亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        紅花桑寄生中的化學(xué)成分

        2017-02-16 12:39:30劉全裕馮珊張永紅倪峰
        中國中藥雜志 2016年21期
        關(guān)鍵詞:化學(xué)成分

        劉全裕+馮珊+張永紅+倪峰

        [摘要]從紅花桑寄生莖葉中分離得到1個新的化合物為7β-羥基-何帕-22(29)-烯-3β-棕櫚酸酯(1),以及9個已知化合物,分別鑒定為熊果醇(2)、3-表烏蘇酸(3)、3β-羥基-何帕-22(29)-烯(4)、3β, 15α-二羥基-羽扇-20(29)-烯(5)、羽扇-20(29)-烯-3-O-α-D-葡萄糖苷(6)、豆甾醇-3-O-β-D-葡萄糖苷(7)、夾竹桃苷元-3-O-α-D-葡萄糖苷(8)、二十二烷酸(9)、二十八烷醇(10)?;衔锝Y(jié)構(gòu)利用核磁共振譜、高分辨質(zhì)譜等現(xiàn)代波普技術(shù)進(jìn)行鑒定。化合物1為新化合物,化合物2~10首次從紅花桑寄生中分離得到。

        [關(guān)鍵詞]紅花桑寄生; 化學(xué)成分; 三萜酯

        [Abstract]A new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1), was isolated from the stems and leaves ofScurrula parasitica parasitic onNerium indicum, along with nine known compounds, uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), stigmasterol-3-O-β-D-glucoside (7), digitoxin-3-O-α-D-glucoside (8), behenic acid (9), octacosyl alcohol (10). Their structures were elucidated using a combination of 1D and 2D NMR techniques (COSY, HMQC, and HMBC) and HR-ESI-MS analyses. Compounds 2-10 were isolated from this plant for the first time.

        [Key words]Scurrula parasitica; chemical constituents; triterpenoid ester

        doi:10.4268/cjcmm20162112

        Scurrula parasitica L. (Loranthaceae) is widely distributed in Southern China, its leaves and stems have been used as cardiotonic, antioxidant, and antineoplastic agents[1]. These activities varied with the host trees and seasons[2]. In previous reports, some triterpenoids and flavonoids have been isolated from this source[3]. In the cause of our search for biologically active substances from this plant, a new triterpenoid ester, 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate (1) (Fig.1), was isolated from the methanol extract, together with five known triterpenoids uvaol (2), 3-epi-ursolic acid (3), 3β-hydroxyl-hop-22(29)-ene (4), 3β, 15α-dihydroxyl-lup-20(29)-ene (5), lup-20(29)-en-3-O-α-D-glucoside (6), one steroid glycoside stigmasterol-3-O-β-D-glucoside (7), one cardiac glycoside digitoxin-3-O-α-D-glucose (8), two fatty acids behenic acid (9),and octacosyl alcohol (10). In this paper, we reported the isolation and structural elucidation of these compounds.

        1 Material

        1.1 Apparatus and reagents Melting points were determined on a WRS-1B digital melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO-20 polarimeter. The IR spectra were obtained on a Nicolet 170SX FT-IR spectrometer and UV spectra were obtained on an UV-210A spectrometer. 1H-, 13C- and 2D-NMR spectra were recorded using a Bruker AM-400 NMR spectrometer at 400 and 100 MHz, respectively, with TMS as the internal standard. HR-ESI-MS was obtained on a Bruker APEXⅡFT-MS spectrometer. FAB-MS was measured on a VG-ZAB-HS mass spectrometer and EI-MS was obtained on a HP-5988 mass spectrometer. Silica gel (200-300 and 300-400 mesh) and Sephadex LH-20 were used for CC and silica gel GF254 for TLC. Spots were detected on TLC plate under an UV light or by heating after spraying the TLC plate with 5% H2SO4 in C2H5OH.

