韓小渠, 劉 明, 嚴俊杰, 種道彤, 劉繼平, 肖 峰
(1. 西安交通大學 動力工程多相流國家重點實驗室, 西安 710049; 2. 東北電力設計院, 長春 130021)
韓小渠1, 劉 明1, 嚴俊杰1, 種道彤1, 劉繼平1, 肖 峰2
(1. 西安交通大學 動力工程多相流國家重點實驗室, 西安 710049; 2. 東北電力設計院, 長春 130021)
基于風扇磨倉儲式制粉系統(tǒng)的褐煤煙氣預干燥發(fā)電系統(tǒng)建立了全廠分析模型,從熱力學第二定律角度探究該系統(tǒng)的節(jié)能原理.以某600 MW超臨界機組為例,對各級子系統(tǒng)及主要設備展開分析.結果表明:褐煤煙氣預干燥發(fā)電系統(tǒng)的全廠效率相對常規(guī)褐煤發(fā)電系統(tǒng)可提高3.42%;采用倉儲式制粉系統(tǒng)將干燥乏氣與煤粉分離,杜絕了水分在爐內(nèi)的循環(huán),提高了燃燒溫度,有效地降低了燃燒過程的損失,提高了鍋爐效率;褐煤煙氣預干燥系統(tǒng)的效率只有20.20%,不完善程度較大,通過優(yōu)化低溫爐煙抽取點至省煤器出口,可減小干燥介質混合過程的損失,從而使全廠效率提高0.33%.
褐煤; 煙氣預干燥; 節(jié)能;分析; 系統(tǒng)優(yōu)化
我國褐煤礦藏資源豐富,目前已探明儲量達1 300 億t,占全國煤炭總儲量的13%左右.隨著我國動力用煤供需矛盾的加劇,褐煤將逐漸成為我國火電機組的主要燃料之一.但是褐煤中的水分含量高、熱值低,導致直接燃燒褐煤的鍋爐排煙熱損失大,輔機耗電量高,發(fā)電效率相比煙煤發(fā)電系統(tǒng)普遍偏低.對褐煤進行預干燥,降低入爐煤中的水分,提升其熱值,可以顯著提高機組的發(fā)電效率.因此,國內(nèi)外學者針對褐煤干燥技術進行了廣泛研究[1],為褐煤預干燥發(fā)電系統(tǒng)的實現(xiàn)奠定了基礎,同時對褐煤預干燥發(fā)電系統(tǒng)的節(jié)能潛力進行了深入論證[2-4],認為褐煤預干燥發(fā)電系統(tǒng)將成為褐煤高效發(fā)電的有效手段.基于風扇磨倉儲式制粉系統(tǒng)的褐煤煙氣預干燥發(fā)電系統(tǒng)(Flue Gas Pre-dried Lignite-fired Power System,F(xiàn)PLPS),既發(fā)揮了風扇磨煙氣干燥技術較為成熟的優(yōu)勢,又將開式制粉系統(tǒng)與高效水回收技術相結合,通過乏氣深度冷卻,回收水分和相應的汽化潛熱,這不僅提高了褐煤鍋爐效率,更實現(xiàn)了“煤中取水”.對于FPLPS的熱經(jīng)濟性和水回收效益,Ma等[5-6]進行了理論分析和討論,筆者對其系統(tǒng)耦合變工況能耗特性展開了仿真研究[7-9].
