劉賓禮 羅毅飛 汪 波 孟慶云 朱俊杰
(海軍工程大學艦船綜合電力技術(shù)國防科技重點實驗室 武漢 430033)
一種IGBT傳熱模型參數(shù)等效計算方法*
劉賓禮 羅毅飛 汪 波 孟慶云 朱俊杰
(海軍工程大學艦船綜合電力技術(shù)國防科技重點實驗室 武漢 430033)
以電力電子裝置應用領(lǐng)域?qū)GBT模塊傳熱特性及其散熱設計的需求為牽引,基于Foster與Cauer熱網(wǎng)絡的結(jié)構(gòu)屬性與相互轉(zhuǎn)換方法,建立了一種IGBT傳熱模型參數(shù)等效計算方法并進行了實驗驗證,對其傳熱特性進行了研究,得出封裝各層溫度運行規(guī)律及其各層之間的相互作用關(guān)系;建立了一種IGBT散熱器傳熱模型參數(shù)設計方法并查明了最高結(jié)溫、波動范圍隨散熱器熱容的變化規(guī)律.
熱網(wǎng)絡結(jié)構(gòu);等效計算;結(jié)溫運行規(guī)律;散熱設計
IGBT器件產(chǎn)生的功耗以熱量的形式通過芯片、焊料層、銅層、陶瓷層和基板傳遞至散熱器和外部空間.研究IGBT器件熱量傳遞過程的作用機制,建立封裝結(jié)構(gòu)參數(shù)等效計算方法與散熱器設計方法,對于指導制造者改進器件的散熱性能,指導使用者合理設計散熱裝置、
開展結(jié)溫預測和設定運行條件[1-7],具有重大的理論意義和應用價值.
商業(yè)IGBT模塊附帶的數(shù)據(jù)手冊中包含F(xiàn)oster熱網(wǎng)絡結(jié)構(gòu)參數(shù),是通過出廠前測試模塊的瞬態(tài)熱阻抗曲線得出的,采用該結(jié)構(gòu)參數(shù)可以對IGBT模塊的結(jié)溫運行規(guī)律進行仿真,但其不具有實際物理意義,不能反映IGBT模塊封裝各層的熱阻與熱容情況,不能有效指導用戶開展熱特性與熱設計研究.而Cauer熱網(wǎng)絡結(jié)構(gòu)與IGBT模塊實際封裝各層存在一一對應關(guān)系,通過該結(jié)構(gòu)可以對IGBT模塊封裝各層溫度運行規(guī)律進行研究,可以有效指導模塊與散熱器開展熱設計研究.因此,文中通過研究Foster與Cauer熱網(wǎng)絡本身的結(jié)構(gòu)屬性及其相互轉(zhuǎn)換方法,建立了一種IGBT模塊封裝結(jié)構(gòu)傳熱模型參數(shù)等效計算與散熱器傳熱模型參數(shù)設計方法.并對IGBT結(jié)溫與封裝各層溫度運行規(guī)律、散熱器傳熱模型參數(shù)與結(jié)溫之間的規(guī)律進行了研究.
1.1 IGBT傳熱模型結(jié)構(gòu)研究
Foster與Cauer熱網(wǎng)絡結(jié)構(gòu)見圖1.由Foster熱網(wǎng)絡結(jié)構(gòu)轉(zhuǎn)化為Cauer熱網(wǎng)絡結(jié)構(gòu)的方法如下.
圖1 IGBT模塊熱網(wǎng)絡結(jié)構(gòu)
Foster熱網(wǎng)絡結(jié)構(gòu)熱阻抗,見式(1).
(1)
對式(1)進行通分求和,得式(2).
(2)
則Z(s)導納,見式(3).
(3)
當s→∞時,
(4)
通過式(4)即可得出Foster熱網(wǎng)絡結(jié)構(gòu)對應的Cauer熱網(wǎng)絡結(jié)構(gòu)中,第一層的熱容,見式(5)[8-9].
(5)
(6)
則Y*(s)阻抗,見式(7).