        1.2 Plant material The stems and leaves ofS. parasitica were collected at Fuzhou, Fujian province of China, in July, 2014. The plant material was authenticated by Prof. Yong-hong Zhang, Department of Pharmacy, Fujian Medical University. A voucher specimen (201406) was deposited in the Herbarium of Pharmacy Department, Fujian Health College, Fuzhou, China.

        2 Extraction and isolation

        Dried and powdered stems and leaves ofS.parasitica (6.5 kg) were extracted three times with MeOH. After evaporation of the solvent under reduced pressure, the residue was suspended in water and extracted with petroleum ether, EtOAc, andn-BuOH, successively. The residue of the petroleum ether layer (178 g) was fractionated by silica gel column chromato graphy (CC) using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield twelve fractions (Fr. 1-12). Fr. 6 was chromatographed on Sephadex LH-20 eluted with CHCl3-MeOH (1∶1) and followed by repeated column chromatography over silica gel eluted with petroleum ether-EtOAc (10∶1-1∶1) to obtain compounds 1 (22 mg), 9 (28 mg), 10 (14 mg). Fr. 10 was purified by chromatography on Sephadex LH-20 to give compound 2 (19 mg), 3 (11 mg). The residue of the EtOAc layer (136 g) was fractionated by silica gel CC using a stepwise gradient of petroleum ether-EtOAc (10∶1-0∶1) to yield ten fractions (Fr. 1-10). Fr. 5 was subjected to repeated column chromatography over silica gel and Sephadex LH-20 and further purification by HPLC (H2O-MeOH 40∶60, 3 mL·min-1) to afford compounds 4 (15 mg), 5(7 mg).The residue of then-BuOH lager (203 mg) was fractionated by silica gel CC using a step-wise gradient of CHCl3-MeOH (10∶1-0∶1) to yield fourteen fractions (Fr. 1-14). Fr. 9 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 6 (13 mg), 7 (12 mg). Fr. 12 was chromatographed on silica gel and Sephadex LH-20 to obtain compound 8 (16 mg).

