鄭征帆,呂艷杰,寧黔冀
( 河南師范大學 生命科學學院,河南 新鄉(xiāng) 453007 )
甲殼動物表皮幾丁質(zhì)結合蛋白結構與功能研究進展
鄭征帆,呂艷杰,寧黔冀
( 河南師范大學 生命科學學院,河南 新鄉(xiāng) 453007 )
甲殼動物;幾丁質(zhì)結合蛋白;結構;功能
由于堅硬表皮的限制,甲殼動物必須經(jīng)過蛻皮才能生長。蛻皮是一個周期性的動態(tài)過程,包括舊表皮降解和新表皮的形成。作為表皮組成成分的幾丁質(zhì)是和蛋白質(zhì)以結合的形式存在,此蛋白即為幾丁質(zhì)結合蛋白(CBPs),是甲殼動物表皮中重要的結構性蛋白,該類蛋白一般含有特征性的結構域,由蛻皮激素的靶組織——表皮上皮細胞按照一定的周期和步驟表達合成。幾丁質(zhì)結合蛋白與幾丁質(zhì)構成的復合物不僅為鈣化作用提供有機支架[1],而且參與控制鈣化的程度,因此,幾丁質(zhì)結合蛋白被認為在表皮的形成、維護以及功能的調(diào)節(jié)中起重要作用。近年來,傳統(tǒng)的分離純化技術、尤其是高通量測序技術的應用,大大加快了甲殼動物表皮幾丁質(zhì)結合蛋白新基因發(fā)現(xiàn)的進程,本文將在結構和功能等方面介紹此類蛋白的研究進展。
甲殼動物表皮幾丁質(zhì)結合蛋白分別含有特征性的保守基序,包括RR基序、富含半胱氨酸的幾丁質(zhì)結合結構域、postmolt-18基序、crust-18基序等。
對昆蟲的研究表明,RR基序是結構性表皮蛋白中分布最廣、研究最為深入的基序[2-5],首先在煙草天蛾(Manducasexta)幼蟲的表皮發(fā)現(xiàn)[6-7]。離體研究顯示,該基序能結合幾丁質(zhì),覆蓋35個氨基酸殘基,以發(fā)現(xiàn)者Rebers和Riddiford的名字命名為Rebers-Riddiford共識序列,簡稱RR基序。首先鑒定出的是RR-1基序[Gx8Gx6YxAxExGYx7Px2P](X代表任意氨基酸,阿拉伯數(shù)字代表任意氨基酸的數(shù)目,后同),之后又發(fā)現(xiàn)了兩個與之相似的變異型——RR-2基序[Gx8Gx6YxAx4GFNAVV]和RR-3基序[APVx2VxTxYHAODxLGOxSFGHx4OxRxEx2DAAGNKxGx8Gx6YxAxExGYx7Px2P][8]。RR-2基序N端前4個不連續(xù)的保守氨基酸與RR-1基序一致,而C端的GFNAVV代替了RR-1基序C端富含脯氨酸的序列。含RR-1和RR-2的幾丁質(zhì)結合蛋白在NCBI中標注為pfam00379家族[9]。根據(jù)隱馬爾可夫模型發(fā)展的工具可在線提交幾丁質(zhì)結合蛋白的蛋白序列,更客觀便捷地區(qū)分含RR-1或RR-2基序[10]。研究表明,含RR-1的幾丁質(zhì)結合蛋白主要來自內(nèi)表皮,而含RR-2的幾丁質(zhì)結合蛋白主要來自外表皮[8]。RR-3基序覆蓋75個氨基酸殘基,C端包含RR-1基序,目前發(fā)現(xiàn)的含RR-3的幾丁質(zhì)結合蛋白種類較少,特征不夠明確。
對甲殼動物表皮幾丁質(zhì)結合蛋白的研究遠遜于昆蟲,早期通常采用直接分離純化的方法。Andersen[11]采取尿素三氟乙酸提取、離子交換層析和雙向凝膠電泳等方法,從北方長額蝦(Pandalusborealis)的表皮中分離純化出一些蛋白,氨基酸組分分析表明,蛋白富含甘氨酸和丙氨酸,且大部分蛋白酸性氨基酸的含量大于15%。蛋白質(zhì)序列的獲得依賴于Edman降解、質(zhì)譜、酶解等方法的建立,先后獲得了北方長額蝦表皮蛋白Hla序列[12]、美洲螯龍蝦(Homarusamericanus)未鈣化表皮中的6個幾丁質(zhì)結合蛋白序列等,對后者分析發(fā)現(xiàn),這些蛋白的pI≈4,Mr≈12 ku,其中,5個蛋白僅有幾個殘基不一致,而另一個蛋白序列則有一半以上的差異[13];從黃道蟹(Cancerpagurus)未鈣化表皮中分離純化出5個幾丁質(zhì)結合蛋白,pI為3.5~10, Mr為20~43 ku[14]。這些結果反映了種內(nèi)以及種間幾丁質(zhì)結合蛋白的多樣性,也預示了這類蛋白功能的復雜性。
