董博,王保偉,遲春梅,徐夢,王超
(天津大學(xué)化工學(xué)院,綠色合成與轉(zhuǎn)化教育部重點(diǎn)實(shí)驗(yàn)室,天津300072)
添加劑對等離子體降解亞甲基藍(lán)的影響
董博,王保偉,遲春梅,徐夢,王超
(天津大學(xué)化工學(xué)院,綠色合成與轉(zhuǎn)化教育部重點(diǎn)實(shí)驗(yàn)室,天津300072)
隨著工業(yè)的發(fā)展,環(huán)境問題日趨嚴(yán)重,而水污染作為環(huán)境問題之一受到越來越多的關(guān)注。有機(jī)污水具有較高的生物毒性,難以降解,成為近年來亟待解決的問題之一。介質(zhì)阻擋放電(DBD)等離子體可以引發(fā)多種物理化學(xué)效應(yīng),集臭氧氧化、紫外光降解、熱解、自由基氧化于一體,為有機(jī)污水的處理提供了新途徑。本文采用自主設(shè)計(jì)的雙室介質(zhì)阻擋放電反應(yīng)器降解亞甲基藍(lán)(MB)溶液,研究了添加劑對等離子體降解MB過程的影響。在相同的實(shí)驗(yàn)條件下,添加NaCl、Na2SO4、NaNO3對等離子體降解MB過程影響很小,添加NaHCO3、Na2CO3會削弱等離子體對MB的降解作用,而添加Na3PO4、NaNO2對等離子體降解MB過程有嚴(yán)重的抑制作用,添加Na3PO4、NaNO2后,在相同實(shí)驗(yàn)條件下MB的降解率僅為無添加劑時的1/3?!H消除劑(叔丁醇)的加入會抑制MB的降解,而·H消除劑(四氯化碳)對MB降解的促進(jìn)作用并不明顯。Fe2+對等離子降解MB的促進(jìn)作用有限。
廢水;廢物處理;降解;等離子體;陰離子
隨工業(yè)的發(fā)展,環(huán)境污染日益加重,水污染成為亟待解決的問題之一??股?、農(nóng)藥和染料等的使用,產(chǎn)生了具有較高生物毒性、難處理的有機(jī)污水,成為污水處理的難題[1-2]。水中的難降解有機(jī)物會致癌、導(dǎo)致內(nèi)分泌紊亂,嚴(yán)重威脅人類和動植物的健康[3]。傳統(tǒng)的水處理方法效率低、成本高、存在二次污染、處理效果較差。
等離子體通常是由放電產(chǎn)生的,放電可引發(fā)多種物理和化學(xué)效應(yīng)。形成氧化性粒子(H2O2、O3、·OH、·O等)、高能電子、正負(fù)離子等,同時伴隨紫外光輻射、沖擊波、液電空化等物理效應(yīng)[4-6]。等離子體技術(shù)集臭氧氧化、紫外光光解、熱解、自由基氧化的優(yōu)點(diǎn)于一身,幾乎可無選擇性的降解污染物,且無二次污染。根據(jù)放電形式不同等離子體分為:電暈放電等離子體[5,7-8]、介質(zhì)阻擋放電(DBD)等離子體[9-22]、輝光放電等離子體[23]、滑動弧光放電等離子體[24-25]和弧光放電等離子體[26-27]等。DBD是在放電空間中插入絕緣介質(zhì)的一種放電形式,阻擋介質(zhì)限制了放電過程中電流的無限延長,具有電子密度高、放電均勻穩(wěn)定的特點(diǎn)[28]。
在印染工業(yè)中,超過10%的染料都被釋放到溶液中,形成高色度的有機(jī)污水,威脅人類的健康[29]。亞甲基藍(lán)(MB)是一種雜環(huán)芳香染料,廣泛用于造紙、印染和生物染色等領(lǐng)域。無機(jī)鹽的加入不僅會改變?nèi)芤旱碾妼?dǎo)率,不同陰離子的無機(jī)鹽會與放電產(chǎn)生的氧化性粒子尤其是·OH反應(yīng),削弱等離子體對有機(jī)物的降解效果,而不同陰離子對等離子體降解有機(jī)污水的影響卻鮮有報(bào)道。本文選擇MB溶液作為模擬有機(jī)污水,采用自主設(shè)計(jì)的雙室DBD反應(yīng)器處理MB溶液,在氧氣曝氣條件下,研究不同陰離子的無機(jī)鹽、·OH自由基消除劑和促進(jìn)劑、Fe2+對等離子體降解MB過程的影響。