(7)
進而,當s→∞時,
(8)
通過式(8)即可得出Foster熱網(wǎng)絡結(jié)構(gòu)對應的Cauer熱網(wǎng)絡結(jié)構(gòu)中,第一層的熱阻,見式(9).
(9)
(10)
以2階RC熱網(wǎng)絡模型為例,采用功率幅值500 W,周期10 ms,占空比0.5,仿真時長200 ms,對圖2a)Foster熱網(wǎng)絡結(jié)構(gòu)按照上述方法等效變換為Cauer熱網(wǎng)絡結(jié)構(gòu)(圖2b))的正確性與準確性進行了仿真驗證,仿真結(jié)果與誤差分析,見圖3.
圖2 熱網(wǎng)絡結(jié)構(gòu)等效變換
圖3為Foster與Cauer熱網(wǎng)絡結(jié)構(gòu)等效變換前后仿真結(jié)果與誤差分析,由圖3可知,F(xiàn)oster熱網(wǎng)絡結(jié)構(gòu)仿真結(jié)果與等效變換之后的Cauer熱網(wǎng)絡結(jié)構(gòu)仿真結(jié)果吻合良好,在結(jié)溫波動上升初期,存在微小誤差,可以忽略不計.因此,驗證了Foster與Cauer熱網(wǎng)絡結(jié)構(gòu)等效變換方法的正確性與準確性.
圖3 Foster與Cauer熱網(wǎng)絡結(jié)構(gòu)等效變換前后 仿真結(jié)果與誤差分析
1.2 IGBT封裝結(jié)構(gòu)參數(shù)等效計算研究
對IGBT模塊數(shù)據(jù)手冊或?qū)嶒灉y試得到的瞬態(tài)熱阻抗曲線進行擬合,即可得到其Foster熱網(wǎng)絡結(jié)構(gòu)參數(shù).進而,采用1.1中Foster熱網(wǎng)絡結(jié)構(gòu)轉(zhuǎn)化為Cauer熱網(wǎng)絡結(jié)構(gòu)的方法,即可得到IGBT模塊封裝各物理層或主要物理層的熱阻和熱容,用于IGBT模塊結(jié)溫運行規(guī)律與失效分析研究.
以某型600 V/50 A IGBT模塊為例,采用電流源為IGBT模塊加熱,當芯片結(jié)溫達到恒定后,切斷電流源,此時接通熱敏電參數(shù)測試結(jié)溫用小電流源,實時對芯片結(jié)溫進行測試,所得結(jié)溫測試結(jié)果用于熱阻抗計算[10-11].IGBT模塊瞬態(tài)熱阻抗理論表達式,見式(11).
(11)
式中,IGBT芯片結(jié)溫Tj通過熱敏電參數(shù)法獲取.即在小電流條件下,IGBT芯片結(jié)溫與集射極飽和壓降VCE呈線性變化規(guī)律.實驗用某型600 V/50 A IGBT模塊熱敏電參數(shù)法標定曲線,見圖4a),通過實驗測得的定標曲線即可得到結(jié)溫隨飽和壓降的線性變化規(guī)律,見式(12).IGBT模塊殼溫TC通過布置于芯片底板下方的熱電偶獲取.IGBT模塊損耗P為飽和壓降VCE與導通電流IC的積分.
圖4 熱敏電參數(shù)法標定曲線與瞬態(tài)熱阻抗曲線
Tj=268.7-446.9·VCE
(12)
依據(jù)式(11),采用熱敏電參數(shù)法與相應的數(shù)據(jù)處理方法,即可得到該型IGBT模塊的瞬態(tài)熱阻抗曲線,見圖4b).進而,以Foster熱網(wǎng)絡模型的瞬態(tài)熱阻抗表達式(13)為目標函數(shù)進行曲線擬合,得到Foster熱網(wǎng)絡模型中的熱阻和熱容參數(shù),見表1.
