the quantitative analysis, respectively. Mean±SD.n=3.*P<0.05vscontrol.
圖2 ClC-3 siRNA抑制HeLa細(xì)胞ClC-3蛋白的表達(dá)
3 ClC-3 siRNA阻抑HeLa細(xì)胞周期停滯在G0/G1期
與control組的HeLa細(xì)胞相比,ClC-3 siRNA組的G0/G1期細(xì)胞所占百分率顯著提高,而S期和G2/M期細(xì)胞所占百分率則明顯降低。結(jié)果表明,ClC-3 siRNA沉默ClC-3氯通道的表達(dá)后可使HeLa細(xì)胞周期停滯在G0/G1期,見圖3。
4 ClC-3 siRNA抑制HeLa細(xì)胞cyclin D1蛋白的表達(dá)
Western blot結(jié)果顯示:ClC-3 siRNA抑制了cyclin D1蛋白的表達(dá),與control組比,cyclin D1蛋白的表達(dá)明顯下降,見圖4。
5 ClC-3 siRNA抑制HeLa細(xì)胞CDK4和CDK6蛋白的表達(dá)
與control組相比,ClC-3 siRNA抑制了CDK4和CDK6的表達(dá),CDK4和CDK6蛋白的表達(dá)明顯減少。結(jié)果提示ClC-3氯通道蛋白可以促進(jìn)HeLa細(xì)胞CDK4和CDK6的表達(dá),見圖5。
Figure 3.Arrest of the HeLa cells at G0/G1phase by ClC-3 siRNA. The cell cycle distributions in the control cells and the cells treated with lipofectamineTM2000 alone (Lipo), or with 100 nmol/L negative siRNA or ClC-3 siRNA plus lipofectamineTM2000 for 48 h were detected by flow cytometry. Mean±SD.n=3.*P<0.05vscontrol.
圖3 ClC-3 siRNA阻抑HeLa細(xì)胞周期停滯在G0/G1期
6 ClC-3 siRNA促進(jìn)HeLa細(xì)胞P21和P27蛋白的表達(dá)
Western blot檢測(cè)P21和P27的表達(dá),結(jié)果如圖6所示。與control組相比,ClC-3 siRNA促進(jìn)了P21和P27的表達(dá),P21和P27蛋白的表達(dá)明顯增多。提示ClC-3氯通道蛋白可以抑制HeLa細(xì)胞P21和P27蛋白的表達(dá)。
研究發(fā)現(xiàn)目前多種腫瘤細(xì)胞包括神經(jīng)膠質(zhì)瘤細(xì)胞、嗜絡(luò)細(xì)胞瘤PC12細(xì)胞、肺癌、膀胱移行細(xì)胞癌、前列腺癌和人膠質(zhì)瘤組織中發(fā)現(xiàn)了ClC-3氯通道高表達(dá)的現(xiàn)象[6, 9-10]。細(xì)胞周期調(diào)控是一個(gè)復(fù)雜而精確的生理過程。細(xì)胞周期蛋白可通過激活細(xì)胞周期蛋白依賴性激酶調(diào)節(jié)細(xì)胞周期進(jìn)程[11]。細(xì)胞周期蛋白-CDK復(fù)合物的活性可被細(xì)胞周期蛋白依賴性激酶抑制劑調(diào)控,可以通過調(diào)節(jié)CKI的活性達(dá)到調(diào)控細(xì)胞周期的機(jī)制來防止疾病的發(fā)生。P21和P27蛋白是CKI家族中的重要成員,P21和P27蛋白能結(jié)合相關(guān)的細(xì)胞周期蛋白-CDK復(fù)合物,并通過抑制細(xì)胞周期蛋白-CDK復(fù)合物的活性調(diào)控G1-S轉(zhuǎn)換。CDK活性的調(diào)控是細(xì)胞周期進(jìn)程中的一個(gè)重要決定因素,CDKs的激活與失活調(diào)控著細(xì)胞周期的進(jìn)程[12-13]。因此,我們可以通過直接或間接上調(diào)CKI的表達(dá)來抑制CDK活性的方法對(duì)腫瘤細(xì)胞的增殖進(jìn)行干預(yù)。
Figure 4.Inhibition of the cyclin D1 expression by ClC-3 siRNA in the HeLa cells. The protein expression of cyclin D1 was determined by Western blot with the reference of GAPDH. The upper and the lower panels in each figure show the representative blotting and the quantitative analysis of protein expression, respectively, in the control cells and the cells treated with the transfection reagent lipofectamineTM2000 alone (Lipo), or with 100 nmol/L negative siRNA or ClC-3 siRNA plus lipofectamineTM2000 for 48 h. Mean±SD.n=3.*P< 0.05vscontrol.