雙室DBD等離子體反應(yīng)器如圖1所示,石英反應(yīng)器外徑140mm,內(nèi)徑134mm,高度100mm,底板厚2mm,內(nèi)部有4個石英柱支撐曝氣板。反應(yīng)器壁上有兩個進(jìn)氣管,氣體由進(jìn)氣管進(jìn)入反應(yīng)器。用有機(jī)玻璃制成的蓋子將反應(yīng)空間與外界分離。兩電極由直徑90mm的不銹鋼板制成,分別與交流電源(15kV/100V,50Hz)連接。放電處理前,先通O2,加入MB溶液后蓋上蓋子,通氣30min(氣體出口用色譜檢測不到N2)后開始放電。當(dāng)兩電極之間施加高壓電時,放電在兩電極間同時發(fā)生,下反應(yīng)室無液體發(fā)生氣相放電,產(chǎn)生活性氣體,液體在上反應(yīng)室,上反應(yīng)室發(fā)生氣液相混合放電與下反應(yīng)室產(chǎn)生的活性氣體協(xié)同降解溶液中的MB分子。文中實(shí)驗(yàn)條件均為上、下反應(yīng)室高度為7.5mm、7mm,曝氣板厚度3mm,O2流量80mL/min,MB溶液濃度100mg/L,體積50mL,輸入功率12.5W。
在低濃度下MB的濃度和吸光度成正比,用紫外可見分光光度計(jì)(L5S,上海儀電分析儀器有限公司)在MB溶液的最大吸收波長λ=664nm處測量反應(yīng)前后MB溶液的吸光度A0、At,并用式(1)計(jì)算MB的降解率(DE)。
圖1 雙室DBD反應(yīng)器示意圖
H2O2濃度用鈦鹽分光光度法測量[30-31],其原理是利用在酸性介質(zhì)中H2O2與Ti4+反應(yīng)生成橙色絡(luò)合物,見反應(yīng)式(2),其最大吸收波長為λ=410nm,且H2O2濃度與絡(luò)合物吸光度在低濃度范圍內(nèi)符合朗伯比爾定律,該方法的檢測極限是1.5×10–4mol/L。
MB(AR,科密歐),其余所有試劑均為AR或更高純度,由光復(fù)科技發(fā)展有限公司生產(chǎn)。溶液pH、電導(dǎo)率分別用pH計(jì)(PHS-3C,雷磁)、電導(dǎo)率儀(DDS-11C,雷磁)測量。
2.1 電導(dǎo)率對等離子體降解MB的影響
加入無機(jī)鹽后溶液的電導(dǎo)率升高,造成強(qiáng)電場無法形成,活性粒子數(shù)量下降,使MB降解率下降。用Na2SO4調(diào)節(jié)100mg/L的MB溶液的電導(dǎo)率至68μS/cm(未添加Na2SO4)、524μS/cm、1114μS/cm,分別處理上述溶液。
圖2可知,DBD等離子體處理無添加劑的MB溶液10min,MB的降解率可達(dá)95%,但電導(dǎo)率從68 μS/cm升高到524μS/cm時MB的降解率下降明顯,電導(dǎo)率繼續(xù)增大至1114μS/cm時降解率下降緩慢。電導(dǎo)率過高容易使局部放電增強(qiáng)、放電不穩(wěn)定。因此,選擇初始電導(dǎo)率為500μS/cm±20μS/cm研究不同陰離子對等離子體降解MB過程的影響。
圖2 初始電導(dǎo)率對DBD等離子體降解亞甲基藍(lán)的影響
2.2 陰離子對等離子體降解MB的影響
用陰離子不同的鈉鹽NaCl、Na2SO4、NaNO3、NaNO2、Na2CO3、NaHCO3、Na3PO4作添加劑,調(diào)節(jié)MB溶液的電導(dǎo)率至500μS/cm±20μS/cm(溶液的pH見表1),處理上述溶液。
