胡蘭花,于 韜, 徐婷婷, 宋加哲,張 亞,范國光*
(1.中國醫(yī)科大學(xué)附屬第一醫(yī)院放射科,3.神經(jīng)內(nèi)科,遼寧 沈陽 110001;2.遼寧省腫瘤醫(yī)院放射科,遼寧 沈陽 110042)
動態(tài)磁敏感對比增強MRI和動態(tài)對比增強MRI鑒別診斷膠質(zhì)瘤復(fù)發(fā)和放射性腦損傷
胡蘭花1,于 韜2, 徐婷婷3, 宋加哲1,張 亞1,范國光1*
(1.中國醫(yī)科大學(xué)附屬第一醫(yī)院放射科,3.神經(jīng)內(nèi)科,遼寧 沈陽 110001;2.遼寧省腫瘤醫(yī)院放射科,遼寧 沈陽 110042)
目的 探討動態(tài)磁敏感對比增強MRI(DSC-MRI)及動態(tài)對比增強MRI(DCE-MRI)在鑒別腦膠質(zhì)瘤術(shù)后放化療后復(fù)發(fā)和放射性腦損傷中的臨床應(yīng)用價值。方法 對19例經(jīng)臨床病理確診為腦膠質(zhì)瘤患者在術(shù)后、放化療前、放化療后定期行DSC及DCE檢查,得到相關(guān)的血流動力學(xué)參數(shù)值并將灌注成像影像診斷結(jié)果與臨床最終診斷結(jié)果對照,分析各灌注參數(shù)在鑒別診斷中的價值。結(jié)果 11例為膠質(zhì)瘤復(fù)發(fā),8例為放射性腦損傷。膠質(zhì)瘤復(fù)發(fā)患者的rCBF、rCBV、Ktrans、Ve及riAUC值均明顯高于放射性腦損傷患者(P均<0.05);而Kep、Vp值在膠質(zhì)瘤復(fù)發(fā)或放射性腦損傷患者差異無統(tǒng)計學(xué)意義(P=0.37、0.22)。Ktrans聯(lián)合rCBV共同診斷,并、串聯(lián)試驗中鑒別診斷的敏感度分別為90.9%、72.7%;特異度分別為62.5%、100%。結(jié)論 DCE及DSC均可鑒別腫瘤復(fù)發(fā)或放射性腦損傷。Ktrans、riAUC及rCBV診斷效能略高于Ve及rCBF,聯(lián)合應(yīng)用rCBV及Ktrans可提高診斷正確率。
膠質(zhì)瘤;復(fù)發(fā);腦損傷;磁共振成像
高級別膠質(zhì)瘤呈浸潤性生長,易復(fù)發(fā),目前的標準治療方法是在保證顱腦功能正常情況下最大安全范圍內(nèi)切除腫塊,并輔以術(shù)后放療和/或同步化療[1],但長期放化療可導(dǎo)致大腦組織受損[2-3],需要擴張血管、應(yīng)用激素等對癥處理,常有較好的結(jié)局及生存期,若誤診為復(fù)發(fā)且采取手術(shù)治療將給患者帶來極大的傷害,因此,能否通過無創(chuàng)、簡便的方法早期判斷腫瘤強化灶的性質(zhì)具有重要臨床意義。本研究探討動態(tài)磁敏感對比增強成像(dynamic susceptibility contrast perfusion MRI, DSC-MRI)聯(lián)合動態(tài)對比增強磁共振成像(dynamic contrast-enhanced permeability MRI, DCE-MRI)鑒別診斷顱腦膠質(zhì)瘤術(shù)后放化療后強化病灶性質(zhì)的臨床價值。
1.1 一般資料 收集2014年9月—2016年3月在我院確診為腦膠質(zhì)瘤的患者19例,均于術(shù)后3周開始行放射治療和/或替莫唑胺同步化療。其中男11例、女8例,年齡34~66歲,平均(51.4±9.6)歲。WHO分級為Ⅲ級5例、Ⅲ~Ⅳ級3例、Ⅳ級11例?;颊呔谛g(shù)后(2周內(nèi))、放化療前(3周內(nèi))、放化療后(1、3、6、12個月)定期行MR檢查,根據(jù)二次手術(shù)病理或長期隨訪結(jié)果確定術(shù)后出現(xiàn)的異常強化灶的性質(zhì),分為術(shù)后復(fù)發(fā)組和放射性腦損傷組。