但是,以前的研究都是基于熱力學第一定律,僅從“量”的角度分析了褐煤煙氣預干燥發(fā)電系統(tǒng)在設計工況和變工況條件下的節(jié)能潛力,尚沒有從“質”的層次揭示其節(jié)能本質和系統(tǒng)優(yōu)化方向.而分析方法[10]是定量剖析系統(tǒng)節(jié)能本質、深入發(fā)掘系統(tǒng)節(jié)能潛力的有力工具,已有學者采用該方法進行了大量的熱力系統(tǒng)優(yōu)化研究.如Ganapathy等[11]對褐煤發(fā)電機組進行了分析,發(fā)現(xiàn)系統(tǒng)的損失中60%發(fā)生于燃燒過程.Xiong等[12]對富氧燃燒鍋爐進行了分析,發(fā)現(xiàn)鍋爐效率提高的原因在于爐膛中不可逆損失的下降.Butcher等[13]對余熱鍋爐乏氣熱能回收系統(tǒng)進行了分析,討論了乏氣參數(shù)變化對系統(tǒng)效率的影響.孟翔宇等[14]對太陽能熱泵干燥系統(tǒng)進行了分析,給出了提高系統(tǒng)效率的措施.陸萬鵬等[15]對電站鍋爐排煙余熱能級提升系統(tǒng)進行了分析.呂國強等[16]對300 MW亞臨界燃煤機組、劉強等[17]對600 MW超臨界機組、蔡小燕等[18]對1 000 MW超超臨界機組分別進行了分析,指出了熱力系統(tǒng)節(jié)能優(yōu)化的方向.
褐煤煙氣預干燥發(fā)電系統(tǒng)的原理如圖1所示.其主要特點有:(1) 在風扇磨煤機中利用高溫煙氣的熱量脫除原煤中的水分,從而提高褐煤的能量密度;(2) 通過風扇磨煤機與倉儲式制粉系統(tǒng)的有機結合,將干燥乏氣與煤粉分離,使干燥乏氣不再進入爐膛從而降低爐內(nèi)煙氣量和水分含量,降低鍋爐排煙溫度,提高鍋爐效率;(3) 干燥乏氣用于預熱鍋爐送風,彌補抽取爐煙造成的空氣加熱不足.該系統(tǒng)鍋爐為塔式鍋爐,爐煙抽取點位于末級過熱器上方;省煤器分兩級,中間布置脫硝裝置以保證其入口煙溫.
(1)
式中:ew為機械,kJ/kg;w為機械功,kJ/kg.
(2)
式中:eq為熱量,kJ/kg;q為熱量,kJ/kg;T為系統(tǒng)溫度,K;T0為基準溫度,K.
(3)
式中:ex為比,kJ/kg;h為焓值,kJ/kg;h0為基準狀態(tài)焓值,kJ/kg;s為熵值,kJ/(kg·K);s0為基準狀態(tài)熵值,kJ/(kg·K).
相應能質系數(shù)λ的定義為:
(4)
取基準狀態(tài)p0=101.325 kPa,T0=298.15 K.
(5)
式中:ef為燃料化學,kJ/kg;Qgr,ar為燃料收到基高位發(fā)熱量,kJ/kg.
圖1 基于風扇磨倉儲式制粉系統(tǒng)的褐煤煙氣預干燥發(fā)電系統(tǒng)示意圖
(6)
(7)
(8)
(9)
(10)
式中:qm,f為原煤質量流量,kg/s.
(11)
圖2 鍋爐系統(tǒng)各項損失
圖3 風扇磨干燥系統(tǒng)分析模型
(12)
全廠系統(tǒng)的熱效率ηtot為
(13)
式中:Qnet,ar為燃料收到基低位發(fā)熱量,kJ/kg.
(14)
3.1 設計工況熱力參數(shù)
3.1.1 褐煤煤質參數(shù)
伊敏褐煤全水分達39.5%,經(jīng)過煙氣干燥后水分降至9.82%.原煤和干燥煤煤質參數(shù)如表1所示.由表1可知,干燥前后發(fā)熱量均有較大幅度提升.另外,由于水分的蒸發(fā)在煙氣預干燥系統(tǒng)而不在爐膛內(nèi)進行,因此文中以高位發(fā)熱量為基準進行燃料計算(公式5).