如圖3所示,在反應(yīng)初期,無添加劑的MB溶液降解率較大,隨反應(yīng)進(jìn)行,無添加劑的MB溶液的降解率與添加NaCl、Na2SO4、NaNO3的MB溶液的降解率接近,DBD處理20min后降解率均達(dá)到98.0%以上。而添加NaNO2、Na3PO4的MB溶液降解率明顯降低(DBD處理20min降解率分別為58.7%和57.8%),添加Na2CO3和NaHCO3的MB溶液的降解率(處理3min降解率分別為53.6%、45.6%)與無添加劑的MB溶液的降解率(處理3min降解率為83.3%)相比也有所下降。
表1 添加不同鈉鹽后MB溶液的pH
圖3 陰離子對DBD等離子體降解亞甲基藍(lán)的影響
NO2–、CO32–、HCO3–和PO43–是常見的·OH消除劑,其與·OH迅速反應(yīng)生成氧化性較弱、選擇性較高的活性粒子,這些粒子與MB分子反應(yīng)活性較差使MB的降解率下降。不同陰離子與·OH反應(yīng)的速率常數(shù)和生成粒子的氧化勢見表2。
表2 氧化劑的標(biāo)準(zhǔn)氧化勢及反應(yīng)速率常數(shù)[32-33]
在強(qiáng)酸性條件下·OH和HSO4–反應(yīng)生成氧化性與·OH相近的SO4–·[反應(yīng)式(3)][32]。但含Na2SO4的MB溶液pH為5.86,為弱酸性,故Na2SO4僅以SO42–形式存在。同樣,·OH并不易與NO3–反應(yīng),NO3–的加入只是改變了電導(dǎo)率。Cl–是一種較弱的自由基消除劑,Cl–與·OH反應(yīng)生成氧化性稍弱于·OH的HOCl–·,Cl2–·[反應(yīng)式(4)~式(6)][34-35],對·OH的氧化能力的削弱作用很小。因此,Cl–、SO42–、NO3–的加入僅削弱電場強(qiáng)度,對MB的降解率影響很小。
雖然加入CO32–、HCO3–后MB溶液的pH發(fā)生不同變化,但它們對等離子體降解MB的影響幾乎相同,這說明加入無機(jī)鹽引起溶液pH變化并不是造成MB降解效果不同的主要原因。當(dāng)CO32–和HCO3–出現(xiàn)在MB溶液中時,它們與放電產(chǎn)生的·OH自由基快速反應(yīng)生成CO3–·[反應(yīng)式(7)、式(8)]。CO3–·的氧化勢(1.57V)與·OH(2.80V)相比小得多,CO3–·只能選擇性氧化部分有機(jī)物,使MB的降解率下降。但CO3–·也具有一定的氧化性,因此MB的降解率下降不太明顯。在降解苯胺的實(shí)驗(yàn)中[36],加入CO32–也使苯胺的降解率降低。
NO2–是強(qiáng)還原劑,可與放電系統(tǒng)中的大部分氧化物反應(yīng),最終消除反應(yīng)系統(tǒng)中的氧化性較強(qiáng)的活性物質(zhì)生成氧化性較弱的NO3–[37]。NO2–與H2O2反應(yīng)生成HONOO[反應(yīng)式(9)],70%的HONOO(2.41V)通過反應(yīng)式(10)異構(gòu)化成NO3–。NO2–與·OH反應(yīng)直接生成·NO2[反應(yīng)式(11),1.03V],氧化勢弱于O2,而MB的氧化勢與O2相當(dāng)[38],生成的·NO2并不能降解MB分子。NO2–對等離子體中氧化物的消除作用很大,導(dǎo)致MB的降解率下降最明顯。磷酸鹽(如PO43–、HPO42–、H2PO4–)也是一類常見的自由基消除劑,PO43–與·OH自由基反應(yīng)的方程如式(12),反應(yīng)生成的·PO42–自由基的氧化勢較低,對·OH自由基消除作用較明顯,且PO43–不僅可與·OH反應(yīng),還能與H2O2反應(yīng)[39],使MB的降解率下降較多。MB的降解效率下降。放電處理10min,t-BuOH的濃度從100mg/L增加到150mg/L時MB的降解率從82%下降到51%,而t-BuOH濃度為0和200mg/L時MB的降解率分別為87%和45%。由此可見,當(dāng)叔丁醇濃度為150mg/L對·OH自由基的消除作用明顯,繼續(xù)增加t-BuOH的濃度,對MB降解率的影響減弱。這是因?yàn)槿芤褐小H的濃度為定值,當(dāng)加入t-BuOH足夠消除全部·OH時,繼續(xù)添加t-BuOH對等離子體降解MB過程無明顯的影響。HU等[46]用DBD等離子體降解殺蟲劑(果樂)時也得到了相似的結(jié)果。