1.2 儀器與方法 采用Siemens Verio 3.0T超導(dǎo)型MR掃描儀,頭顱8通道相控陣列線圈。先行常規(guī)MR平掃。DSC-MRI采用GRE-EPI序列,TR 2 800 ms,TE 20 ms,層厚3.6 mm,連續(xù)掃描30個期像,第6期相開始經(jīng)肘靜脈由高壓注射器以3.5 ml/s的速度注入5 ml釓噴酸葡胺(Gd-DTPA),后立即以同樣的速率注入10 ml生理鹽水,總掃描時間約90 s。DCE-MRI采用三維容積式內(nèi)插值法屏氣檢查(VIBE)序列,TR 3.87 ms,TE 1.36 ms,層厚3.6 mm,注射對比劑前掃描兩組翻轉(zhuǎn)角分別為2°、15°的圖像,各得到1期圖像;動態(tài)增強時翻轉(zhuǎn)角為12°。掃描范圍包括整個腫瘤及周圍水腫區(qū),連續(xù)掃描40個時相,第6個時相開始經(jīng)肘靜脈由高壓注射器以2 ml/s的速度注入0.1 mmol/kg體質(zhì)量Gd-DTPA,后立即以同樣的速率注入相同劑量的生理鹽水,總掃描時間約160 s。再行T1WI常規(guī)增強掃描。
1.3 圖像分析 由2名高級職稱放射科醫(yī)師共同判定膠質(zhì)瘤患者術(shù)后放化療后出現(xiàn)異常強化灶的范圍,并在與常規(guī)軸位增強顯示強化范圍最大層面相對應(yīng)的灌注成像圖像(DSC、DCE)上分別勾勒相應(yīng)的ROI,建立所有ROI隨時間變化的關(guān)系,ROI的平均面積為10 mm2,主要測量腫瘤實質(zhì)內(nèi)強化區(qū)域,避開血管、出血、囊變及壞死區(qū)域,每個ROI分別測量5次,取其平均值。DCE采用Kinetic Modeling-version 3.0滲透分析軟件、Extend Tofts Model血流動力學(xué)模型,得到DCE參數(shù)值及對應(yīng)的功能性偽彩圖,DCE參數(shù)包括容積轉(zhuǎn)運常數(shù)(volume transfer constant, Ktrans)、血管外細胞外間隙容積分數(shù)(volume fraction of extravascular extracellular space,Ve)、時間-信號強度曲線下面積(initial area under the signal intensity-time curve, riAUC)、速率常數(shù)(transfer constant from the extracellular extravascular space into the plasma, Kep)、血漿空間容積分數(shù)(blood plasma volume, Vp);DSC采用Siemens Perfusion軟件在相應(yīng)ROI得到相關(guān)參數(shù)值及對應(yīng)的功能性偽彩圖,DSC參數(shù)包括相對腦血容量 (relative cerebral blood volume, rCBV)、相對腦血流量(relative cerebral blood flow, rCBF)。
1.4 統(tǒng)計學(xué)分析 采用SPSS 17.0統(tǒng)計分析軟件。對膠質(zhì)瘤術(shù)后復(fù)發(fā)組和放射性腦損傷組異常強化區(qū)域的血流動力學(xué)參數(shù)差異的比較采用兩獨立樣本t檢驗;采用ROC曲線評價各參數(shù)鑒別診斷的診斷效能,并應(yīng)用串、并聯(lián)試驗探討聯(lián)合診斷的價值。P<0.05為差異有統(tǒng)計學(xué)意義。
本研究患者均于臨床長期隨訪(>12個月)或二次手術(shù)病理證實。8例經(jīng)隨訪證實為放射性腦損傷(放射性腦損傷組),其中5例(圖1)異常強化灶范圍較前減小或消失,占位效應(yīng)減輕,周圍水腫明顯減輕,頭痛及神經(jīng)功能障礙等臨床癥狀逐漸好轉(zhuǎn),3例較前變化不大;11例為膠質(zhì)瘤術(shù)后復(fù)發(fā)(術(shù)后復(fù)發(fā)組),其中2例經(jīng)病理確診,9例(圖2)經(jīng)臨床長期隨訪證實,異常強化灶強化范圍較前擴大,水腫程度較前擴大,占位效應(yīng)及臨床癥狀加重。