高通量測序等技術的應用大大加快了甲殼動物表皮幾丁質(zhì)結合蛋白的研究進程,越來越多的編碼幾丁質(zhì)結合蛋白的新基因被發(fā)現(xiàn),如日本囊對蝦(Marsupenaeusjaponicus)的DD9A、DD9B[15]、DD5[16]和crustocalcin[17],克氏原螯蝦(Procambarusclarkii)的CAP-1、CAP-2[18-20]、Casp-2[21]和SCBP-1[22],藍蟹(Callinectessapidus)的CsAMP8.1、CsAMP6.0、CsCP8.2、CsCP8.5[23]和CsAMP9.3、CsAMP16.5、CsAMP13.4、CsAMP16.3、CsCP14.1、CsCP6.1[24]等,研究發(fā)現(xiàn),除crustocalcin和CsCP6.1包含RR基序的部分序列外,上述其他幾丁質(zhì)結合蛋白基因均包含完整的RR-1基序。對克氏原螯蝦表皮SCBP-1基因分析表明,其cDNA的1~26位為5′UTR區(qū),第27~71位編碼以起始密碼子ATG為開端的信號肽序列,覆蓋15個氨基酸殘基,幾丁質(zhì)結合結構域——RR-1基序從第81位氨基酸開始至第115位氨基酸結束,覆蓋35個氨基酸殘基,SCBP-1共包含155個氨基酸殘基,以TAA為終止密碼子,3′UTR區(qū)有多聚腺苷酸信號AATAAA[22]。藍蟹CsCP6.1的信號肽和幾丁質(zhì)結合結構域之間還具有跨膜區(qū)[25]。大部分幾丁質(zhì)結合蛋白的RR-1基序以單一非重復形式出現(xiàn),但也有串聯(lián)重復形式,日本囊對蝦DD5蛋白在1116個氨基酸殘基的ORF中,有100個氨基酸左右的串聯(lián)重復單元,每個單元均包含RR-1基序[16],這種串聯(lián)重復RR模式可能參與表皮中幾丁質(zhì)纖維的交叉連接,并且這些重復區(qū)整齊的大小可能反映了幾丁質(zhì)纖維有規(guī)律的空間排布。RR-2基序目前僅見于紅螯螯蝦(Cheraxquadricarinatus)轉(zhuǎn)錄物組中[26]。有關RR-3基序的報道也較少,僅在美洲螯龍蝦HaCP18.8[8]和藍蟹CsAMP/CP13.7[27]中有分布,其中,HaCP18.8在鈣化表皮表達,CsAMP/CP13.7在滑動關節(jié)膜表皮和鈣化表皮都有表達。
cys-CBD是富含半胱氨酸的幾丁質(zhì)結合結構域,分為cys-CBD1和cys-CBD2。cys-CBD1只在真菌中有報道[28],cys-CBD2在昆蟲的表皮蛋白和圍食膜蛋白中有分布[29],其蛋白質(zhì)一級結構中的6個cys構成3個二硫鍵。截至目前,尚未在甲殼動物表皮分離出含有cys-CBD2的幾丁質(zhì)結合蛋白,但在紅螯螯蝦轉(zhuǎn)錄物組中發(fā)現(xiàn)了許多具有cys-CBD2的重疊克隆群[19],且紅螯螯蝦胃石蛋白GAP-65具有cys-CBD2[30-31],該基序在甲殼動物表皮中的分布有待進一步研究。
postmolt-18基序[VxDTPEVAAAKAAFxAAY],覆蓋18個氨基酸殘基,含此基序的表皮蛋白主要在蛻皮后期表達,所以稱為postmolt-18基序[24]。從美洲螯龍蝦鈣化表皮中分離純化出的HaCP18.8和HaCP20.2[8]、黃道蟹鈣化表皮中分離純化出的CpCP14.99和CpCP18.76[14]蛋白、藍蟹中克隆的CsCP15.0、CsCP19.0[24]以及紅螯螯蝦轉(zhuǎn)錄物組cq post-molt protein 1[32]均含有postmolt-18基序,其中藍蟹CsCP15.0是個例外,在蛻皮前和蛻皮后都有表達。