2.3 有機(jī)自由基消除劑的影響
醇類(如叔丁醇、異丙醇、正丁醇)能與·OH發(fā)生特定的反應(yīng)[40-42],快速消除溶液中·OH的同時不與溶液中其他活性粒子反應(yīng),被廣泛地用于證明·OH的存在。CCl4能夠消除溶液中的·H,阻止·OH與·H的復(fù)合,增加溶液中·OH的濃度,可增強(qiáng)等離子的氧化性[42-43]。
叔丁醇(t-BuOH)是一種常見的·OH自由基消除劑,被廣泛的用于證明等離子體中·OH的存在[42,44],它可以與·OH以6.0×108mol/(L·s)的速度迅速反應(yīng),同時不與系統(tǒng)中的O3等活性物質(zhì)反應(yīng)[45]。在溶液中加入t-BuOH,使其在MB溶液中的濃度分別為100mg/L、150mg/L、200mg/L,等離子體處理該溶液。如圖4所示,t-BuOH(150mg/L)對分光光度法測量MB濃度無影響;加入t-BuOH后,MB溶液的降解率明顯下降,隨t-BuOH濃度增加,
圖4 叔丁醇對DBD等離子體降解亞甲基藍(lán)的影響
無論何種氣體作工作氣體,高能電子攻擊水分子都能產(chǎn)生·OH,一種途徑是電子直接分解水分子[反應(yīng)式(13)],另一種途徑是水的離子化[反應(yīng)式(14)、式(15)]。直接分解水分子需要6.4eV的能量,而離子化水分子需要12.6eV的能量,因此電子直接分解水分子更容易發(fā)生。在氧氣曝氣條件下·OH還可由含氧活性粒子ROS(如O、H2O2、O3)與H2O反應(yīng)獲得式(16)~式(18)。反應(yīng)式(13)是·OH產(chǎn)生的重要途徑,但該反應(yīng)同時也產(chǎn)生了還原性的·H,它容易與·OH重新結(jié)合使·OH淬滅。加入CCl4可以快速的消除·H而對溶液中的其他自由基不產(chǎn)生影響[43]。
如圖5所示,加入CCl4能提高M(jìn)B的降解率,但提高程度有限。RONG等[43]在用He氣DBD等離子體降解三烯丙基異氰酸酯(TAIC)時,單獨(dú)加入CCl4可以顯著提高TAIC的降解率,反應(yīng)速率提高了27%,能量效率提高了32%。本文實(shí)驗(yàn)結(jié)果與RONG等的結(jié)果差別的主要原因是,RONG等采用He曝氣,在He作氣源時,不產(chǎn)生O、O3等,·OH自由基主要來源于反應(yīng)式(13),加入H·消除劑(CCl4)后,·OH與H·重新組合淬滅的概率降低,促進(jìn)了·OH與有機(jī)物碰撞。而在本研究中,在雙室DBD反應(yīng)器中O2等離子體產(chǎn)生大量的ROS(如O、H2O2、O3等),·OH自由基主要來源于反應(yīng)式(16)~式(18),CCl4加入導(dǎo)致的·OH濃度升高作用很小,因此CCl4的加入并未能明顯地提高M(jìn)B的降解率。
圖5 CCl4對DBD等離子體降解亞甲基藍(lán)的影響
2.4 亞鐵離子的影響
O2放電產(chǎn)生的等離子中含有H2O2,H2O2與Fe2+在酸性條件下會發(fā)生Fenton反應(yīng)[47-49],反應(yīng)式如式(19)~式(23)。