        3 Results and discussion

        Compound 1 was obtained as a white amorphous powder. mp 96-97 ℃, [α]+ 46.0 (c 0.50, CHCl3), showed positive Liebermann-Burchard reaction. High-resolution ESI-MS showed the molecular ion atm/z 703.601 1 in agreement with the molecular formula C46H80O3Na+ (Calc. 703.601 1). The IR spectrum of 1 exhibited (-COO-) (1 723 cm-1), (H2C=C<) (1 644 cm-1), (-OH-) (3 140 cm-1), and [-(CH2)n-] (717 cm-1) absorptions, together with 1H-NMR and 13C-NMR spectral data of 1 indicated it to be a triterpenoid ester (Table 1). The presence of a palmitoyloxy group in 1 was supported by the 1H-NMR values atδ 0.88 (3H, t,J=7.0 Hz, H-16′), 1.26 (24H, br s, H-4′ to H-15′), 1.74 (2H, H-3′) and 2.26 (2H, t,J=6.0 Hz, H-2′) and the EI-MS fragment atm/z 409, 396. The 1H-NMR spectrum of 1 showed the presence of seven methyl singlets atδ 0.72, 0.83, 0.85, 0.89, 0.95, 0.99, and 1.76, two oxymethines atδ 4.46 (1H, dd,J=4.8, 11.2 Hz, H-3 ),δ 3.81 (1H, dd,J=10.8, 4.8 Hz, H-7) and an isopropenyl group inferred by the presence of a methyl singlet atδ 1.76 and a broad singlet at δ 4.58 (1H, dd,J=4.4, 8.2 Hz, H-29a), 4.68 (1H, dd,J=4.8, 10.0 Hz, H-29b), together with typical 13C-NMR resonances atδ 80.1(C-3) and 75.3 (C-7) suggested there are two hydroxyl-bearing methines in the nucleus. The 1H-NMR spectra, and especially the presence of an isopropenyl group, suggested that compound 1 is a pentacyclic triterpene of the lup-20(29)-en-3β-ol or hop-22(29)-en-3β-ol type. The basic skeleton of a lup-20(29)-en-3β-ol triterpenoid could be ruled out for compound 1 on the basis of the differences in the 13C-NMR values of 1 with lupeol derivatives[4]. A close comparison of the 1H-NMR and 13C-NMR values of 1 with those of 4 and 5 isolated fromS.parasitica, suggested that compound 1 is a hydroxyl-hop-22(29)-ene terpenoid having a palmitoyloxy group at the C-3 position. The HMBC spectra of 1, which showed the correlations H-3/C-2, C-4, C-23, C-24, C-1′ ; H-7/C-6, C-8, C-9, C-26; H-9/C-8, C-10, C-11, C-12, C-26; H-13/C-12, C-14, C-18, C-27; H-21/C-17, C-20, C-22, C-29, C-30 (Fig.2), supported the basic skeleton of a hopenyl derivative further, respectively, identical to 1. In the NOESY spectrum, H-OH-7 showed NOE correlations with H-24, H-25 and H-26, but has no NOE correlations with H-23 or H-27, H-3 showed NOE correlations with H-23, but has no NOE correlations with H-24 or H-25, H-5 showed NOE correlations with H-9 and H-23, H-13 showed NOE correlations with H-17, H-29 showed NOE correlations with H-27, H-28, and H-30. It was reported that when the allyl was linked to C-21 inα-orientation, H-29 was a single signal[5]. So C-24, C-25, and C-26 were determined to be inβ-oriented while C-23, C-27, C-28, C-29, and C-30 were determined to be inα-oriented. Therefore, the OH-7 was determined to be inβ-oriented. On alkaline hydrolysis, compound 1 yielded 3β, 7β-dihydroxyl-hop-22(29)-ene[6-7] and palmitic acid[8] (m/z 256), confirming the structure completely. Thus, compound 1 was established as 7β-hydroxyl-hop-22(29)-en-3β-O-palmitate.

        The known compounds 2-10 were identified by comparison with the literature data.

        4 Identification

        Compound 1 White amorphous powder. mp 96-97 ℃; [α]+ 46.0 (c 0.50, CHCl3); IR (KBr) νmax 3 140, 1 723, 1 644, 1 266, 1 221, 1 197, 717 cm-1; EI-MSm/z 681 [M + H]+. HR-ESI-MSm/z 703.601 1 [M + Na]+(Calc. 703.601 1); 1H- and 13 C-NMR(Table 1).

        Compound 2 White needles. mp 222-224 ℃; EI-MSm/z 442 (M)+·, 411, 234, 203, 175, 149, 119, 69, 43; 1H-NMR (CD3OD, 400 MHz)δ: 1.18 (3H, s), 1.12 (3H, s), 1.03 (3H, s), 0.97 (3H, s), 0.88 (3H, d), 0.83 (3H, s), 0.78 (3H, s), 3.14 (1H, dd,J=4.8, 11.2 Hz,H-3), 5.40 (1H, t,J=4.0 Hz, H-12), 3.54 (1H, d,J=10.4 Hz, H-28a), 3.04 (1H, d,J=10.4 Hz H-28b). The physical and spectral data were in accordance with those reported in the literature[9], and 2 was identified as uvaol.

        Compound 3 Amorphous powder. mp 250-252 ℃; EI-MSm/z 456 (M)+·; 1H-NMR (CD3OD, 400 MHz)δ: 1.09 (3H, s), 0.91 (3H, s), 0.89 (3H, s), 0.86 (3H, s), 0.81(3H, d), 0.74 (3H, s), 0.67 (3H, s), 11.95 (1H, s, COOH), 3.01 (1H, m, H-3), 5.12 (1H, br s, H-12). The physical and spectral data were in accordance with those reported in the literature[10], and 3 was identified as 3-epi-ursolic acid.