圖4 ClC-3 siRNA抑制HeLa細(xì)胞cyclin D1蛋白的表達(dá)
我們前期研究結(jié)果[8, 14-16]顯示氯通道是調(diào)控腫瘤細(xì)胞周期的關(guān)鍵因素。但是,ClC-3氯通道蛋白與CDK4/CDK6、cyclin D1以及P21、P27在細(xì)胞周期進(jìn)程中的相互作用尚未清楚。本研究中采用siRNA技術(shù)抑制HeLa細(xì)胞ClC-3基因的表達(dá),檢測(cè)ClC-3、cyclin D1、P21、P27、CDK4和CDK6等蛋白的表達(dá)水平,并通過流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期分布。探討CDK4、CDK6、cyclin D1、P21、P27和ClC-3氯通道蛋白在調(diào)節(jié)細(xì)胞通過G0/G1期進(jìn)入S期過程中的相互作用及作用途徑,從周期蛋白和通道蛋白相互作用的嶄新角度來尋找周期蛋白的未知靶點(diǎn)。
Figure 5.The inhibitory effect of ClC-3 siRNA on the protein expression of CDK4 and CDK6 in the HeLa cells determined by Western blot with the reference of GAPDH. The upper and the lower panels in each figure show the representative blotting and the quantitative analysis of protein expression, respectively, in the control cells and the cells treated with the transfection reagent lipofectamineTM2000 alone (Lipo), or with 100 nmol/L negative siRNA or ClC-3 siRNA plus lipofectamineTM2000 for 48 h. Mean±SD.n=3.*P<0.05vscontrol.
圖5 ClC-3 siRNA抑制HeLa細(xì)胞CDK4、CDK6蛋白的表達(dá)
Figure 6.Enhancement of the P21 and P27 expression in the HeLa cells by ClC-3 siRNA. The upper and the lower panels in each figure show the representative blotting and the quantitative analysis of protein expression, respectively, in the control cells and the cells treated with the transfection reagent lipofectamineTM2000 alone (Lipo), or with 100 nmol/L negative siRNA or ClC-3 siRNA plus lipofectamineTM2000 for 48 h. Mean±SD.n=3.*P<0.05vscontrol.
圖6 ClC-3 siRNA促進(jìn)HeLa細(xì)胞P21、P27蛋白的表達(dá)
本研究結(jié)果表明,ClC-3 siRNA轉(zhuǎn)染HeLa細(xì)胞特異性沉默ClC-3氯通道蛋白后,相關(guān)周期調(diào)節(jié)蛋白CDK4和CDK6的表達(dá)受到抑制,而P21和P27的表達(dá)增加。ClC-3氯通道蛋白表達(dá)的下調(diào),CDK4、CDK6蛋白的表達(dá)減少,P21、P27蛋白的表達(dá)增多,cyclin D1-CDK4/CDK6復(fù)合物的合成和活性受到抑制,進(jìn)而影響細(xì)胞周期從G0/G1期進(jìn)入S期。本研究表明了ClC-3氯通道蛋白可以通過調(diào)節(jié)細(xì)胞周期蛋白- CDK復(fù)合物以及CKIs的表達(dá)來參與調(diào)節(jié)細(xì)胞周期。ClC-3氯通道蛋白是調(diào)控HeLa細(xì)胞周期由G0/G1期進(jìn)入S期的關(guān)鍵因素。P21和P27是ClC-3氯通道蛋白調(diào)控細(xì)胞周期通過G0/G1期進(jìn)入S期的作用靶點(diǎn)。
[1] Okada Y, Sato K, Numata T. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel[J]. J Physiol, 2009, 587(Pt 10):2141-2149.
[2] Zhu L, Yang H, Zuo W, et al. Differential expression and roles of volume-activated chloride channels in control of growth of normal and cancerous nasopharyngeal epithelial cells[J]. Biochem Pharmacol, 2012, 83(3):324-334.
[3] Mao J, Yuan J, Wang L, et al. Tamoxifen inhibits migration of estrogen receptor-negative hepatocellular carcinoma cells by blocking the swelling-activated chloride current[J]. J Cell Physiol, 2012, 228(5):991-1001.
[4] Yang L, Ye D, Ye W, et al. ClC-3 is a main component of background chloride channels activated under isotonic conditions by autocrine ATP in nasopharyngeal carcinoma cells[J]. J Cell Physiol, 2011, 226(10):2516-2526.
[5] Xiong D, Heyman NS, Airey J, et al. Cardiac-specific, inducibleClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice[J]. J Mol Cell Cardiol, 2010, 48 (1):211-219.
[6] Zhang HN, Zhou JG, Qiu QY, et al.ClC-3 chloride channel prevents apoptosis induced by thapsigargin in PC12 cells [J]. Apoptosis, 2006, 11(3):327-336.