Fenton反應(yīng)生成的·OH具有高氧化勢(2.80V),·OH的濃度增加可加強(qiáng)低溫等離子體對有機(jī)污染物的降解效果[7]。H2O2與Fe2+的濃度比,溶液的pH、Fe2+的濃度都會對有機(jī)物的降解效率產(chǎn)生影響。DUTTA等[48]用Fenton反應(yīng)降解MB,最適宜的pH為2~3,F(xiàn)enton試劑最適宜的比例為m(Fe2+)∶m(H2O2)=2∶15。放電過程中,液相原位產(chǎn)生H2O2,加入Fe2+可加速H2O2分解為氧化勢更高的·OH[式(19)],從而提高M(jìn)B的降解率。
MB溶液為弱酸性,且隨著反應(yīng)進(jìn)行溶液的pH下降,而Fenton反應(yīng)的適宜pH在2~3之間,氧氣DBD等離子體放電過程中的pH對Fenton反應(yīng)是適宜的。調(diào)節(jié)MB溶液中Fe2+離子的濃度至5mg/L、10mg/L(分別由FeSO4、FeCl2調(diào)節(jié)),等離子體處理50mL溶液。結(jié)果如圖6所示,加入Fe2+后在放電10min時MB溶液的降解率從87%升高到97%,且FeSO4、FeCl2對降解率的影響相同。陰離子的不同(SO42–、Cl–),氧氣等離子體降解MB的效果相同,這與2.2節(jié)中的結(jié)果吻合,Cl–和SO42–的加入對等離子體降解MB過程的影響是相似的。
Fe2+濃度從5mg/L增加到10mg/L降解效率變化不明顯。Fe2+濃度為5mg/L足夠催化等離子體過程中產(chǎn)生的H2O2發(fā)生Fenton反應(yīng)生成·OH,過多地增加Fe2+濃度對反應(yīng)并沒有促進(jìn)作用。Fe2+適宜濃度與溶液中產(chǎn)生的H2O2的量有關(guān),如圖7所示,氧氣等離子處理20min僅能產(chǎn)生18mg/L H2O2,因此,F(xiàn)e2+對DBD等離子體降解MB過程的加強(qiáng)作用是有限的。
圖6 亞鐵離子對氧氣等離子體降解亞甲基藍(lán)的影響
圖7 氧氣等離子體處理后溶液中H2O2濃度的變化
氧氣等離子體對MB溶液具有良好的降解性能,DBD等離子體處理10min,100mg/L的亞甲基藍(lán)溶液降解率可達(dá)95%以上,但等離子體對MB的降解效果受溶液中存在的其他物質(zhì)的影響。通過研究相同放電條件下等離子體對添加不同添加劑的MB溶液的降解的差異,得出如下結(jié)論。
(1)Cl–、SO42–、NO3–對等離子體降解MB過程影響很小,而NO2–、PO43–則會嚴(yán)重削弱等離子體對MB的降解作用,CO32–、HCO3–對MB降解的影響介于前兩者之間,造成這種差別的主要原因是不同陰離子與放電產(chǎn)生的·OH反應(yīng),生成的活性粒子的氧化性不同,而NO2–、PO43–不僅與·OH反應(yīng)生成的粒子氧化性很差,還與放電產(chǎn)生的H2O2反應(yīng),嚴(yán)重削弱了等離子體對MB的降解能力。
(2)氧氣等離子體放電過程中·OH主要來源于含氧活性粒子的合成,而不是水的分解。
(3)溶液中剩余的H2O2濃度較低,F(xiàn)e2+的加入并未能極大的提高雙室DBD等離子體反應(yīng)器對MB的降解作用。
[1] ULLAH K,JO S B,YE S,et al. Degradation of organic dyes by cdse decorated graphene nanocomposite in dark ambiance[J]. Fullerenes Nanotubes and Carbon Nanostructures,2015,23(5):437-448.
[2] MAGUREANU M,MANDACHE N B,PARVULESCU V I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment[J]. Water Research,2015,81:124-136.