2.1DSC-MRI和DCE-MRI參數(shù)比較及ROC曲線分析 腦膠質(zhì)瘤術(shù)后復(fù)發(fā)組患者DSC參數(shù)rCBV、rCBF明顯高于放射性腦損傷組患者(P均<0.05)。以rCBV=2.31、rCBF=1.82為界值,診斷膠質(zhì)瘤復(fù)發(fā)的敏感度分別為81.8%、72.7%;特異度分別為87.5%、87.5%;ROC曲線下面積分別為0.81(P=0.03),0.65(P=0.28)。膠質(zhì)瘤復(fù)發(fā)患者DCE參數(shù)Ktrans、Ve明顯高于放射性腦損傷患者(P均=0.02)。以Ktrans=1.47 min-1、Ve=0.97%為界值,診斷膠質(zhì)
瘤復(fù)發(fā)的敏感度分別為81.8%、90.9%;特異度為75.0%、62.5%;ROC曲線下面積為0.83(P=0.02),0.80(P=0.03)。膠質(zhì)瘤復(fù)發(fā)患者riAUC高于放射性腦損傷患者(P=0.01),以riAUC=0.43 mM/s為界值,診斷膠質(zhì)瘤復(fù)發(fā)的敏感度為90.9%,特異度為75.0%,ROC曲線下面積為0.89(P=0.01)。而Kep、Vp在術(shù)后復(fù)發(fā)組與放射性腦損傷組的差異無統(tǒng)計學(xué)意義(P=0.37、0.22)。見表1、圖3。
2.2 Ktrans聯(lián)合rCBV診斷膠質(zhì)瘤術(shù)后復(fù)發(fā)或放射性腦損傷效能分析 并聯(lián)試驗中,當Ktrans值>1.47 min-1或rCBV>2.31時,診斷膠質(zhì)瘤復(fù)發(fā)的敏感度90.9%,特異度62.5%;串聯(lián)試驗中,當Ktrans值>1.47 min-1或rCBV>2.31時,診斷膠質(zhì)瘤復(fù)發(fā)的敏感度72.7%,特異度100%。Ktrans聯(lián)合rCBV共同診斷可提高鑒別診斷效能。
表1 放射性腦損傷組和術(shù)后復(fù)發(fā)組DSC和DCE相關(guān)血流動力學(xué)參數(shù)的比較±s)
圖1 患者女,56歲,膠質(zhì)母細胞瘤(WHO Ⅳ級),經(jīng)隨訪證實為放射性腦損傷 A~B.放化療后3.5個月T2WI、T1WI增強圖像,左側(cè)顳枕葉大片狀長T1長T2信號,增強后邊緣環(huán)狀不規(guī)則強化,鄰近腦膜強化明顯; C~E.分別為DCE定量參數(shù)Ktrans、Ve、riAUC偽彩圖,測值分別為Ktrans=1.19 min-1、Ve=0.33%、riAUC=0.12 mM/s; F~H.放化療后6個月T2WI、FLAIR、T1WI增強圖像,左側(cè)顳葉大片狀長T1長T2信號,增強后病變周圍強化減弱,強化范圍減小
圖2 患者女,41歲,膠質(zhì)母細胞瘤(WHO Ⅳ級),經(jīng)隨訪證實為膠質(zhì)瘤復(fù)發(fā) A.T2WI示左側(cè)額頂顳葉、胼胝體壓部見團片狀混雜長T2信號,周圍見大片狀水腫; B.T1WI增強示術(shù)區(qū)殘余灶的邊緣線狀不規(guī)則強化; C.T1WI增強示病灶呈不均勻花環(huán)狀強化; D~F.分別為DCE定量參數(shù)Ktrans、Ve、riAUC偽彩圖,測值分別為Ktrans=1.99 min-1、Ve=2.23%、riAUC=1.45 mM/s; G、H.分別為DSC半定量參數(shù)rCBV、rCBF偽彩圖,測值分別為rCBV=3.79,rCBF=2.34
圖3 rCBV、 rCBF、Ktrans、Ve、riAUC鑒別膠質(zhì)瘤復(fù)發(fā)和放射性腦損傷的ROC曲線