        Compound 4 Amorphous powder. mp 196-197 ℃; IR (KBr) νmax 3 320, 2 867, 1 715, 1 644, 1 266 cm-1; EI-MSm/z 426 (M)+·;1H-NMR (CDCl3,400 MHz)δ:0.82 (3H, s, H-23), 0.85 (3H, s, H-24), 0.98 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.99 (3H, s, H-28), 1.73(3H, s, H-30), 4.50 (1H, s, Ha-29), 4.65 (1H, s, Hb-29), 3.16 (1H, dd,J=8.0, 9.2 Hz, H-3); 13C-NMR (CDCl3, 100 MHz)δ: 38.6 (C-1), 25.4 (C-2), 78.9 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3 (C-6), 34.2 (C-7), 41.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.9 (C-11), 25.1 (C-12), 48.8 (C-13), 40.8 (C-14), 34.4 (C-15), 22.1 (C-16), 52.9 (C-17), 44.2 (C-18), 41.9 (C-19), 27.9 (C-20), 47.6 (C-21), 148.8 (C-22), 27.9 (C-23), 16.3 (C-24), 16.1 (C-25), 15.9 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[11], and 4 was identified as 3β-hydroxyl-hop-22(29)-ene.

        Compound 5 Amorphous powder. mp 216-217 ℃; IR (KBr) νmax 3 320, 3 167, 2 947, 1 705, 1 646, 1 254 cm-1; EI-MSm/z 443 [M + H]+; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.86 (3H, s, H-25), 0.87 (3H, s, H-26), 0.98 (3H, s, H-27), 1.08 (3H, s, H-28), 1.68 (3H, s, H-30), 3.78 (1H, dd, J=8.0, 9.2 Hz, H-3), 4.45 (1H, br s, H-15);13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.4 (C-2), 78.9 (C-3), 37.8 (C-4), 52.2 (C-5), 28.0 (C-6), 26.7 (C-7), 44.8 (C-8), 50.1 (C-9), 37.0 (C-10), 20.8 (C-11), 25.1 (C-12), 37.4 (C-13), 47.8 (C-14), 67.9 (C-15), 45.6 (C-16), 42.5 (C-17), 48.2 (C-18), 47.1 (C-19), 150.3 (C-20), 31.6 (C-21), 40.8 (C-22), 27.8 (C-23), 16.3 (C-24), 15.7 (C-25), 10.1 (C-26), 8.3 (C-27), 18.8 (C-28), 109.6 (C-29), 19.3 (C-30). The physical and spectral data were in accordance with those reported in the literature[12], and 5 was identified as 3β, 15α-dihydroxyl-lup-20(29)-ene.

        Compound 6 Amorphous powder. ESI-MSm/z 611 [M+Na]+; 1H-NMR (DMSO-d6, 400 MHz)δ: 0.86 (3H, s, H-23), 0.86 (3H, s, H-24), 0.83 (3H, s, H-25), 1.08 (3H, s, H-26), 1.41 (3H, s, H-27), 0.80 (3H, s, H-28), 1.74 (3H, s, H-30), 4.68 (1H, dd,J=10.0, 8.4 Hz, H-3), 5.36 (1H, d,J=8.0 Hz, glc-H-1′), 3.62-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 39.3 (C-1), 25.9 (C-2), 76.9 (C-3), 39.7 (C-4), 49.6 (C-5), 18.4 (C-6), 36.1 (C-7), 48.7 (C-8), 49.6 (C-9), 36.8 (C-10), 20.6 (C-11), 23.8 (C-12), 49.6 (C-13), 48.7 (C-14), 31.3 (C-15), 27.6 (C-16), 55.4 (C-17), 41.8 (C-18), 39.9 (C-19), 27.6 (C-20), 49.6 (C-21), 146.8 (C-22), 29.2 (C-23), 17.5 (C-24), 23.8 (C-25), 20.6 (C-26), 17.5 (C-27), 15..9 (C-28), 111.6 (C-29), 19.8 (C-30), 100.7 (C-1′), 73.4 (C-2′), 76.4 (C-3′), 73.4 (C-4′), 76.8 (C-5′), 61.0 (C-6′). The physical and spectral data were in accordance with those reported in the literature[13], and 6 was identified as lup-20(29)-en-3-O-α-D-glucoside.