[3] 葉林靜,安小英,姜韻婕,等. ZnO/CdS復(fù)合光催化劑的制備及降解四環(huán)素類抗生素[J]. 化工進(jìn)展,2015,34(11):3944-3950. YE L J,AN X Y,JIANG Y J,et al. Preparation of ZnO/CdS composite photocatalyst and its degradability on tetracycline antibiotic[J]. Chemical Industry and Engineering Progress,2015,34(11):3944-3950.
[4] MAROTTA E,CERIANI E,SCHIORLIN M,et al. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor[J]. Water Research,2012,46(19):6239-6246.
[5] JIANG B,ZHENG J,LU X,et al. Degradation of organic dye by pulsed discharge non-thermal plasma technology assisted with modified activated carbon fibers[J]. Chemical Engineering Journal,2013,215/216:969-978.
[6] 屈廣周,李杰,梁東麗,等. 低溫等離子體技術(shù)處理難降解有機(jī)廢水的研究進(jìn)展[J]. 化工進(jìn)展,2012,31(3):662-670. QU G Z,LI J,LIANG D L,et al. Research progress in organic wastewater treatment by low-temperature plasma discharge technology[J]. Chemical Industry and Engineering Progress,2012,31(3):662-670.
[7] MAGUREANU M,BRADU C,PIROI D,et al. Pulsed corona discharge for degradation of methylene blue in water[J]. Plasma Chemistry and Plasma Processing,2012,33(1):51-64.
[8] 董冰巖,張鵬,聶亞林,等. 針-板式高壓脈沖氣液兩相放電降解廢水中的苯酚[J]. 化工進(jìn)展,2016,35(1):314-319. DONG B Y,ZHANG P,NIE Y L,et al. Phenol wastewater treatment by needle-plate pulsed high voltage discharge in gas-liquid two phase[J]. Chemical Industry and Engineering Progress,2016,35(1):314-319.
[9] 李善評,崔江杰,姜艷艷,等. 利用低溫等離子體降解烯啶蟲胺農(nóng)藥廢水的研究[J]. 高電壓技術(shù),2011(10):2517-2522. Study of using low-temperature plasma to degrade nitenpyram pesticide in aqueous solution[J]. High Voltage Engineering,2011(10):2517-2522.
[10] 王占華. 介質(zhì)阻擋放電耦合電暈放電低溫等離子及其對含染料廢水脫色研究[D]. 長春:東北師范大學(xué),2009. WANG Z H. Research on the method of dielectric barrier discharge coupling corona discharge plasma and its application to decoloration of dye wastewater[D]. Changchun:Northeast Normal University,2009.
[11] 陳靜. 低溫等離子體處理腈綸廢水的研究[D]. 淮南:安徽理工大學(xué),2012. CHEN J. The study of the acrylic wastewater treatment by non-thermal plasma[D]. Huainan:Anhui University of Science & Technology,2012.
[12] DOJ?INOVI? B P,MANOJLOVI? D,ROGLI? G M,et al. Plasma assisted degradation of phenol solutions[J]. Vacuum,2008,83(1):234-237.
[13] WANG T C,LU N,AN J T,et al. Multi-tube parallel surface discharge plasma reactor for wastewater treatment[J]. Separation and Purification Technology,2012,100:9-14.
[14] CHEN G,ZHOU M,CHEN S,et al. The different effects of oxygen and air DBD plasma byproducts on the degradation of methyl violet 5BN[J]. J. Hazard Mater.,2009,172(2/3):786-791.
[15] KIM K S,YANG C S,MOK Y S. Degradation of veterinary antibiotics by dielectric barrier discharge plasma[J]. Chemical Engineering Journal,2013,219:19-27.
[16] TICHONOVAS M,KRUGLY E,RACYS V,et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment[J]. Chemical Engineering Journal,2013,229:9-19.
[17] MAGUREANU M,PIROI D,MANDACHE N B,et al. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment[J]. Water Research,2010,44(11):3445-3453.
[18] KRAUSE H,SCHWEIGER B,PRINZ E,et al. Degradation of persistent pharmaceuticals in aqueous solutions by a positive dielectric barrier discharge treatment[J]. Journal of Electrostatics,2011,69(4):333-338.