表1 原煤和干燥煤煤質參數(shù)
3.1.2 FPLPS節(jié)能效果
前文所述FPLPS與CLPS均按照600 MW超臨界濕冷機組設計,采用超臨界凝汽式汽輪機(N600-24.2/566/566),燃用伊敏褐煤.通過GSE仿真計算,得到2種系統(tǒng)主要經(jīng)濟性參數(shù)的對比結果,參見文獻[9].其中,表2所列為FPLPS主要工作點熱力參數(shù)的仿真結果.由表2可知,與CLPS相比,F(xiàn)PLPS具有顯著的節(jié)能優(yōu)勢:在干燥乏氣廢熱僅用于預熱鍋爐送風時,系統(tǒng)熱效率和效率可提高3.42%(相對值,如圖4所示),對應節(jié)煤量為9.41 g/(kW·h).
圖5給出了將系統(tǒng)劃分為鍋爐和汽輪機2個主要子系統(tǒng)后的熱損失和損失分布的對比.可見,熱量法和方法的全廠結果一致,但是損失的部位不同.熱量法分析表明2種系統(tǒng)主要損失在于汽輪機側(凝汽器冷源損失);分析方法則顯示2種系統(tǒng)主要損失在于鍋爐中(由于燃燒過程和傳熱過程的不可逆性導致).FPLPS的節(jié)能效果主要取決于鍋爐效率的提升,其中鍋爐熱損失從7.43%下降至4.27%,損失從54.51%下降至52.96%.
表2 FPLPS主要熱力參數(shù)仿真結果
圖4 FPLPS與CLPS效率對比
(a) 熱損失
(b) 損失
圖6 FPLPS與CLPS各項損系數(shù)的對比
汽輪機系統(tǒng)的主要參數(shù)如表3所示.
表3 汽輪機系統(tǒng)主要參數(shù)
表4 汽輪機系統(tǒng)各項損失計算結果1)
Tab.4 Calculation results of various exergy losses in different turbine subsystems
單元E·D,κ/MWσκ/%τκ/%εκ/%汽缸47.6043.086.7092.65加熱器11.9310.801.6892.84凝汽器25.5123.093.593.28發(fā)電機9.118.241.2898.50給水泵4.413.990.6280.76除氧器3.192.890.4587.55小汽輪機2.662.400.3785.64管道6.085.510.8699.14總計110.49100.0015.5584.45
注:1)系統(tǒng)輸入值W.
圖7 煙氣預干燥系統(tǒng)中各項質量、能量和流
圖8 煙氣預干燥系統(tǒng)的各項損率
3.3.1 褐煤預干燥過程能質匹配分析
褐煤預干燥過程的能質匹配是系統(tǒng)優(yōu)化的方向.不同介質能質系數(shù)對比如表5所示.
褐煤直接燃燒時水分在爐內(nèi)蒸發(fā),消耗了高品位的燃料化學能(λ=1).而FPLPS中水分在干燥系統(tǒng)內(nèi)蒸發(fā),消耗的是品位相對較低的煙氣熱能(λ=0.56).因此,雖然單位水分蒸發(fā)消耗的熱量相同,但是能量品位卻是截然不同的.且高溫煙氣的品位仍然較高,如能采用能質系數(shù)更低的介質作為干燥熱源則可以獲得更高的發(fā)電效率,如采用汽輪機低壓抽汽作為干燥熱源(λ=0.27)[21].
表5 不同介質的能質系數(shù)對比
3.3.2 褐煤預干燥過程優(yōu)化分析
圖9 低溫爐煙抽取點變化對系統(tǒng)效率的影響
圖10 干燥介質混合過程的圖像化損分析
(1) 與常規(guī)褐煤發(fā)電系統(tǒng)相比,基于風扇磨倉儲式制粉系統(tǒng)的褐煤煙氣預干燥發(fā)電系統(tǒng)具有明顯的節(jié)能優(yōu)勢:設計工況下系統(tǒng)效率相對提高了3.42%,對應節(jié)煤量為9.41 g/(kW·h).FPLPS燃燒過程損下降是其性能提升的主要原因.入爐水分降低使得燃燒溫度提高是燃燒過程損失下降的根本原因,而采用直吹式系統(tǒng)將乏氣引入爐膛不利于鍋爐效率的提高.