膠質(zhì)瘤患者術(shù)后腦部接受放療和/或聯(lián)合化療后可出現(xiàn)如腦水腫、輻射性腦白質(zhì)損傷、脫髓鞘改變等現(xiàn)象,包括假性進展和放射性壞死,常常出現(xiàn)在治療結(jié)束后的3個月內(nèi),也可在放化療后數(shù)月甚至數(shù)年后出現(xiàn)。隨著新型化療藥物替莫唑胺在惡性膠質(zhì)瘤患者中的應(yīng)用,治療后2年患者的生存期明顯提高[4],但手術(shù)切除后標準的放療聯(lián)合替莫唑胺同步化療引起腦損傷的發(fā)生率也顯著增加。目前認為腦放射性壞死是由于放化療等治療因素或腫瘤細胞DNA破壞,血管內(nèi)皮細胞死亡,局部炎癥反應(yīng)、水腫,血管反應(yīng)性增生引起血腦屏障的通透性增強,其影像表現(xiàn)為原腫瘤或治療區(qū)域強化范圍擴大,但數(shù)月后強化區(qū)域可明顯減小、消失或不變,引起的占位效應(yīng)及臨床癥狀也不顯著。腫瘤復(fù)發(fā)是腫瘤細胞迅速增生,其分泌的血管內(nèi)皮細胞生長因子促進血管增生,新生的血管內(nèi)皮細胞通透性增加[5],影像表現(xiàn)為原腫瘤手術(shù)區(qū)域強化范圍增加20%以上,常伴有結(jié)節(jié)狀強化團塊,周圍水腫范圍擴大,占位效應(yīng)明顯。放射性腦損傷與腫瘤復(fù)發(fā)的臨床表現(xiàn)相似(均表現(xiàn)為神經(jīng)功能障礙、頭痛等癥狀),而常規(guī)的增強MR只能判定術(shù)區(qū)及腫瘤放射野有無水腫、血腦屏障有無損傷。
DSC是最常見的灌注成像方法,研究[6]認為DSC鑒別診斷膠質(zhì)瘤復(fù)發(fā)或放射性腦損傷有重要價值。由于腫瘤復(fù)發(fā)時細胞代謝極度旺盛,刺激血管內(nèi)皮生長因子的釋放,血管數(shù)量快速增加,血管密度增加,而輻射所致腦組織的損傷無新生血管,常常導(dǎo)致血管內(nèi)皮細胞受損或壞死、滲透性略增加,血流灌注較對側(cè)減少,因此可以通過檢測病側(cè)血管內(nèi)的血流量、血容量與正常腦組織的差異分析病變的性質(zhì)。本研究中腫瘤復(fù)發(fā)的病變側(cè)rCBV、rCBF高于放射性腦損傷,rCBF診斷效能低于rCBV,與Barajas等[7]研究結(jié)果大致相同,認為rCBV是診斷鑒別放療后的高級別膠質(zhì)瘤復(fù)發(fā)與放射性腦損傷的最重要參數(shù)。DSC是基于血腦屏障完整情況下的單室血流動力學(xué)模型,未考慮到高級別膠質(zhì)瘤可能破壞血腦屏障導(dǎo)致部分對比劑滲漏到血管外,造成對rCBV、rCBF的低估,且對比劑和信號之間缺乏線性定量關(guān)系,采用的GER-EPI序列易受大血管與骨骼產(chǎn)生的磁敏感偽影影響,致位于顱底的病變顯示欠佳。
DCE以雙室血流動力學(xué)為模型[8],通過線性定量分析血管內(nèi)皮細胞的滲透量,聯(lián)合多個參數(shù)評估腫瘤微環(huán)境的變化,反映腫瘤新生不成熟血管的滲漏情況[9]。Ktrans是DCE中最重要的定量參數(shù)指標,與血管內(nèi)皮細胞的數(shù)量、表面積、滲漏情況密切相關(guān)。riAUC是描繪對比劑進入血管及滯留在血管中組織信號強度隨時間變化的半定量參數(shù),可反映ROI的血容量。Ve是單位體積的血管外細胞外間隙,反映腫瘤細胞所占的比例。Bisdas等[10]以Ktrans值>0.19 min-1診斷腫瘤復(fù)發(fā)的敏感度為100%,特異度為83%,而riAUC>15.35 mM/s時,判定為復(fù)發(fā)的敏感度和特異度均為71%。本研究結(jié)果與前者大致相同,且Ktrans、riAUC的診斷效能差異不大,較Ve的診斷效能高,而Cha等[11]則認為Ve無法鑒別膠質(zhì)瘤復(fù)發(fā)或放射性損傷(P>0.05)。本研究中Kep、Vp值鑒別膠質(zhì)瘤復(fù)發(fā)與放射性腦損傷間差異無統(tǒng)計學(xué)意義,與Shin等[12]研究結(jié)果一致。