        Compound 7 Colorless flaky crystal. ESI-MSm/z575[M + H]+; 1H-NMR (CD3OD, 400 MHz)δ: 0.63-2.1 (21 H, m, Me × 7), 4.63 (1H, dd, J=4.9, 12.6 Hz, H-3), 5.35 (1H, d, J=8.0 Hz, glc-H-1′), 3.60-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 37.3 (C-1), 31.6 (C-2), 76.7 (C-3), 42.2 (C-4), 140.6 (C-5), 121.4 (C-6), 31.8 (C-7), 31.8 (C-8), 50.3 (C-9), 36.4 (C-10), 21.0 (C-11), 39.6 (C-12), 42.2 (C-13), 56.8 (C-14), 24.3 (C-15), 28.6 (C-16), 55.8 (C-17), 12.1 (C-18), 19.3 (C-19), 40.5 (C-20), 21.0 (C-21), 137.1 (C-22), 130.1 (C-23), 51.9 (C-24), 31.6 (C-25), 20.7 (C-26), 19.2 (C-27), 25.6 (C-28), 12.2 (C-29), 95.7 (C-1′), 73.9 (C-2′), 78.3 (C-3′), 71.1 (C-4′), 78.7 (C-5′), 62.4 (C-6′). The physical and spectral data were in accordance with those reported in the literature[14], and 7 was identified as stigmasterol-3-O-β-D-glucoside.

        Compound 8 Amorphous powder. ESI-MSm/z592 [M + Na]+; 1H-NMR (CD3OD, 400 MHz)δ: 5.01 (1H, d,J=8.6 Hz, C-3), 5.48 (1H, d,J=12.4 Hz, C-13), 0.88 (3H, s, C-18), 0.91 (3H, s, C-19), 5.93 (1H, br s, C-22), 5.36 (1H, d, J=8.0 Hz, glc-H-1′), 3.61-3.88(1H, m, glc-H-2′-6′); 13C-NMR (CD3OD, 100 MHz)δ: 33.6 (C-1), 28.1 (C-2), 72.0 (C-3), 31.2 (C-4), 38.5 (C-5), 27.7 (C-6), 22.8 (C-7), 41.8 (C-8), 41.3 (C-9), 37.2 (C-10), 36.1 (C-11), 30.0 (C-12), 40.2 (C-13), 51.2 (C-14), 84.7 (C-15), 41.3 (C-16), 72.8 (C-17), 57.5 (C-18), 16.9 (C-19), 24.0 (C-20), 172.2 (C-21), 77.8 (C-22), 121.7 (C-23), 177.2 (C-24), 103.2 (C-1′), 73.0 (C-2′), 75.0 (C-3′), 71.1 (C-4′), 75.9 (C-5′), 61.5 (C-6′). The physical and spectral data were in accordance with those reported in the literature[15], and 7 was identified as digitoxin-3-O-α-D-glucose.

        5 Alkaline hydrolysis of 1

        Compound 1 (5.0 mg) was refluxed with 5% KOH-MeOH (5.0 mL ) for 4 h at 75 ℃. The reaction product was diluted with H2O (20.0 mL) and adjusted pH to 7.0 with HCl, then extracted with CHCl3 (20.0 mL×2). The CHCl3 solutions were dried (anhydrous Na2SO4 ), and the residue following solvent removed was subjected to silica gel CC (8.0 g, 1 cm×14 cm) using hexane/EtoAc (8∶3) to afford la (1.3 mg), which was found to be identical with 3β, 7β-dihydroxyl-hop-22(29)-ene by 1H-, 13C-NMR and EI-MS comparisons, and palmitic acid (1b 0.8 mg), which was identified by comparison of its EI-MS with a computer reference database [EI-MSm/z 256 (M)+·, 227, 199, 171, 157, 143, 129].