crust-18基序{x[L/V][I/V]GPSGIV[T/S]x[D/N]GxN[I/V]Q[V/L]},同樣覆蓋18個氨基酸殘基,此基序只在甲殼動物表皮蛋白中發(fā)現(xiàn),故稱crust-18基序[14]。如9個源自美洲螯龍蝦鈣化表皮中的幾丁質(zhì)結合蛋白[24],黃道蟹鈣化表皮中的CpCP 4.34、CpCP 4.59、CpCP 4.63、CpCP 4.66、CpCP 4.98、CpCP 11.58、CpCP 12.43、CpCP 12.46[14]以及紅螯螯蝦的兩個轉(zhuǎn)錄物組cq crustacean CP 1和cq crustacean CP 2[32]均含有crust-18基序。crust-18基序一般以2倍或4倍的串聯(lián)重復模式出現(xiàn),推測可能與幾丁質(zhì)結合蛋白特殊折疊的空間構象有關。
幾丁質(zhì)結合蛋白最基本的功能是結合幾丁質(zhì),形成鈣沉積的網(wǎng)架,通常采用離體的評價方法[22]。先后從克氏原螯蝦表皮中分離純化獲得的2種幾丁質(zhì)結合蛋白——CAP-1[18]和CAP-2[20]均有較強的幾丁質(zhì)結合能力。高通量測序技術的應用加快了新的幾丁質(zhì)結合蛋白基因發(fā)現(xiàn)進程,多采用大腸桿菌(Escherichiacoli)原核表達,直接評價重組蛋白的結合能力,如克氏原螯蝦Casp-2的重組蛋白顯示出弱的幾丁質(zhì)結合能力,與前期研究時較易分離相一致[21]。由于缺乏翻譯后修飾或限于原核的分段表達等諸多原因,結合力的強弱并不完全與直接提取幾丁質(zhì)結合蛋白的難易程度一致,克氏原螯蝦重組SCBP-1體外試驗僅顯示弱的幾丁質(zhì)結合能力,這與分離純化時該蛋白強的幾丁質(zhì)結合能力明顯不同[22]。
甲殼動物起到支持和防衛(wèi)作用的堅硬表皮除了內(nèi)/外表皮的結構,還與鈣化有關[33-34],控制鈣化是表皮幾丁質(zhì)結合蛋白的另一個重要功能,常規(guī)的評價方法是離體條件下過飽和CaCO3溶液中幾丁質(zhì)結合蛋白對CaCO3沉淀的抑制效應[18,35-37]。分離純化的克氏原螯蝦CAP-2[20]、Casp-2[21]和重組的日本囊對蝦crustocalcin[17]均表現(xiàn)出對CaCO3沉淀的抑制,表明此類幾丁質(zhì)結合蛋白具有結合Ca2+的能力。構效關系的研究表明, 幾丁質(zhì)結合蛋白分子中絲氨酸的磷酸化與抑制活性有關,克氏原螯蝦CAP-1第70位絲氨酸磷酸化后,對CaCO3沉淀的抑制活性顯著提高[19]。
幾丁質(zhì)結合蛋白控制鈣化的分子機制是目前研究的熱點問題。Inoue等[20]利用同位素標記技術,研究克氏原螯蝦重組CAP-1和CAP-2與45Ca2+的結合作用,結果表明此類幾丁質(zhì)結合蛋白可直接結合45Ca2+,推測幾丁質(zhì)結合蛋白可引發(fā)晶核的形成。對日本囊對蝦的1種幾丁質(zhì)結合蛋白crustocalcin的研究表明,分段表達的N端、中間和C端重組蛋白,只有中間肽段重組蛋白結合45Ca2+[17],推測幾丁質(zhì)結合蛋白行使成核劑功能時具有特異的Ca2+結合位點;Endo等[38]分段表達crustocalcin蛋白,將獲得的重組蛋白Fr2a(包含crustocalcin第76~210位氨基酸)和Fr3(包含crustocalcin第197~321位氨基酸)附著于直鏈淀粉珠表面,在含鈣溶液中孵育,發(fā)現(xiàn)其表面有CaCO3晶體顆粒形成,且相同條件下Fr3珠比Fr2a珠表面形成的晶體顆粒數(shù)多,進一步說明了不同位點結合CaCO3的差異。甲殼動物表皮幾丁質(zhì)結合蛋白不僅通過引發(fā)成核來促進CaCO3晶體的形成,對晶型也有一定影響。Hennig等[39]利用鼠婦(Porcellioscaber)胸骨腹片提取的幾丁質(zhì)結合蛋白,體外模擬CaCO3在表皮的沉淀,SEM觀察顯示,與陰性對照蛋白相比,CaCO3在提取的幾丁質(zhì)結合蛋白中沉淀的形狀與在體CaCO3球型沉淀輻射狀結構十分相似。