(13)
采用1.1 Foster熱網(wǎng)絡結(jié)構(gòu)向Cauer熱網(wǎng)絡結(jié)構(gòu)的轉(zhuǎn)換方法,將該型IGBT模塊Foster熱網(wǎng)絡結(jié)構(gòu)(見表1)轉(zhuǎn)化為Cauer熱網(wǎng)絡結(jié)構(gòu),見表2.該模型結(jié)構(gòu)可對IGBT實際封裝結(jié)構(gòu)進行表征.
表1 Foster熱網(wǎng)絡模型參數(shù)
表2 Cauer熱網(wǎng)絡模型參數(shù)
該型600 V/50 A IGBT模塊為課題組長期實驗驗證對象,其封裝結(jié)構(gòu)及其參數(shù),已通過協(xié)調(diào)廠家獲取,因此,采用已知結(jié)構(gòu)與參數(shù)對本文的參數(shù)等效計算方法進行了驗證.其封裝為7層結(jié)構(gòu),由于其中幾層時間常數(shù)與相鄰層相比,非常小,可以忽略不計.因此,這些層熱容支路視為開路狀態(tài),而熱阻與相鄰層合并.采用這種方法進行簡化之后的Cauer熱網(wǎng)絡模型為3層結(jié)構(gòu),見圖5.
圖5 某型600 V/50 A IGBT模塊Cauer熱網(wǎng)絡 結(jié)構(gòu)、參數(shù)與簡化過程
圖5中A為該模塊完整7層Cauer熱網(wǎng)絡結(jié)構(gòu)與參數(shù),這些參數(shù)通過物理測量與材料物理屬性獲取,過程復雜,適用于理論與實驗研究階段.B和C分別為7層模型簡化之后的熱網(wǎng)絡結(jié)構(gòu)與參數(shù).通過對比表2與圖5中C模型參數(shù)可以看出,采用Foster熱網(wǎng)絡轉(zhuǎn)化為Cauer熱網(wǎng)絡之后的參數(shù)與IGBT模塊實際物理層參數(shù)吻合較好,驗證了該方法的正確性與準確性.
1.3 IGBT傳熱模型仿真與實驗驗證
針對該型IGBT模塊,采用Foster熱網(wǎng)絡結(jié)構(gòu)轉(zhuǎn)為Cauer熱網(wǎng)絡結(jié)構(gòu)之后的模型結(jié)構(gòu)與參數(shù),如表2與圖5中C模型參數(shù)所示.采用紅外熱像儀測溫法,對轉(zhuǎn)化之后模型的正確性與準確性進行了實驗驗證.進而,基于Saber仿真平臺,對其傳熱特性進行了仿真研究.
采用恒定可調(diào)節(jié)電流源作為打開封裝的IGBT模塊的輸入,實驗過程中對飽和壓降和電流進行積分,積分所得功率作為仿真模型的輸入,并采用紅外熱像儀對IGBT芯片溫度進行實時測試.IGBT器件Cauer熱網(wǎng)絡結(jié)構(gòu)仿真與實驗電路見圖6.
圖6 仿真與實驗電路
恒流源輸出電流50 A,IGBT模塊安裝于水冷散熱器,散熱器足以消耗該模塊全工況范圍內(nèi)的功耗,即IGBT器件殼溫為室溫25 ℃.由于Cauer熱網(wǎng)絡模型計算結(jié)果為芯片結(jié)溫的平均值,因此,實驗過程中,測取A,B,C3點的溫度取平均值.紅外熱像儀測溫,見圖7a),仿真與實驗結(jié)果,見圖7b).
圖7 紅外熱像儀測溫與仿真結(jié)果對比
由圖7b)可知,仿真與實驗結(jié)果基本吻合,驗證了由Foster熱網(wǎng)絡模型轉(zhuǎn)化為Cauer熱網(wǎng)絡模型的正確性.進而,基于該型IGBT器件驗證后的模型,以其典型工況下的功率損耗與頻率作為熱網(wǎng)絡模型的輸入,見表3,對IGBT芯片結(jié)溫及封裝各層溫度運行規(guī)律與作用關(guān)系進行了仿真研究.
表3 典型工況參數(shù)
該型IGBT器件各層在上述仿真條件下結(jié)溫運行規(guī)律,見圖8.