本研究患者均于術(shù)后2周內(nèi)復(fù)查MR,術(shù)后3周接受放化療,排除、避免術(shù)后殘腔的炎性反應(yīng)性強化影響對術(shù)區(qū)后續(xù)隨訪過程中增加的異常強化灶范圍的判定。本研究通過對比兩組灌注成像的時間-信號強度曲線及灌注成像相關(guān)的血流動力學(xué)參數(shù),探討并比較這兩種無創(chuàng)性灌注成像在鑒別膠質(zhì)瘤復(fù)發(fā)或放射性腦損傷的臨床應(yīng)用價值。以往有關(guān)研究[13-14]主要應(yīng)用單一的新技術(shù)或聯(lián)合DWI、DTI、核醫(yī)學(xué)(如FDG-PET、MET-PET和99Tcm-Tetrofosmin SPECT)等,較少有聯(lián)合兩組灌注成像的研究。對比兩組灌注成像參數(shù)與最終病理或隨訪結(jié)果顯示,DSC及DCE均可用于鑒別膠質(zhì)瘤復(fù)發(fā)或放射性損傷。單獨診斷時的rCBV診斷效能略高于Ktrans,Ktrans聯(lián)合rCBV共同診斷可提高鑒別診斷效能。DSC通過評價血管屏障未受損時腫瘤側(cè)血管的rCBV、rCBF,而DCE則評估新生血管的滲透性,聯(lián)合兩種灌注成像技術(shù)可更全面的反映病變的血流性質(zhì)。
本研究亦存在一定的局限性:①樣本量較小,特別是放射性腦損傷患者;②后處理中人工勾畫ROI未考慮到腫瘤異質(zhì)性的差異產(chǎn)生的選擇性偏倚;③并不是每一個病例都有病理診斷,部分病例只能通過隨訪證實;④DCE的血流動力學(xué)復(fù)雜、后處理模型類型較多且不統(tǒng)一,導(dǎo)致研究結(jié)果間可比性較差,診斷閾值無法準確界定。
總之,DCE及DSC均可鑒別腫瘤復(fù)發(fā)或放射性腦損傷。Ktrans、riAUC及rCBV診斷效能略高于Ve及rCBF,聯(lián)合應(yīng)用rCBV和Ktrans可提高診斷正確率。
[1] Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005,352(10):987-996.
[2] Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: Conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol, 2005,26(8):1967-1972.
[3] Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol, 2006,24(8):1273-1280.
[4] Matthias H, Grossman SA. Controversies in the adjuvant therapy of high-grade gliomas. Oncologist, 2011,16(3):351-358.
[5] Oh BC, Pagnini PG, Wang MY, et al. Stereotactic radiosurgery: Adjacent tissue injury and response after high-dose single fraction radiation: Part Ⅰ-Histology, imaging, and molecular events. Neurosurgery, 2007,60(1):31-44.
[6] Cha S, Lupo JM, Chen MH, et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol, 2007,28(6):1078-1084.