[1] NIKOLOPOULOS N, VIOLIDAKIS I, KARAMPINIS E, et al. Report on comparison among current industrial scale lignite drying technologies (a critical review of current technologies)[J]. Fuel, 2015, 155: 86-114.
[2] 郭曉克, 肖峰, 嚴俊杰, 等. 高效褐煤發(fā)電系統(tǒng)研究[J]. 中國電機工程學報, 2011, 31(26): 23-31.
GUO Xiaoke, XIAO Feng, YAN Junjie, et al. Study on efficient lignite-fired power system[J]. Proceedings of the CSEE, 2011, 31(26): 23-31.
[3] AGRANIOTIS M, KOUMANAKOS A, DOUKELIS A, et al. Investigation of technical and economic aspects of pre-dried lignite utilisation in a modern lignite power plant towards zero CO2emissions[J]. Energy, 2012, 45(1): 134-141.
[4] HU Shangjian, MAN Chengbo, GAO Xuezhong, et al. Energy analysis of low-rank coal pre-drying power generation systems[J]. Drying Technology, 2013, 31(11): 1194-1205.
[5] MA Youfu, YUAN Yichao, JIN Jing, et al. An environment friendly and efficient lignite-fired power generation process based on a boiler with an open pulverizing system and the recovery of water from mill-exhaust[J]. Energy, 2013, 59: 105-115.
[6] 馬有福, 郭曉克, 肖峰, 等. 基于爐煙干燥及水回收風扇磨倉儲式制粉系統(tǒng)的高效褐煤發(fā)電技術[J]. 中國電機工程學報, 2013, 33(5): 13-20.
MA Youfu, GUO Xiaoke, XIAO Feng, et al. Efficient lignite-fired power generation technology based on open pulverizing systems with flue gas drying fan mill and recovery of heat and water from pulverizing exhaust[J]. Proceedings of the CSEE, 2013, 33(5): 13-20.
[7] HAN Xiaoqu, LIU Ming, WANG Jinshi, et al. Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery-performances under variable power loads coupled with off-design parameters[J]. Energy, 2014, 76: 406-418.
[8] HAN Xiaoqu, LIU Ming, ZHAI Mengxu, et al. Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions[J]. Energy, 2015, 90: 1743-1758.
[9] 韓小渠, 嚴俊杰, 穆祺偉, 等. 褐煤煙氣預干燥發(fā)電系統(tǒng)變工況特性的仿真研究[J]. 西安交通大學學報, 2015, 49(1): 27-33.
HAN Xiaoqu, YAN Junjie, MU Qiwei, et al. Simulation for off-design performances of flue gas pre-dried lignite-fired power system[J]. Journal of Xi'an Jiaotong University, 2015, 49(1): 27-33.
[10] 陳大燮. 動力循環(huán)分析[M]. 上海: 上??茖W技術出版社, 1981.
[11] GANAPATHY T, ALAGUMURTHI N, GAKK-HAR R P, et al. Exergy analysis of operating lignite fired thermal power plant[J]. Journal of Engineering Science and Technology Review, 2009, 2(1): 123-130.
[12] XIONG Jie, ZHAO Haibo, ZHENG Chuguang. Exergy analysis of a 600 MWeoxy-combustion pulverized-coal-fired power plant[J]. Energy & Fuels, 2011, 25(8): 3854-3864.
[13] BUTCHER C J, REDDY B V. Second law analysis of a waste heat recovery based power generation system[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2355-2363.
[14] 孟翔宇, 楊福勝, 鄧建強, 等. 新型太陽能熱泵干燥系統(tǒng)的設計與理論研究[J]. 太陽能學報, 2010, 31(5): 568-574.
