林 潔,王 佳
(1.同濟大學 機械工程學院,上海 200092;2.博世電動工具(中國)有限公司,浙江 310052)
基于VisVSA技術的三維統(tǒng)計公差分析及應用
林 潔1,王 佳2
(1.同濟大學 機械工程學院,上海 200092;2.博世電動工具(中國)有限公司,浙江 310052)
圓鋸作為一種手持式電動工具,終端客戶對其切割精度和切割質(zhì)量提出越來越高的要求。因此在設計、制造和裝配過程中,需要對零部件的尺寸和公差進行詳細的分析和控制。使用VisVSA軟件建立起了一個圓鋸切割精度的數(shù)字化公差模型,并采用統(tǒng)計公差的方法對裝配過程進行仿真。可以在設計初期預測出偏差的數(shù)量和原因,這將有助于提高產(chǎn)品精度,加速研發(fā)過程,降低生產(chǎn)成本。
計算機輔助公差;VisVSA;統(tǒng)計公差;圓鋸
圓鋸是一種通過鋸片的旋轉(zhuǎn)運動來切割木材、金屬等材料的手持式電動工具。無論是做90°切割還是45°斜切,圓鋸配合導軌使用都是保證精度和直線度的最簡單的方法[1],如圖1所示。這樣可以減少后續(xù)的加工工序,確保相配的工件可以正確連接。配合導軌使用時,鋸片切割線與導軌滑槽之間的平行度直接影響到切割是否平順和被加工材料的表面質(zhì)量,如圖2所示。
圖1 圓鋸角度調(diào)整原理
圖2 鋸片切割線與導軌滑槽之間的平行度
因此在圓鋸設計中,知道尺寸鏈中各個組成環(huán)對鋸片切割線與導軌滑槽之間的平行度有多大影響是一個重要的問題。以往設計人員多是憑借經(jīng)驗進行公差分配,在批量生產(chǎn)之后才有可能判斷出公差設計是否合理。這個過程常常需要反復進行,既拖延了生產(chǎn)周期又使成本增加。而采用計算機輔助公差分析軟件VisVSA可以有效地解決這個問題。
在一個典型的圓鋸中,從導軌滑槽到鋸片之間有底板、旋轉(zhuǎn)連接部件、上護罩、軸承座、軸承、傳動軸和定位墊圈等零部件,如圖3所示。鋸片通過傳動系統(tǒng)與上護罩相連,上護罩又通過一套旋轉(zhuǎn)定位機構連接到底板上,以實現(xiàn)精確調(diào)節(jié)切割深度和切割角度的目的。
圖3 導軌和鋸片之間的裝配尺寸鏈
圖4 上護罩關鍵幾何特征的尺寸公差
為了能夠在所有旋轉(zhuǎn)角度及調(diào)整高度的狀態(tài)下,底板與導軌都可以正常配合使用,就要求鋸片的斜切旋轉(zhuǎn)軸線一直位于工件的切割線上。為實現(xiàn)這些要求,底板與上護罩之間的旋轉(zhuǎn)部件中有許多復雜的結構特征并標注了大量的幾何公差。鋸片通過定位墊圈、傳動軸及軸承連接到上護罩上,上護罩本身包含了軸承座的位置度、安裝孔的位置度、深度調(diào)節(jié)面的平面度等許多三維公差,如圖4所示。
由上述例子可見,尺寸鏈是由很多組成環(huán)構成,這些組成環(huán)并不在一條直線或者一個平面上,而是空間布局的三維公差。對于較長的尺寸鏈來說,傳統(tǒng)的極限公差模型不能反映實際情況,其主要缺點在于對單個組成環(huán)的公差要求很高,從而帶來昂貴的制造成本、復雜的檢測流程和較高的零件廢品率。而統(tǒng)計公差模型則可以在不犧牲質(zhì)量的前提下放寬組成環(huán)公差[2]。
2.1 VisVSA簡介
VisVSA是Siemens公司開發(fā)的一套三維統(tǒng)計公差軟件,它基于Monte Carlo方法,主要用于三維統(tǒng)計公差分析。VisVSA是一個強大的公差分析工具,用來對制造和裝配過程進行仿真,并可以對偏差的數(shù)量和原因進行預測。其中的數(shù)字樣機可以用來全面地表現(xiàn)幾何特征、產(chǎn)品偏差、裝配過程偏差(裝配次序、組件連接的定義、工裝等)以及測量要素。不需要制造出任何實物零件或者模具,使用數(shù)字樣機便可以預測裝配過程中可能出現(xiàn)的問題[3]。
Monte Carlo方法是VisVSA公差分析的理論基礎。VisVSA中公差分析的基本原理是在組成環(huán)公差范圍內(nèi)按照設定的概率分布生成一系列隨機數(shù),然后對其隨機抽樣,代入尺寸鏈方程即可求解出封閉環(huán)的一個樣本值。然后按照一定的置信水平設定的次數(shù)重復這個過程,從而得到封閉環(huán)的樣本集合。最后對封閉環(huán)樣本集進行統(tǒng)計處理便可得到封閉環(huán)尺寸的公差信息。Monte Carlo仿真對系統(tǒng)的復雜性不敏感,計算時間并不會因為系統(tǒng)變量的增多而有顯著增加[4]。
2.2 導入3D模型
導入VisVSA的3D模型需要是JT格式。這是一種廣泛應用在產(chǎn)品設計中有關產(chǎn)品可視化的公開的三維數(shù)據(jù)格式,它的特點是能在保留模型細節(jié)特征的同時維持比較小的文件體積。常用的CAD建模軟件如Pro/ E等都有相應的插件可以輸出為JT格式。在VisVSA中進行公差分析首先需要新建一個過程文件(Process Document),然后便可將其與對應的JT文件關聯(lián)起來。
