蔣雯倩
摘要: 近年來(lái),隨著大量電力電子元件及其它非線性設(shè)備的使用,使得電網(wǎng)諧波污染嚴(yán)重惡化,已經(jīng)影響到用電設(shè)備,諧波問(wèn)題已經(jīng)與電磁干擾、功率因數(shù)降低并列為電力系統(tǒng)中的三大公害。ADE7878作為三相電能表測(cè)量IC,因其精度高、使用靈活而在電網(wǎng)信號(hào)分析中得到廣泛應(yīng)用,但由于采樣間隔設(shè)置上的缺陷,其在諧波分析中存在明顯不足。針對(duì)這個(gè)問(wèn)題,本文提出一種加權(quán)截取及樣條插值的電力系統(tǒng)諧波快速分析方法,在保證計(jì)算精度的前提下,提高了效率,實(shí)驗(yàn)證明最終的諧波分析結(jié)果正確。
Abstract: In recent years, with the use of a large number of power electronic components and other nonlinear devices, the harmonic pollution has affected the serious deterioration, which has affects the electrical equipment. The harmonic problem has become the three major pollutions in the power system with electromagnetic interference and power factor reduction. As a three-phase electric energy meter measurement, ADE7878 is widely used in the power grid signal analysis because of its high precision and flexible method. However, due to the defects of the sampling interval, there are obvious deficiencies in harmonic analysis. Aimed at this problem, this paper proposes a rapid analysis method for power system harmonic based on the weighted interception and spline interpolation. It can ensure the accuracy and improve the efficiency. The final experiment proves that the harmonic analysis results are correct.
關(guān)鍵詞: ADE7878;加權(quán)截??; 樣條插值;FFT;諧波快速分析
Key words: ADE7878;weighted interception;spline interpolation;FFT;rapid analysis of harmonic
中圖分類號(hào):TM933.4 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-4311(2017)02-0154-05
0 引言
近年來(lái),隨著大量電力電子元件及其它非線性設(shè)備的使用[1],使得電網(wǎng)諧波污染嚴(yán)重惡化,已經(jīng)影響到用電設(shè)備,諧波問(wèn)題已經(jīng)與電磁干擾、功率因數(shù)降低并列為電力系統(tǒng)中的三大公害。及時(shí)準(zhǔn)確地掌握電網(wǎng)中的諧波分量參數(shù)[2],才能為諧波治理提供良好的依據(jù),維護(hù)電網(wǎng)的安全運(yùn)行。
ADE7878作為三相電能測(cè)量IC,因其精度高、使用靈活而在電網(wǎng)信號(hào)分析中得到廣泛應(yīng)用[3],但其在諧波分析中存在明顯不足。ADE7878的采樣間隔為125us,每個(gè)周波采樣160個(gè)點(diǎn),不是2的整數(shù)冪,因而無(wú)法進(jìn)行常規(guī)基-2FFT運(yùn)算,這也限制了其在電能質(zhì)量分析中的應(yīng)用。
在進(jìn)行FFT變換時(shí),通常要求采樣點(diǎn)數(shù)N是2的整數(shù)冪,不滿足這個(gè)條件時(shí)可以直接進(jìn)行DFT運(yùn)算,但是計(jì)算效率較低;也可以通過(guò)簡(jiǎn)單增添有限長(zhǎng)的零取樣序列來(lái)使N為2的整數(shù)冪,但對(duì)于ADE7878的應(yīng)用,N=160,28=256,27=228,需補(bǔ)零96個(gè)點(diǎn),頻譜會(huì)發(fā)生很大變化,從計(jì)算的效率上看也不經(jīng)濟(jì)。本文提出一種針對(duì)ADE7878采樣特點(diǎn)的快速精確計(jì)算電力系統(tǒng)諧波參數(shù)的方法和裝置。