在甲殼動物周期性蛻皮過程中,表皮結構也不斷地變化,其相對穩(wěn)定時期——間期表皮基本結構由外到內(nèi)分別是上表皮、外表皮、內(nèi)表皮、膜狀層和上皮細胞層,這種變化受蛻皮激素的調(diào)節(jié),合成幾丁質(zhì)結合蛋白的表皮上皮細胞是蛻皮激素的靶組織[32,40],理論上,幾丁質(zhì)結合蛋白的表達應該與蛻皮周期密切相關。據(jù)報道,藍蟹、日本囊對蝦和克氏原螯蝦的相關基因在蛻皮前期呈高表達,而有些基因則在蛻皮后期表達[32]。
有學者利用高通量測序技術得到的大量數(shù)據(jù)建立模型,研究表明,克氏原螯蝦含有RR基序的重疊克隆群在蛻皮前期D2、D4階段有高峰[41]。上述基因表達的時序性差異可能與其編碼的蛋白在表皮的分布有關,甲殼動物在蛻去舊表皮之前,新的上表皮和外表皮已經(jīng)形成,在蛻皮后期,內(nèi)表皮形成及表皮鈣化[42-43],所以,蛻皮前期高表達的幾丁質(zhì)結合蛋白可能分布在外表皮,而蛻皮后期高表達的幾丁質(zhì)結合蛋白可能分布于內(nèi)表皮[44]。
甲殼動物幾丁質(zhì)結合蛋白的時序性表達對于表皮結構的完整性可能至關重要,如果其中某一幾丁質(zhì)結合蛋白異??赡軙煌潭鹊赜绊憚游锿懫ぶ芷诘倪M程甚至引起死亡。運用RNAi技術沉默紅螯螯蝦Cq-M13的表達,試驗組蛻皮前期的天數(shù)比對照組延長了兩倍[45];沉默藍蟹CsEarlyCP1的表達導致蛻皮前死亡率升高,免疫組化結果顯示,背部表皮CsEarlyCP1的含量減少[46]。有關幾丁質(zhì)結合蛋白對甲殼動物表皮完整性的研究盡管目前尚未見報道,但對昆蟲的觀察表明,幾丁質(zhì)結合蛋白的缺失導致表皮超微結構異常,影響表皮的完整性。赤擬谷盜(Triboliumcastaneum)幼蟲的TcCPR18和TcCPR27基因沉默,成蟲表皮出現(xiàn)褶皺、變短[47],其中,TcCPR27缺陷個體的內(nèi)表皮中,幾丁質(zhì)—蛋白質(zhì)水平片層和垂直孔道具有異常的電子透明, TcCPR18缺陷個體的鞘翅前表皮具有無組織的片層和孔道[48-50]。
幾丁質(zhì)結合蛋白作為表皮中的結構性蛋白,其表達特點關乎表皮形成及結構的完整性以及各種生理功能的發(fā)揮,進而影響甲殼動物的生長、防御、免疫等各方面。雖然相當數(shù)量的表皮幾丁質(zhì)結合蛋白或基因相繼被發(fā)現(xiàn),但其確切的功能卻知之甚少,如同一種幾丁質(zhì)結合蛋白在表皮不同鈣化部位以及表皮各層(主要是外表皮和內(nèi)表皮)的分布特點,不同幾丁質(zhì)結合蛋白對表皮完整性和蛻皮周期的影響等。另外,對于幾丁質(zhì)結合蛋白的探究需進一步拓寬研究的物種范圍,探討此類基因表達的調(diào)控途徑及其功能誘導與阻遏等,為最終闡明蛻皮周期的分子機理奠定基礎。
[1] Glazer L,Tom M,Weil S,et al.Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith [J].Journal of Experimental Biology, 2013, 216(10):1898-1904.
[2] Togawa T,Dunn W A,Emmons A C,et al.Developmental expression patterns of cuticular protein genes with the R&R Consensus fromAnophelesgambiae[J].Insect Biochemistry and Molecular Biology, 2008, 38(5):508-519.
[3] Charles J P.The regulation of expression of insect cuticle protein genes[J].Insect Biochemistry and Molecular Biology, 2010, 40(3):205-213.