[19] MAGUREANU M,PIROI D,MANDACHE N B,et al. Degradation of antibiotics in water by non-thermal plasma treatment[J]. Water Research,2011,45(11):3407-3416.
[20] XUE J,CHEN L,WANG H. Degradation mechanism of Alizarin Red in hybrid gas–liquid phase dielectric barrier discharge plasmas:experimental and theoretical examination[J]. Chemical Engineering Journal,2008,138(1/2/3):120-127.
[21] BENETOLI L O,CADORIN B M,BALDISSARELLI V Z,et al. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor[J]. J. Hazard Mater.,2012,237/238:55-62.
[22] BENETOLI L O D B,CADORIN B M,POSTIGLIONE C D S,et al. Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor[J]. Journal of the Brazilian Chemical Society,2011,22(9):1669-1678.
[23] 王輝,孫巖洲,方志,等. 不同電極結(jié)構(gòu)下介質(zhì)阻擋放電的特性研究[J]. 高壓電器,2006(1):25-27. WANG H,SUN Y Z,F(xiàn)ANG Z,et al. Study on the characteristics of dielectric barrier discharge of different electrode configuration[J]. High Voltage Apparatus,2006(1):25-27.
[24] YAN J H,DU C M,LI X D,et al. Degradation of phenol in aqueous solutions by gas–liquid gliding arc discharges[J]. Plasma Chemistry and Plasma Processing,2006,26(1):31-41.
[25] ABDELMALEK F,GHEZZAR M R,BELHADJ M,et al. Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure[J]. Industrial & Engineering Chemistry Research,2006,45(1):23-29.
[26] NARENGERILE,YUAN M H,WATANABE T. Decomposition mechanism of phenol in water plasmas by DC discharge at atmospheric pressure[J]. Chemical Engineering Journal,2011,168(3):985-993.
[27] NISHIOKA H,SAITO H,WATANABE T. Decomposition mechanism of organic compounds by DC water plasmas at atmospheric pressure[J]. Thin Solid Films,2009,518(3):924-928.
[28] 許根慧,姜恩永,盛京,等. 等離子體技術(shù)與應(yīng)用[M]. 北京:化學(xué)工業(yè)出版社,2006. XU G H,JIANG E Y,SHENG J,et al. Plasma technology and application[M]. Beijing:Chemical Industry Press,2006.
[29] MOUTAOUAKKIL A,BLAGHEN M. Decolorization of the anthraquinone dye Cibacron Blue 3G-A with immobilized coprinus cinereus in fluidized bed bioreactor[J]. Applied Biochemistry and Microbiology,2011,47(1):59-65.
[30] EISENBERG G. Colorimetric determination of hydrogen peroxide[J]. Industrial & Engineering Chemistry Analytical Edition,1943,15(5):327-328.
[31] 劉小為,陳忠林,沈吉敏,等. 硫酸鈦光度法測定 O3/H2O2體系中低濃度 H2O2[J]. 中國給水排水,2010(16):126-129. LIU X W,CHEN Z L,SHEN J M,et al. Spectrophotometric determination of low concentration of hydrogen peroxide in O3/H2O2system using titanium sulfate[J]. China Water & Waste Water,2010(16):126-129.
[32] NETA P,HUIE R E,ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(3):1027-1284.
[33] BUXTON G V,GREENSTOCK C L,HELMAN W P,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals (·OH/·O–) in aqueous solution[J]. Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
[34] YANG Y,PIGNATELLO J J,MA J,et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs)[J]. Environmental Science & Technology,2014,48(4):2344-2351.
[35] KIWI J,LOPEZ A,NADTOCHENKO V. Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger(Cl–)[J]. Environmental Science and Technology,2000,34(11):2162-2168.
[36] HAIXIA W,ZHI F,YANHUA X. Degradation of aniline wastewater using dielectric barrier discharges at atmospheric pressure[J]. Plasma Sources Science and Technology,2015,17(3):228-234.
[37] PARK J H,KANG S H,LEE J Y,et al. Effects of nitrate on the UV photolysis of H2O2for VOCs degradation in an aqueous solution[J]. Environmental Technology,2008,29(1):91-99.