MENG Xiangyu, YANG Fusheng, DENG Jianqiang, et al. Design and theoretical study of a novel solar heat pump drying system[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 568-574.
LU Wanpeng, SUN Fengzhong, SHI Yuetao. Exergy analysis of advanced boiler flue gas heat recovery systems in power plants[J]. Proceedings of the CSEE, 2012, 32(23): 9-14.
Lü Guoqiang, WANG Hua, MA Wenhui, et al. Exergy analysis on thermal system of a 300 MW unit in Xiaolongtan power plant[J]. Journal of Chinese Society of Power Engineering, 2011, 31(2): 85-89, 108.
LIU Qiang, DUAN Yuanyuan. Exergy analysis for thermal power system of a 600 MW supercritical power unit[J]. Proceedings of the CSEE, 2010, 30(32): 8-12.
CAI Xiaoyan, ZHANG Yanping, LI Yu, et al. Design and exergy analysis on thermodynamic system of a 700 ℃ ultra supercritical coal-fired power generating set[J]. Journal of Chinese Society of Power Engineering, 2012, 32(12): 971-978.
[20] DINCER I, SAHIN A Z. A new model for thermodynamic analysis of a drying process[J]. International Journal of Heat and Mass Transfer, 2004, 47(4): 645-652.
[21] LIU Ming, YAN Junjie, CHONG Daotong, et al. Thermodynamic analysis of pre-drying methods for pre-dried lignite-fired power plant[J]. Energy, 2013, 49: 107-118.
[22] JIN H. Development of thermal power systems based on graphical exergy analysis[D]. Tokyo, Japan: Tokyo Institute of Technology, 1994.
Exergy Analysis and System Optimization of a Flue Gas Pre-dried Lignite-fired Power System Based on Fan Mill Dryer and Open Pulverizing System
HANXiaoqu1,LIUMing1,YANJunjie1,CHONGDaotong1,LIUJiping1,XIAOFeng2
(1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University,Xi'an 710049, China; 2. Northeast Electric Power Design Institute, Changchun 130021, China)
An exergy analysis model was developed for the flue gas pre-dried lignite-fired power system (FPLPS) based on fan mill dryer and open pulverizing system, so as to explore its energy-saving mechanism from the perspective of the second law of thermodynamics, and to perform exergy analysis for the subsystems and main components of a 600 MW supercritical unit. Results indicate that the efficiency of the plant with FPLPS is relatively 3.42% higher than that with conventional lignite-fired power system (CLPS). The improvement of plant efficiency originates from the replacement of high-grade chemical energy by lower-grade flue gas as the heat source for moisture evaporation, during which the exergy destruction is reduced accordingly. Moreover, the dryer exhaust gas is separated from the coal powder in the open pulverizing system, which prevents the evaporated moisture from recycling in the furnace, thus raising the combustion temperature, reducing the inefficiency of the combustion process and increasing the boiler efficiency. However, the dryer exergy efficiency is only 20.20% due to high irreversibility. The retrofitting option by extracting cold flue gas from economizer outlet is estimated to increase the plant efficiency relatively by 0.33%, benefiting from a reduction of the exergy destruction in the mixing of drying agents.
lignite; flue gas pre-drying; energy-saving; exergy analysis; system optimization
2016-04-21
2016-05-31
國家自然科學基金資助項目(51406152,51436006);國家重點基礎研究發(fā)展規(guī)劃資助項目(2015CB251504);國家留學基金委建設高水平大學公派研究生資助項目(201506280074)
韓小渠(1989-),男,江蘇南京人,博士研究生,研究方向為褐煤預干燥發(fā)電系統(tǒng)仿真及優(yōu)化研究.電話(Tel.):029-82668072;E-mail:hanxiaoqu1989@stu.xjtu.edu.cn.
1674-7607(2017)02-0148-08
TM621
A 學科分類號:470.10