        Compound 1a Amorphous powder. mp 205-207 ℃; EI-MSm/z 442 (M)+·; 1H-NMR (CDCl3, 400 MHz)δ:0.83 (3H, s, H-23), 0.84 (3H, s, H-24), 0.96 (3H, s, H-25), 0.74 (3H, s, H-26), 0.95 (3H, s, H-27), 0.98 (3H, s, H-28), 1.73 (3H, s, H-30), 4.59 (1H, s, Ha-29), 4.68 (1H, s, Hb-29), 4.45 (1H, br s, H-3), 3.78 (1H, br s, H-7); 13C-NMR (CDCl3, 100 MHz)δ: 38.3 (C-1), 23.7 (C-2), 80.1 (C-3), 37.5 (C-4), 52.2 (C-5), 28.0 (C-6), 72.4 (C-7), 48.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.8 (C-11), 25.2 (C-12), 48.8 (C-13), 40.8 (C-14), 34.0 (C-15), 21.9 (C-16), 52.8 (C-17), 44.2 (C-18), 41.9 (C-19), 28.0 (C-20), 47.5 (C-21), 148.8 (C-22), 27.9 (C-23), 16.1 (C-24), 16.0 (C-25), 8.3 (C-26), 14.5 (C-27), 18.3 (C-28), 109.3 (C-29), 25.2 (C-30). The physical and spectral data were in accordance with those reported in the literature[6-7], and 1a was identified as 3β,7β-dihydroxyl-hop-22(29)-ene.

        [參考文獻(xiàn)]

        [1]Xiao Y J, Chen Y Z, Chen B H, et al. Study on cytotoxic activities on human leukemia cell line HL-60 by flavonoids extracts ofScurrula parasitica from four different host trees [J]. Chin Oncol, 2008, 33(4): 427.

        [2]Omeje E O, Osadebe P O, Esimone C O, et al. Three hydroxylated lupeol-based triterpenoid esters isolated from the Eastern Nigeria mistletoe parasitic onKola acuminata [J]. Nat Prod Res,2012, 26(19): 1775.

        [3]Liu Q Y, Wang F, Zhang L, et al. A hydroxylated lupeol-based triterpenoid ester isolated from theScurrula parasitica Parasitic onNerium indicum[J].Helv Chim Acta, 2015, 98(5): 627.

        [4]O′Connell M M, Bentley M D, Campbell C S, et al. Betulin and lupeol in bark from four white-barked birches [J]. Phytochemistry, 1988, 27(7): 2175.

        [5]Ageta H, Shiojima K, Suzuki H, et al. NMR spectra of triterpenoids. I. Conformation of the side chain of hopane and isohopane, and their derivatives [J]. Chem Pharm Bull, 1993, 41(11): 1939.

        [6]Sousa G F, Duarte L P, Alcantara A F, et al. New triterpenes fromMaytenus robusta: structural elucidation based on NMR experimental data and theoretical calculations [J]. Molecules, 2012, 17(11): 13439.

        [7]Fukunaga T, Nishiya K, Kajikawa I, et al. Chemical studies on the constituents ofHyphear tanakae HOSOKAWA from different host trees [J]. Chem Pharm Bull, 1988, 36(3): 1180.

        [8]Basu S, Kuhn H M, Neszmelyi A, et al. Chemical characterization of enterobacterial common antigen isolated fromPlesiomonas shigelloides ATCC 14029 [J]. Eur J Biochem, 1987, 162(1): 75.