為克服ADE7878在諧波分析方面存在的上述不足,本文提供一種電力系統(tǒng)諧波快速分析方法及運(yùn)行裝置。本算法中采用漢寧窗對(duì)電壓、電流采樣數(shù)據(jù)進(jìn)行加權(quán)截取,對(duì)截取的信號(hào)進(jìn)行組合數(shù)FFT,先進(jìn)行常規(guī)基-2FFT變換,再進(jìn)行5點(diǎn)DFT變換,在保證計(jì)算精度的前提下,提高了效率。在此基礎(chǔ)上通過(guò)插值修正,得到最終的準(zhǔn)確的諧波分析結(jié)果。
1 基于ADE7878智能電表硬件設(shè)計(jì)
ADE7878是Analog Device公司(ADI)設(shè)計(jì)生產(chǎn)的一款高精度多功能三相電能計(jì)量專用芯片,內(nèi)置多個(gè)二階型模數(shù)轉(zhuǎn)換器、數(shù)字積分器、基準(zhǔn)電壓源電路和所必需的信號(hào)處理電路,可以實(shí)現(xiàn)對(duì)電網(wǎng)基本電參量的測(cè)量以及對(duì)電網(wǎng)電能質(zhì)量進(jìn)行監(jiān)測(cè)的功能[4]。
ADE7878可以工作在三線制或四線制系統(tǒng)中[5],而且對(duì)電路的接法也不受限制,可以對(duì)電網(wǎng)運(yùn)行的電參量數(shù)據(jù)進(jìn)行實(shí)時(shí)采集并發(fā)送到上層控制芯片,方便控制芯片對(duì)電參量數(shù)據(jù)進(jìn)行后續(xù)處理。ADE7878的電壓和電流通道[6]為24bit 型ADC,電壓和電流有效值在動(dòng)態(tài)范圍為1000:1的動(dòng)態(tài)下小于0.1%,電能在動(dòng)態(tài)1000:1下小于0.1%,在動(dòng)態(tài)3000:1下小于0.2%。ADE7878與上層控制芯片之間具有多種靈活的通信方式,如SPI、I2C和HSDC。ADE7878提供四種工作模式[7],其中有一種正常模式和三種低功耗模式,這樣可以保證系統(tǒng)在斷電情況下能及時(shí)作出相應(yīng)的處理,提高了系統(tǒng)整體的穩(wěn)定性。
1.1 基于ADE7878智能電表硬件整體設(shè)計(jì)
由于ADE7878具有工作環(huán)境多樣、測(cè)量精度高、通信接口靈活等優(yōu)點(diǎn),使得ADE7878在電力儀器儀表中的應(yīng)用十分廣泛。
智能電表的硬件電路設(shè)計(jì)包含以下幾個(gè)部分:DSP最小系統(tǒng)設(shè)計(jì)、信號(hào)采樣電路設(shè)計(jì)、實(shí)時(shí)時(shí)鐘電路設(shè)計(jì)、數(shù)據(jù)存儲(chǔ)電路設(shè)計(jì)、RS485通信電路設(shè)計(jì)、外圍控制電路設(shè)計(jì)以及智能電表供電電源設(shè)計(jì)。ADE7878智能電表硬件整體設(shè)計(jì)如圖1所示。
本文智能電表采用ADE7878電能計(jì)量芯片進(jìn)行相關(guān)電參量數(shù)據(jù)的采集。ADE7878采用3.3V供電,外加16.384MHz石英晶體振蕩器,待測(cè)電流信號(hào)采用差分形式輸入,待測(cè)電壓信號(hào)采用單端輸入方式,電壓、電流信號(hào)輸入范圍為-0.5V~0.5V。ADE7878的I/O最大耐壓為±2V,因此需要添加相應(yīng)的保護(hù)電路。ADE7878的電路設(shè)計(jì)如圖2所示。
圖2中,IAP/IAN、IBP/IBN、ICP/ICN、INP/INN分別對(duì)應(yīng)A、B、C三相電流和零線電流經(jīng)過(guò)轉(zhuǎn)換后的差分電壓輸入信號(hào)。VAP、VBP、VCP、VN對(duì)應(yīng)的是A、B、C三相電壓輸入信號(hào)和零線電壓輸入信號(hào),這些信號(hào)輸入口的最大電壓變化范圍是-0.5V~0.5V。REF為ADE7878基準(zhǔn)電壓的參考引腳,通過(guò)此引腳可以訪問(wèn)片內(nèi)基準(zhǔn)電壓源。片內(nèi)基準(zhǔn)電壓的標(biāo)稱值為1.2V,也可以在此引腳上連接1.2V±8%的外部基準(zhǔn)電壓源。這兩種情況下,都需要外加一個(gè)4.7uF鉭電容和一個(gè)0.1uF的陶瓷電容并聯(lián)來(lái)對(duì)此引腳進(jìn)行去耦。芯片復(fù)位后,使能片內(nèi)1.2V基準(zhǔn)電壓源。