2.3 建立公差模型,進行數(shù)字樣機的裝配仿真
VisVSA公差模型是基于零件幾何特征建立的,常用的特征有孔(Hole)、軸(Shaft)、槽(Slot)、肋板(Tab)和平面(Plane)等。在這些特征上以及特征之間可以標注幾何尺寸和公差,并建立零件之間的裝配關系。例如孔和軸、槽和肋板可以分別形成一對裝配特征。完成裝配之后,可以定義測量關系。在本例中我們選擇測量鋸片切割線和底板導軌滑槽之間的夾角(前述平行度)來衡量整個裝配鏈對切割精度的影響。
在VisVSA中每個特征的公差都可以根據(jù)實際需要定義它的分布,比如正態(tài)分布、均勻分布等。零件之間的連接關系也有多種選項供選擇,比如軸和孔就有相切、浮動、平行、重合等空間位置關系。這些特征、公差和裝配關系共同組成了一個數(shù)字樣機模型。然后按照Monte Carlo方法在定義的公差范圍內(nèi)隨機生成帶有不同偏差的數(shù)字樣機模型,并模擬實際裝配。這樣在很短時間內(nèi)即可通過仿真大量模型來獲取期望的測量值。本例的圓鋸公差模型在普通配置電腦上模擬裝配2000次數(shù)字樣機,只需要大概幾分鐘時間。
2.4 仿真結果
VisVSA可以給出測量結果的分布情況,如圖5所示。根據(jù)中心極限定理,在尺寸鏈較長的時候測量結果(即封閉環(huán))非常接近于正態(tài)分布[5]。仿真的結果包括均值、±3σ的數(shù)值以及過程控制指數(shù)Cp等。圖5是某一次仿真的結果,其中設計要求的切割精度180±0.3°(USL和LSL)外側(cè)為不合格區(qū)域。不合格比例較大時設計人員可以反復調(diào)整組成環(huán)公差,并多次運行仿真直到符合要求。仿真時如果采取High-Low-Medium選項,也可以給出極限公差的結果。極限公差的上下限范圍一般會遠大于設計要求的切割精度范圍,而在實際當中接近上下限的情況卻很少出現(xiàn)。如果依據(jù)極限公差設計切割精度,將對加工和裝配工藝有極高的要求,這必然帶來很大的成本壓力,甚至現(xiàn)有工藝無法滿足設計精度。而采用統(tǒng)計公差方法,雖然理論上會有少量不合格產(chǎn)品,但在整體上卻可以采用較低的公差等級,可顯著降低成本。
圖5 鋸片切割線和導軌滑槽之間夾角的分布范圍
除此之外,更有用的是VisVSA還可以給出各個尺寸鏈組成環(huán)對最終測量結果的貢獻度大小。如圖6所示,在貢獻度列表中有幾十個產(chǎn)生影響的組成環(huán)公差,并給出了對應的貢獻度百分比。貢獻度列表中排列靠前的公差屬于關鍵公差,在這個例子中,定位墊圈的端面全跳動、上護罩軸承孔的位置度和垂直度、傳動軸的全跳動等對切割精度有較大的影響。對這幾個關鍵公差進行嚴格控制,就可以顯著提高切割精度。另一方面,可以將表格中后面很多貢獻度很小的非關鍵公差適當放寬,這樣并不會影響到最終的切割精度,卻可以大大節(jié)省生產(chǎn)成本。
圖6 尺寸鏈各組成環(huán)的貢獻度
將VisVSA中的公差分析方法應用到電動工具行業(yè)是一次新的嘗試。圓鋸中這條切割精度的尺寸鏈包含了上百個組成環(huán),只有采用統(tǒng)計公差方法結合計算機技術,才可能得到比較真實的公差分析結果,用于指導設計和生產(chǎn)。本文建立了圓鋸的公差模型,可以篩選出影響切割精度的關鍵組成環(huán)。在產(chǎn)品開發(fā)的初期便可以據(jù)此控制好關鍵尺寸公差以保證質(zhì)量,并適當放寬非關鍵尺寸公差以降低成本。
[1] Circular Saw Guide Rail[EB/OL].http://www.toolstop.co.uk/whyhow-to-use-a-circular-saw-and-a-guide-rail-a1211.
[2] Tolerance Analysis[EB/OL].http://en.wikipedia.org/wiki/ Tolerance_analysis.
[3] Variation Analysis[EB/OL].http://www.plm.automation.siemens. com/en_us/products/tecnomatix/manufacturing-planning/ dimensional-quality/variation-analysis.shtml.
[4] Monte Carlo method[EB/OL].http://en.wikipedia.org/wiki/Monte_ Carlo_method.
[5] Fritz Scholz,Tolerance Stack Analysis Methods[Z].1995.
3D statistical tolerance analysis and application based on VisVSA
LIN Jie1, WANG Jia2
TH124
:A
1009-0134(2017)01-0099-03
2014-07-24
林潔(1984 -),女,浙江人,工程師,本科,研究方向為計算機模擬產(chǎn)品三維統(tǒng)計公差計算及優(yōu)化。