[4] Willis J H.Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era[J].Insect Biochemistry and Molecular Biology, 2010, 40(3):189-204.
[5] Zhu K Y,Merzendorfer H,Zhang W,et al.Biosynthesis, turnover, and functions of chitin in insects[J]. Annual Review of Entomology,2016,61(1):177-196.
[6] Rebers J E,Riddiford L M.Structure and expression of aManducasextalarval cuticle gene homologous toDrosophilacuticle genes[J].Journal of Molecular Biology,1988,203(2):411-423.
[7] Rebers J E, Willis J H.A conserved domain in arthropod cuticular proteins binds chitin[J].Insect Biochemistry and Molecular Biology, 2001,31(11):1083-1093.
[8] Andersen S O.Studies on proteins in post-ecdysial nymphal cuticle of locust,Locustamigratoria, and cockroach,Blaberuscraniifer[J].Insect Biochemistry and Molecular Biology, 2000, 30(7):569-577.
[9] Tetreau G,Dittmer N T,Cao X,et al.Analysis of chitin-binding proteins fromManducasextaprovides new insights into evolution of peritrophin A-type chitin-binding domains in insects[J].Insect Biochemistry and Molecular Biology,2015,62(11):127-141.
[10] Ioannidou Z S,Theodoropoulou M C,Papandreou N C,et al.CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile Hidden Markov Models[J]. Insect Biochemistry and Molecular Biology,2014,52(5):51-59.
[11] Andersen S O. Cuticular proteins from the shrimp,Pandalusborealis[J].Comparative Biochemistry and Physiology Part B,1991,99(2):453-458.
[12] Jacobsen S L,Andersen S O,Hojrup P.Amino acid sequence determination of a protein purified from the shell of the shrimp,Pandalusborealis[J].Comparative Biochemistry and Physiology Part B,1994,109(2/3):209-217.
[13] Andersen S O.Characterization of proteins from arthrodial membranes of the lobster,Homarusamericanus[J].Comparative Biochemistry and Physiology Part A,1998,121(4):375-383.