由圖8可知,該模型可對IGBT器件各實際物理層溫度進行仿真.芯片層、DBC層、基板層溫度依次逐漸降低,溫度波動范圍逐漸減小,即所承受的熱應力逐漸減小.因此,該模型計算結(jié)果可為IGBT器件各層材料與結(jié)構(gòu)設計、封裝各層失效分析提供依據(jù).
圖8 IGBT芯片、DBC、基板等效層溫度運行規(guī)律
電力電子裝置設計人員希望通過IGBT模塊廠家提供的數(shù)據(jù)手冊和裝置的工況,以最快捷簡便的方法完成IGBT器件的散熱器設計.散熱器的熱阻、熱容、散熱方式?jīng)Q定了其散熱性能,因此,設計合理的散熱器即對上述參數(shù)進行優(yōu)化.以一種大功率電力電子電能變換裝置常用型號1 700 V/3 600 A IGBT模塊為例,對IGBT模塊散熱器的設計方法進行了研究.
IGBT器件數(shù)據(jù)手冊會提供Foster熱網(wǎng)絡結(jié)構(gòu)的特征值,通過特征值即可計算出該網(wǎng)絡結(jié)構(gòu)下的熱阻和熱容,進而,采用Foster與Cauer熱網(wǎng)絡結(jié)構(gòu)轉(zhuǎn)換方法,將Foster網(wǎng)絡結(jié)構(gòu)轉(zhuǎn)化為Cauer熱網(wǎng)絡結(jié)構(gòu),該型1 700 V/3 600 V IGBT模塊的Cauer熱網(wǎng)絡結(jié)構(gòu)與散熱器參數(shù),見圖9.數(shù)據(jù)手冊提供殼至散熱器熱阻為0.008 7 K/W,殼到散熱器熱容為500 J/K,常用散熱器熱阻為0.002 K/W.通過改變散熱器熱容,即可實現(xiàn)需求工況下的散熱設計.
圖9 熱網(wǎng)絡結(jié)構(gòu)與散熱器參數(shù)
采用Saber仿真平臺對該模塊不同散熱器設計下的結(jié)溫運行規(guī)律進行了仿真研究.仿真針對某型電力電子裝置的典型工況開展,該工況下IGBT器件的損耗情況可等效為,周期3 s,占空比1/6,0~0.1 s損耗功率由0線性增大至4.5 kW,0.1~0.4 s為4.5 kW保持不變,0.4~0.5 s由4.5 kW線性增大至5 kW,隨即裝置停止工作2.5 s.單周期IGBT芯片損耗功率,見圖10.
圖10 IGBT單周期損耗功率
環(huán)境溫度50 ℃,散熱器熱容5 000 J/K,仿真時長600 s時,單周期與多周期結(jié)溫運行規(guī)律,見圖11.
圖11 IGBT模塊單周期與多周期結(jié)溫運行規(guī)律
由圖11a)可知,在0~0.5 s內(nèi),結(jié)溫依據(jù)損耗功率輸入規(guī)律呈逐級增大趨勢,最高溫度達79.7 ℃.在0.5~3 s內(nèi),功率輸入為零,結(jié)溫從79.7 ℃呈指數(shù)規(guī)律下降.由圖11b)可知,在0~200 s仿真時長內(nèi),結(jié)溫由初始溫度逐漸波動上升直至穩(wěn)定.
在散熱器不同熱容設計、仿真時長600 s情況下,IGBT模塊結(jié)溫運行規(guī)律,見圖12與表4.
由表4可知,IGBT芯片最高結(jié)溫與波動范圍隨散熱器熱容的增大逐漸減小.當散熱器熱容為0.5,5,50 J/K時,IGBT芯片結(jié)溫無溫度累積效應.當散熱器熱容為500,5 000 J/K時,IGBT芯片結(jié)溫有溫度累積效應,且結(jié)溫達到穩(wěn)定的時間分別為30.5,222.5 s,即芯片結(jié)溫達到穩(wěn)態(tài)的時間隨熱容的增大而增大.依據(jù)上述方法、IGBT模塊運行結(jié)溫要求與散熱器的散熱方式,可對散熱器進行合理設計.