1.2 電壓信號(hào)采樣電路設(shè)計(jì)
電壓信號(hào)采樣電路的設(shè)計(jì)是信號(hào)采集電路的關(guān)鍵部分之一[8]。根據(jù)智能電表的需求分析,配電網(wǎng)一側(cè)的設(shè)計(jì)參考電壓范圍為3×65V~465V。在第二章中,已經(jīng)對(duì)電壓信號(hào)采樣的方案設(shè)計(jì)做出了說(shuō)明,本文中電壓信號(hào)采集選擇高精度電壓互感器完成。使用電壓互感器進(jìn)行電壓信號(hào)采樣電路設(shè)計(jì),會(huì)產(chǎn)生一定的相位延遲,并且不同的設(shè)計(jì)方法產(chǎn)生的測(cè)量相位延遲也不同,但均可以在后續(xù)軟件設(shè)計(jì)中進(jìn)行修正。
本文選擇的是電壓互感器是山東力創(chuàng)公司設(shè)計(jì)生產(chǎn)的一款高精度電流型電壓互感器LCTV31CE-2mA/2mA。這種電壓互感器的一次側(cè)和二次側(cè)的電流比為1:1,環(huán)路額定電流值為2mA,互感器體積小,電路設(shè)計(jì)較為簡(jiǎn)單。
由于ADE7878的電壓測(cè)量輸入范圍是-0.5V~0.5V,電流型電壓互感器的二次側(cè)額定回路電流為2mA,因此,選擇249Ω(1%)精密電阻作為電壓互感器二次側(cè)取樣電阻比較合適。由于電壓互感器二次側(cè)和一次側(cè)的回路電流為1:1,因此選擇249kΩ(1%)精密電阻作為電壓互感器一次側(cè)的限流電阻較為合適[9]。這樣設(shè)計(jì)可以使得一次側(cè)輸入電壓上限達(dá)到500V,完全可以滿足配電網(wǎng)65V~465V的設(shè)計(jì)參考電壓需求。
通過(guò)電壓互感器、限流電阻、取樣電阻,已經(jīng)將配電網(wǎng)的交流大電壓信號(hào)轉(zhuǎn)換成了可測(cè)量交流小電壓信號(hào),但待測(cè)信號(hào)送入ADE7878芯片之前還要經(jīng)過(guò)濾波電路和信號(hào)調(diào)理電路,使得輸入信號(hào)便于測(cè)量。電壓信號(hào)采樣電路設(shè)計(jì)如圖3所示。
由于電壓互感器的使用,會(huì)使得測(cè)量的信號(hào)與實(shí)際信號(hào)之間存在較大的相位誤差,圖3中所示的電壓采樣電路,電壓信號(hào)的相位延遲在30°左右。可以對(duì)這個(gè)電壓信號(hào)采集電路進(jìn)行改進(jìn),改進(jìn)后的電壓采樣電路如圖4所示。
按照改進(jìn)后的電壓采樣電路進(jìn)行電壓測(cè)量,可將信號(hào)的相位延遲控制在5°左右。
1.3 電流信號(hào)采樣電路設(shè)計(jì)
對(duì)于交流電流信號(hào)的測(cè)量,最后送入ADE7878的電流信號(hào)為差分電壓信號(hào)的形式,因此需要將交流電流信號(hào)變換為差分電壓信號(hào)的形式。根據(jù)智能電表的需求分析,配電網(wǎng)一側(cè)的設(shè)計(jì)參考額定電流為5A~20A,并且有一定的過(guò)流過(guò)載要求。
為了給設(shè)計(jì)留有余量,取樣電阻選擇15Ω(1%)的高精度金屬膜電阻。詳細(xì)電路設(shè)計(jì)如圖5所示。
圖5中,電流互感器的二次總負(fù)載為30Ω,遠(yuǎn)遠(yuǎn)低于LCTA21CE-40A/20mA所要求的二次側(cè)額定負(fù)載最大為100Ω,因此這樣的電路設(shè)計(jì)可以獲得較好的線性。
根據(jù)ADE7878元器件自身的特性,在ADE7878的信號(hào)輸入端,還應(yīng)該添加1kΩ和33nF的電容并聯(lián),進(jìn)一步對(duì)輸入信號(hào)進(jìn)行濾波去耦。
由于ADE7878的模擬信號(hào)輸入端有最大承受電壓
±2V的限制,因此在信號(hào)輸入端應(yīng)該添加電壓鉗位電路,以免影響測(cè)量精度,甚至燒壞元器件。本項(xiàng)目中所選的電壓鉗位元件是BAV99。±2V電壓產(chǎn)生電路如圖6所示。采用的是電阻分壓方式從±5V電源之間產(chǎn)生±2V電源。
2 基于加權(quán)截取及樣條插值的智能電表諧波快速分析算法
2.1 加權(quán)截取
2.1.1 電壓電流信號(hào)采樣
利用微處理器設(shè)置定時(shí)器中斷,每500us讀取一次ADE7878寄存器VAWV、VBWV、VCWV、IAWV、IBWV以及ICWV,連續(xù)采樣四個(gè)周期,獲得電力系統(tǒng)三相電壓、電流信號(hào)瞬時(shí)值序列vA(n)、vB(n)、vC(n)、iA(n)、iB(n)及iC(n),采樣點(diǎn)數(shù)N=60,離散采樣序號(hào)n∈[0,N-1]。