[7] Yoshise Y, Ito K, Tsubone H, et al. Functional and molecular characterizations of chloride channels in rat pleural mesothelial cells[J]. Eur J Pharmacol, 2009, 614(1-3):22-29.
[8] Ye D, Luo H, Lai Z, et al. ClC-3 chloride channel proteins regulate the cell cycle by up-regulating cyclin D1-CDK4/6 through suppressing p21/p27 expression in nasopharyngeal carcinoma cells [J]. Sci Rep, 2016, 6:30276.
[9] Lemonnier L, Shuba Y, Crepin A, et al. Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells[J]. Cancer Res, 2004, 64(14):4841-4848.
[10]徐 冰, 羅 祺, 王心蕊, 等. ClC-3在人膠質(zhì)瘤中的表達(dá)及分布[J]. 中國病理生理雜志, 2005, 21(11):2188-2191.
[11]Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural differentiation[J]. Oncogene, 2003, 22 (33):5208-5219.
[12]Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment[J]. J Clin Oncol, 2006, 24(11):1770-1783.
[13]Lee YM, Sicinski P. Targeting cyclins and cyclin-dependent kinases in cancer: lessons from mice, hopes for therapeutic applications in human[J]. Cell Cycle, 2006, 5 (18):2110-2114.
[14]Zhang H, Zhu L, Zuo W, et al. The ClC-3 chloride channel protein is a downstream target of cyclin D1 in nasopharyngeal carcinoma cells[J]. Int J Biochem Cell Biol, 2012, 45(3):672-683.
[15]Huang W, Liu M, Zhu L, et al. Functional expression of chloride channels and their roles in the cell cycle and cell proliferation in highly differentiated nasopharyngeal carcinoma cells[J]. Physiol Rep, 2014, 2(9): e12137.
[16]Xu B, Jin X, Min L,et al. Chloride channel-3 promotes tumor metastasis by regulating membrane ruffling and is associated with poor survival[J]. Oncotarget, 2015, 6(4):2434-2450.
(責(zé)任編輯: 陳妙玲, 余小慧)
Effect of ClC-3 siRNA on cell cycle of HeLa cells
YE Dong1, XING De-gang1, ZENG Zhi1, CHEN Li-xin2, WANG Li-wei3
(1DepartmentofPhysiology,BasicCollege,GuangdongPharmaceuticalUniversity,Guangzhou510006,China;2DepartmentofPharmacology,3DepartmentofPhysiology,MedicalCollege,JinanUniversity,Guangzhou510632,China.E-mail:tchenlixin@jnu.edu.cn;twangliwei@jnu.edu.cn)
AIM: To investigate the roles of ClC-3 chloride channels in the regulation of cell cycle and the relationship between ClC-3 chloride channels and the cell cycle regulators, such as cyclin D1, cyclin-dependent kinase (CDK)4, CDK6, P21 and P27 in the HeLa cells. METHODS:ClC-3 genes were silenced by the siRNA technique in the HeLa cells. The transfection efficiency of ClC-3 siRNA was detected by real-time PCR. The cell cycle distribution was analyzed by the flow cytometry. The protein expression of ClC-3, P21, P27, CDK4, CDK6 and cyclin D1 was determined by Western blot. RESULTS:ClC-3 was knocked down by ClC-3 siRNA in the HeLa cells. Transfection of the cells with ClC-3 siRNA arrested the cells at G0/G1phases, decreased the expression of cyclin D1, CDK4 and CDK6, and increased the expression of P21 and P27. CONCLUSION: ClC-3 plays an important role in the cell cycle of HeLa cells through the G1-S transition point. ClC-3 may regulate the cell cycle progression by up-regulation of cyclin D1, CDK4 and CDK6 expression and/or by down-regulation of P21 and P27 expression.
ClC-3 chloride channels; HeLa cells; Cell cycle; Cyclin-dependent kinase; P21; P27
1000- 4718(2017)02- 0257- 06
2016- 11- 07
2016- 12- 13
國家自然科學(xué)基金資助項(xiàng)目(No. 81272223; No. 81273539);廣東藥科大學(xué)“創(chuàng)新強(qiáng)校工程”-廣東高校省級(jí)重點(diǎn)平臺(tái)和重大科研項(xiàng)目:青年創(chuàng)新人才類項(xiàng)目(No. 2015cxqx165)
R363; R730.23
A
10.3969/j.issn.1000- 4718.2017.02.011
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 陳麗新 Tel: 020-85228865; E-mail: tchenlixin@jnu.edu.cn; 王立偉 Tel: 020-85226565; E-mail: twangliwei@jnu.edu.cn