表4 散熱器不同熱容設計結(jié)溫信息
電力電子裝置及組件熱設計是保證其完成指定功能與可靠運行的重要環(huán)節(jié).本文通過研究Foster熱網(wǎng)絡結(jié)構(gòu)與Cauer熱網(wǎng)絡結(jié)構(gòu)之間的轉(zhuǎn)換方法,建立了一種IGBT模塊封裝結(jié)構(gòu)傳熱模型參數(shù)等效計算方法,并對其各層結(jié)溫運行規(guī)律進行了研究.通過研究散熱器結(jié)構(gòu)參數(shù)與結(jié)溫之間的關(guān)系及規(guī)律,建立了一種散熱器傳熱模型參數(shù)設計方法.為實現(xiàn)散熱設計與可靠性分析奠定了基礎.
[1]ENDER F, HANTOS G, SCHWEITZER D, et al. Thermal characterization of multichip structures[C]. Proc of Therminic,2013(2):319-322.
[2]EVANS P L, CASTELLAZZI A, JOHNSONAND C M. Automated fast extraction of compact thermal models for power electronic modules[J]. IEEE Transactions on Power Electronics,2013,28(10):4791-4802.
[3]WU R, WANG H, MA K, et al. A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations[C]. Proc of the IEEE Energy Conversion Congress and Exposition (ECCE),2014(6):2901-2908.
[4]MA K, BAHMAN A S, BECZKOWSKI S M, et al.Complete loss and thermal model of power semiconductors including device rating information[J]. IEEE Transactions on Power Electronics,2015,30(5):2556-2569.
[5]TANYA K G, BO T, JERRY L, et al. A real-time thermal model for monitoring of power semiconductor devices[J]. IEEE Transactions on Industry Applications,2015,51(4):3361-3367.
[6]KE M, MARCO L, FREDE B, et al. Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics,2015,30(2):590-602.
[7]任磊,韋徵,龔春英,等.電力電子電路功率器件故障特征參數(shù)提取技術(shù)綜述[J].中國電機工程學報,2015,35(12):3089-3101.
[8]ZHAO H L, HYUNGKEUN A, MAHMOUD A, et al. A thermal model for insulated gate bipolar transistor module[J]. IEEE Transactions on Power Electronics,2004,19(4):902-907.
[9]TANYA K G, BO T, JERRY L, et al. A real-time thermal model for monitoring of power semiconductor devices[J]. IEEE Transactions on Industry applications,2015,51(4):3361-3367.
[10]KE M, MARCO L, FREDE B, et al. Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics,2015,30(2):590-602.
[11]KRISTIAN B P, KJELD P. Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J]. IEEE Transactions on Power Electronics,2016,31(2):975-986.
An Equivalent Parameter Calculation Method of IGBT Thermal Model
LIU Binli LUO Yifei WANG Bo MENG Qingyun ZHU Junjie
(NationalKeyLaboratoryofScienceandTechnologyonVesselIntegratedPowerSystem,NavalUniversityofEngineering,Wuhan430033,China)
Considering the power electronic equipment applications demanding for IGBT thermal characterization and design, an equivalent parameter calculation method of IGBT thermal model is established and verified experimentally, based on the properties and transformation methods between Foster and Cauer thermal network. The thermal characterization is studied, thus the temperature operation rule and interaction of each package layer are obtained. A design method of radiator thermal model is established, thus the laws of maximum junction temperature and fluctuation range with radiator capacitor are found.
structure of thermal network; equivalent calculation; operation rule of junction temperature; thermal design
2016-12-15
*國家自然科學基金項目(51490681、51507185)、國家重點基礎研究發(fā)展計劃(973計劃)(2015CB251004)資助
TN607
10.3963/j.issn.2095-3844.2017.01.008
劉賓禮(1984—):男,博士,助理研究員,主要研究領(lǐng)域為IGBT器件建模、健康狀態(tài)監(jiān)測與可靠性研究