2.1.2 漢寧窗加窗截?cái)?/p>
3 實(shí)驗(yàn)及分析
本文所設(shè)計(jì)的智能電表電能質(zhì)量監(jiān)測(cè)功能包括監(jiān)測(cè)各相斷相、失流、過(guò)負(fù)荷、全失壓、電壓電流逆相序次數(shù)、各相電壓電流的2~19次諧波分析等。相對(duì)于其它電能質(zhì)量指標(biāo)來(lái)說(shuō),諧波含量是電能質(zhì)量中較為重要的一個(gè)指標(biāo)。本文在測(cè)試中重點(diǎn)對(duì)智能電表對(duì)電網(wǎng)諧波分析的功能進(jìn)行了詳細(xì)的測(cè)試。
本文中智能電表具備2~19次諧波分析功能。為了方便實(shí)驗(yàn)比對(duì),選擇美國(guó)福祿克公司設(shè)計(jì)生產(chǎn)的F434型三相諧波分析儀作為標(biāo)準(zhǔn)儀器用于實(shí)驗(yàn)數(shù)據(jù)對(duì)比。Fluke F434型三相諧波分析儀如圖8所示。在本文的實(shí)驗(yàn)設(shè)計(jì)中,由于ADE7878的采樣間隔為125us,每個(gè)周波采樣160個(gè)點(diǎn),不是2的整數(shù)冪,因而無(wú)法進(jìn)行常規(guī)基-2FFT運(yùn)算,故普通FFT采用的是以零補(bǔ)齊的方式,而本文提出的算法由于不受2的整數(shù)冪限制,沒(méi)有零補(bǔ)齊。由表1及圖9的實(shí)驗(yàn)結(jié)果可知,本文所提出的諧波分析算法經(jīng)標(biāo)準(zhǔn)諧波測(cè)試分析儀Fluke F434驗(yàn)證,誤差控制在0.2510%-1.9646%之間,且本文算法2~19次諧波分析測(cè)試結(jié)果均優(yōu)于普通FFT結(jié)果,且在2次諧波處誤差獲得最大2.1%的降幅。
4 結(jié)論
本文方法解決了ADE7878電能計(jì)量芯片在諧波分析時(shí)無(wú)法進(jìn)行常規(guī)FFT的問(wèn)題。將160個(gè)采樣數(shù)據(jù)份分成5組,分別進(jìn)行32點(diǎn)的基-2FFT,充分利用基-2FFT算法的高效性,既保證數(shù)據(jù)處理的準(zhǔn)確性,又提高了諧波分析的效率;采用漢寧窗截取采樣序列,減少頻譜泄漏;采用插值修正算法克服了非同步采樣引起的柵欄效應(yīng)。
參考文獻(xiàn):
[1]陳盛燃,邱朝明.國(guó)外城市配電自動(dòng)化概況及發(fā)展[J].廣東輸電與變電技術(shù),2008(4):64-67.
[2]張紅,王誠(chéng)梅.電力系統(tǒng)常用交流采樣方法比較[J].華北電力技術(shù),1999(4):25-27.
[3]谷曉津.淺析三相四線費(fèi)控智能電能表特點(diǎn)及功能[J].科學(xué)之友,2011(32):36-38.
[4]劉耀勇,李樹(shù)廣.智能電網(wǎng)的數(shù)據(jù)采集系統(tǒng)研究[A].2010年航空試驗(yàn)測(cè)試技術(shù)峰會(huì)論文集[C].2010:273-276.
[5]吳曉靜.基于DSP的單元串聯(lián)多電平高壓變頻器的研究與實(shí)現(xiàn)[D].東南大學(xué),2010.
[6]王金明,于小娟,孫建軍,等.ADE7878在新型配變監(jiān)測(cè)計(jì)量終端上的設(shè)計(jì)應(yīng)用[J].電測(cè)與儀表,2010,47(Z2):142-145.
[7]郭忠華.基于ADE7878芯片的電力參數(shù)測(cè)量?jī)x的設(shè)計(jì)[J].電工電氣,2010(12):25-30.
[8]王金明,于小娟,孫建軍,等.ADE7878在新型配變監(jiān)測(cè)計(jì)量終端上的設(shè)計(jì)應(yīng)用[J].電測(cè)與儀表,2010,47(Z2):142-145.
[9]李(木岡)宇.數(shù)字中頻模塊的硬件設(shè)計(jì)與調(diào)試[D].西安電子科技大學(xué),2007.
[10]邱寬民,趙勝凱.DFT與FFT在實(shí)際應(yīng)用時(shí)的性能比較[J].北方交通大學(xué)學(xué)報(bào),2000,24(5):60-62.
[11]王康,章國(guó)寶.配電網(wǎng)智能監(jiān)測(cè)終端的設(shè)計(jì)與實(shí)現(xiàn)[J].電子設(shè)計(jì)工程,2012,20(17):125-127,131.