[7] Barajas J, Chang JS, Segal MR, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology, 2009,253(2):486-496.
[8] Zwick S, Brix G, Tofts PS, et al. Simulation-based comparison of two approaches frequently used for dynamic contrast-enhanced MRI. Eur Radiol, 2010,20(2):432-442.
[9] Jackson A, Haroon H, Zhu XP, et al. Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed, 2002,15(2):164-173.
[10] Bisdas S, Naegele T, Ritz R, et al. Distinguishing recurrent high-grade gliomas from radiation injury: A pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol, 2011,18(5):575-583.
[11] Cha S, Yang L, Johnson G, et al. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol, 2006,27(2):409-417.
[12] Shin KE, Ahn KJ, Choi HS, et al. DCE and DSC MR perfusion imaging in the differentiation of recurrent tumour from treatment-related changes in patients with glioma. Clin Radiol, 2014,69(6):e264-e272.
[13] Caroline I, Rosenthal MA. Imaging modalities in high-grade gliomas: Pseudoprogression, recurrence, or necrosis? J Clin Neurosci, 2012,19(5):633-637.
[14] Kim YH, Oh SW, Lim YJ, et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: Assessing the efficacy of F-18-FDG PET, C-11-methionine PET and perfusion MRI. Clin Neurol Neurosurg, 2010,112(9):758-765.
DSC-MRI and DCE-MRI in differentiating recurrent tumour from radiation-induced brain injuries in patients with glioma
HULanhua1,YUTao2,XUTingting3,SONGJiazhe1,ZHANGYa1,FANGuoguang1*
(1.DepartmentofRadiology, 3.DepartmentofNeurology,theFirstHospitalofChinaMedicalUniversity,Shenyang110001,China; 2.DepartmentofRadiology,LiaoningCancerHospital,Shenyang110042,China)
Objective To explore the clinical significance of dynamic susceptibility contrast (DSC) perfusion MRI and dynamic contrast-enhanced (DCE) permeability MRI in distinguishing radiation-induced brain injuries from recurrence in glioma patients. Methods Nineteen pathologically diagnosed glioma patients were performed MR scanning with DSC and DCE after surgery, before and after synchronous chemoradiotherapy. Hemodynamic parameter value were got, and the perfusion imaging results and the final clinical diagnosis were contrasted. The differential diagnostic values of the perfusion parameters were analyzed statistically. Results Eleven cases were recurrent glioma, while 8 cases were radiation-related injuries. The values of recurrent pateints including relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), volume transfer constant (Ktrans),volume fraction of extravascular extracellular space (Ve) and initial area under the signal intensity-time curve (riAUC) were significantly higher than those of radiation-induced brain injuries patients (allP<0.05). While there were no significantly statistical differences of transfer constant from the extracellular extravascular space into the plasma (Kep) and blood plasma volume (Vp) between glioma recurrence and radiation-induced injuries (P=0.37, 0.22). Combining the optimal parameters rCBV with Ktransin the differentiation diagnoses of the series and parallel tests, the sensitivity were 90.9%, 72.7%; while the specificity were 62.5%, 100% respectively. Conclusion Both DSC and DCE can distinguish glioma recurrence from radiation-induced brain injuries. The parameters Ktrans, riAUC and rCBV values seems to be slightly efficient in diagnosis than rCBF and Ve, while combined with Ktransand rCBV, the diagnostic accuracy may be improved.
Glioma; Recurrence; Brain injuries; Magnetic resonance imaging
遼寧省省直醫(yī)院臨床能力建設(shè)項目(LNCCC-B06-2014)。
胡蘭花(1990—),女,湖南衡陽人,在讀碩士。研究方向:中樞神經(jīng)系統(tǒng)影像診斷。現(xiàn)工作于武漢大學(xué)人民醫(yī)院放射科。
E-mail: hulanhua0520@sina.com
范國光,中國醫(yī)科大學(xué)附屬第一醫(yī)院放射科,110001。E-mail: fanguog@vip.sina.com
2016-06-04
2016-11-04
R739.41; R445.2
A
1003-3289(2017)01-0011-06
10.13929/j.1003-3289.201606085