[14] Andersen S O.Exoskeletal proteins from the crab,Cancerpugurus[J].Comparative Biochemistry and Physiology Part A,1999,123(2):203-211.
[15] Watanabe T,Persson P,Endo H, et al.Molecular analysis of two genes, DD9A and B, which are expressed during the postmolt stage in the decapod crustaceanPenaeusjaponicus[J].Comparative Biochemistry and Physiology Part B,2000,125(1):127-136.
[16] Ikeya T,Persson P,Kono M,et al.The DD5 gene of the decapods crustaceanPenaeusjaponicasencodes a putative exoskeletal protein with a novel tandem repeat structure[J].Comparative Biochemistry and Physiology Part B,2001,128(3):379-388.
[17] Endo H, Persson P, Watanabe T.Molecular cloning of the crustacean DD4 cDNA encoding a Ca2+-binding protein[J].Biochemical and Biophysical Research Communications, 2000,276(1):286-291.
[18] Inoue H,Ozaki N,Nagasawa H.Purification and structural determination of a phosphorylated peptide with anticalcification and chitin-binding activities in the exoskeleton of the crayfish,Procambarusclarkii[J].Bioscience, Biotechnology and Biochemistry,2001,65(8):1840-1848.
[19] Inoue H,Ohira T,Ozaki N,et al.Cloning and Expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish[J].Comparative Biochemistry and Physiology Part B,2003,136(4):755-765.
[20] Inoue H,Ohira T,Ozaki N,et al.A novel calcium-binding peptide from the cuticle of the crayfish,Procambarusclarkii[J].Biochemical and Biophysical Research Communications,2004,318(3):649-654.
[21] Inoue H,Yuasa-Hashimoto N,Suzuki M,et al.Structure determination and functional analysis of a soluble matrix protein associated with calcification of exoskeleton of the crayfish,Procambarusclarkii[J].Bioscience, Biotechnology and Biochemistry,2008,72(10): 2697-2707.
[22] Suzuki M,Sugisaka-Nobayshi A,Kogure T,et al.Structural and functional analyses of a strong chitin-binding protein-1 (SCBP-1) from the exoskeleton of the crayfishProcambarusclarkii[J].Bioscience, Biotechnology and Biochemistry,2013,77(2):361-368.
[23] Wynn A,Shafer T H.Four differentially expressed cDNAs inCallinectessapiduscontaining Rebers-Riddiford consensus sequence[J].Comparative Biochemistry and Physiology Part B, 2005,141(3):294-306.
[24] Faircloth L M,Shafer T H.Differential expression of eight transcripts and their roles in the cuticle of the blue crab,Callinectessapidus[J].Comparative Biochemistry and Physiology Part B, 2007, 146(3):370-383.
[25] Kuballa A V,Merritt D J,Elizur A.Gene expression profiling of cuticular proteins across the moult cycle of the crabPortunuspelagicus[J].Bmc Biology,2007,5(1):1-26.
[26] Abehsera S,Glazer L,Tynyakov J,et al.Binary gene expression patterning of the molt cycle: the case of chitin metabolism[J].PloS One,2015,10(6):e0130787.
[27] Shafer T H,McCartney M A,Faircloth L M.Identifying exoskeleton proteins in the blue crab from an expressed sequence tag (EST) library[J].Integrative and Comparative Biology,2006,46(6):978-990.
[28] Wright H T,Sandrasegaram G,Wright C S.Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin[J].Journal of Molecular Evolution,1991,33(3):283-294.
[29] Jasrapuria S,Arakane Y,Osman G,et al.Genes encoding proteins with peritrophin A-type chitin-binding domains inTriboliumcastaneum, are grouped into three distinct families based on phylogeny, expression and function[J].Insect Biochemistry and Molecular Biology, 2010,40(3):214-227.
[30] Shechter A,Glazer L,Cheled S,et al.A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix[J]. Proceedings of the National Academy of Sciences of the USA,2008,105(20):7129-7134.