[38] LO J C Y,DARRACQ M A,CLARK R F. A review of methylene blue treatment for cardiovascular collapse[J]. Journal of Emergency Medicine,2014,46(5):670-679.
[39] PENG L,LI C,LIANG X,et al. Advanced oxidation of hypophosphite and phosphite using a UV/H2O2process[J]. Environmental Technology,2013,34(13-16):2231-2239.
[40] BELTRáN F J,AGUINACO A,GARCíA-ARAYA J F. Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water[J]. Water Research,2009,43(5):1359-1369.
[41] WANG H,LI J,QUAN X,et al. Enhanced generation of oxidative species and phenol degradation in a discharge plasma system coupled with TiO2photocatalysis[J]. Applied Catalysis B:Environmental,2008,83(1):72-77.
[42] RONG S P,SUN Y B,ZHAO Z H. Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge[J]. Chinese Chemical Letters,2014,25(1):187-192.
[43] RONG S,SUN Y. Degradation of TAIC by water falling film dielectric barrier discharge — Influence of radical scavengers[J]. J. Hazard Mater.,2015,287:317-324.
[44] GRABOWSKI L R,VELDHUIZEN E M V,PEMEN A J M,et al. Breakdown of methylene blue and methyl orange by pulsed corona discharge[J]. Plasma Sources Science and Technology,2007,16(2):226-232.
[45] ZHANG J,ZHENG Z,ZHANG Y,et al. Low-temperature plasma-induced degradation of aqueous 2,4-dinitrophenol[J]. J. Hazard Mater.,2008,154(1):506-512.
[46] HU Y,BAI Y,LI X,et al. Application of dielectric barrier discharge plasma for degradation and pathways of dimethoate in aqueous solution[J]. Separation and Purification Technology,2013,120:191-197.
[47] MANOJ KUMAR REDDY P,RAMA RAJU B,KARUPPIAH J,et al. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor[J]. Chemical Engineering Journal,2013,217:41-47.
[48] DUTTA K,MUKHOPADHYAY S M,BHATTACHARJEE S,et al. Chemical oxidation of methylene blue using a Fenton-like reaction[J]. J. Hazard Mater.,2001,84(1):57-71.
[49] MARKOVIC M,JOVIC M,STANKOVIC D,et al. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen[J]. Science of the Total Environment,2015,505:1148-1155.
The effects of additives on the degradation of methylene blue using plasma
DONG Bo,WANG Baowei,CHI Chunmei,XU Meng,WANG Chao
(Key Laboratory for Green Chemical Technology of the Ministry of Education,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
With the development of industry,water pollution as one of the environmental issues has been paid more and more attention around the world. Organic wastewater,which is highly toxicity and difficult to degrade,has become a serious problem in recent years. Dielectric barrier discharge(DBD) plasma can cause a variety of physical and chemical effects,which combines ozonation,ultraviolet degradation,pyrolysis,free radical oxidation in one technology,providing a new method for aqueous organics control. In the present work,the effects of additives on the degradation of methylene blue(MB) using self-design double-chamber DBD reactor was studied. Under the same experimental conditions,adding NaCl,Na2SO4or NaNO3had little effect on MB degradation,adding NaHCO3or Na2CO3weakened MB decomposition process using plasma,while adding Na3PO4or NaNO2has serious inhibited MB degradation. After adding Na3PO4or NaNO2,the degradation efficiency of MB was 1/3 of that with no additives under the same experimental conditions. Scavenger of ·OH(t-butanol)would inhibit the degradation of MB,while scavenger of ·H(CCl4) has little promotion effects on MB degradation. In addition,the addition of Fe2+has limited role in promoting the decomposition of MB.
waste water;waste treatment;degradation;plasma;anion
X703.1
:A
:1000–6613(2017)02–0705–07
10.16085/j.issn.1000-6613.2017.02.042
2016-06-12;修改稿日期:2016-07-28。
國家自然科學(xué)基金項(xiàng)目(21176175)。
董博(1990—),女,碩士,主要研究方向?yàn)榈入x子體、污水處理。E-mail:dongbo0905@sina.com。聯(lián)系人:王保偉,副教授,主要研究方向等離子體化學(xué)、環(huán)境與能源化工。E-mail:wangbw@tju.edu.cn。