        [9]Mezzetti T, Orzalesi G, Rossi C, et al. A new triterpenoid lactone,α-amyrin and uvaol fromHelichrysum italicum [J]. Planta Med, 1970, 18(4): 326.

        [10]Miranda R P, Delgado G, Vivar A R D. New triterpenoids fromSalvia nicolsoniana [J]. J Nat Prod, 1986, 49(2): 225.

        [11]Zhang L, Wang F, Jiang Z Y, et al. A new pentacyclic triterpene fromHumata tyermanni Moore with the inhibitory activities against LPS-induced NO production in RAW264.7 macrophages [J]. J Chem, 2013, 2013(2013): 729.

        [12]Li S H, Deng Q, Zhu L, et al. Terpenoids and sterols fromRicinus communis and their activities against diabetes [J]. Chin J Chin Mater Med, 2014, 39(3): 448.

        [13]Kiem P V, Thu V K, Yen P H, et al. New triterpenoid saponins fromGlochidion eriocarpum and their cytotoxic activity [J]. Chem Pharm Bull, 2009, 57(1): 102.

        [14]Yang B Y, Li T, Guo R, et al. Chemical constituents from leaves ofDatura metel (Ⅰ) [J]. Chin Tradit Herbal Drugs, 2013, 44(20): 2803.

        [15]Wangteeraprasert R, Lipipun V, Gunaratnam M, et al. Bioactive compounds fromCarissa spinarum [J]. Phytother Res, 2012, 26(10):1496.

        [責(zé)任編輯 丁廣治]

        猜你喜歡
        化學(xué)成分
        栽培黃芩與其對照藥材的HPLC指紋圖譜及近紅外圖譜比較研究
        不同外形、年份六堡茶品質(zhì)變化分析
        羌活的化學(xué)成分及藥理作用研究進(jìn)展
        壯藥積雪草主要化學(xué)成分及對神經(jīng)系統(tǒng)作用的研究進(jìn)展
        山荊子化學(xué)成分與藥理作用研究進(jìn)展
        金線蓮的研究進(jìn)展
        九龍?zhí)僖宜嵋阴ゲ课换瘜W(xué)成分的分離鑒定
        核桃青皮的化學(xué)成分及藥理作用研究進(jìn)展
        雪靈芝的研究進(jìn)展
        科技視界(2016年9期)2016-04-26 12:19:35
        雙齒圍沙蠶化學(xué)成分及其浸膏抗腫瘤活性的研究
        国产高清大片一级黄色| 亚洲国产日韩精品综合| 极品av在线播放| 国产一区二区三区杨幂| 中文字幕亚洲精品一二三区| 精品在线亚洲一区二区三区| 一区二区三区极品少妇| 日本一区二区三区区视频| 国产高清一区在线观看| 熟女少妇精品一区二区三区| 色与欲影视天天看综合网| 夫妇交换性三中文字幕| 精品少妇人妻av无码专区| 天天爽夜夜爽夜夜爽| 亚洲av色无码乱码在线观看| 亚洲一区二区综合色精品| 日韩亚洲中文图片小说| 亚洲AV日韩AV高潮喷潮无码| 国产专区亚洲专区久久| 国产精品videossex久久发布| 99久久精品费精品国产一区二| 图片区小说区激情区偷拍区| 久久丫精品国产亚洲av| 日韩欧美第一页| 午夜精品久视频在线观看| 日韩精品一二区在线视频| 久久开心婷婷综合中文| 一区二区三区日本伦理| 真人做爰试看120秒| 内射人妻视频国内| 亚洲精品久久久久高潮| 精品国产福利久久久| 日韩AV无码乱伦丝袜一区| 日本特殊按摩在线观看| 91久久综合精品久久久综合| 亚洲a∨无码精品色午夜| 久久成人国产精品免费软件 | 麻豆成人久久精品二区三区免费| 国产一区二区三区不卡在线观看 | 欧美一区二区三区久久综| 伦人伦xxxx国语对白|