[31] Glazer L,Sagi A.On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix[J].Invertebrate Reproduction and Development,2012,56(1):57-65.
[32] Roer R,Abehsera S,Sagi A.Exoskeletons across the pancrustacea: comparative morphology, physiology, biochemistry and genetics[J].Integrative and Comparative Biology,2015,55(5):771-791.
[33] Luquet G.Biomineralizations insights and prospects[J].Zookeys,2012(176):103-121.
[34] Dillaman R,Hequembourg S,Gay M.Early pattern of calcification in the dorsal carapace of the blue crab,Callinectessapidus[J].Journal of Morphology,2005,263(3):356-374.
[35] Suzuki M,Kogure T,Sakuda S,et al.Identification of ligament intra-crystalline peptide (LICP) from the hinge ligament of the bivalve,Pinctadafucata[J].Marine Biotechnology,2015,17(2):153-161.
[36] Liang J,Xu G,Xie J,et al.Dual roles of the lysine-rich matrix protein (KRMP)-3 in shell formation of pearl oyster,Pinctadafucata[J].PloS One,2015,10(7):e0131868.
[37] Dhami N K,Reddy M S,Mukherjee A.Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization[J].Applied Biochemistry and Biotechnology,2014,172(5):2552-2561.
[38] Endo H,Takagi Y,Ozaki N,et al.A crustacean Ca2+-binding protein with a glutamate-rich sequence promotes CaCO3crystallization[J].Biochemical Journal,2004,384(1):159-167.
[39] Hennig S,Hild S,Fabritius H O,et al.Influence of near-physiological salines and organic matrix proteins from amorphous CaCO3deposits ofPorcellioscaberon in vitro CaCO3precipitation[J].Crystal Growth and Design,2012,12(2):646-655.
[40] Roer R,Dillaman R.The structure and calcification of the crustacean cuticle[J]. Integrative and Comparative Biology,1984,24(4):893-909.
[41] Tom M,Manfrin C,Chung S J,et al.Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfishProcambarusclarkiiduring premolt[J].Journal of Experimental Biology,2014,217(23):4193-4202.
[42] Kuballa A V,Elizur A.Differential expression profiling of components associated with exoskeletal hardening in crustaceans[J].Bmc Genomics,2008,9(1):575-589.
[43] Kuballa A V,Holton T A,Paterson B,et al.Moult cycle specific differential gene expression profiling of the crabPortunuspelagicus[J].Bmc Genomics,2011,12(1):147-165.
[44] Nagasawa H.The crustacean cuticle: structure, composition and mineralization[J].Frontiers in Bioscience,2012,4(1):711-720.
[45] Tynyakov J,Bentov S,Abehsera S,et al.A novel chitin binding crayfish molar tooth protein with elasticity properties[J].PloS One, 2015, 10(5):e0127871.
[46] Jenkins J.Investigating the roles of cuticular proteins of the blue crab,Callinectessapidususing RNA interference[D].Wilmington:University of North Carolina,2010.
[47] Arakane Y,Lomakin J,Gehrke S H,et al.Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins[J].PloS Genetics, 2012, 8(4):e1002682.
[48] Noh M Y,Kramer K J,Muthurkrishnan S,et al.Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle ofTriboliumcastaneum[J].Insect Biochemistry and Molecular Biology,2014,53(4):22-29.
[49] Mun S, Noh M Y, Dittmer N T, et al.Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt[J].Scientific Reports,2015(5):10484.
[50] Noh M Y,Muthukrishnan S,Kramer K J,et al.TriboliumcastaneumRR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle[J].PloS Genetics,2015,11(2):e1004963.
ResearchProgressonStructureandFunctionofCrustaceanCuticularChitin-bindingProteins:aReview
ZHENG Zhengfan, Lü Yanjie, NING Qianji
( College of Life Science, Henan Normal University, Xinxiang 453007, China )
crustacean; chitin-binding protein; structure; function
10.16378/j.cnki.1003-1111.2017.04.023
S917
C
1003-1111(2017)04-0538-05
2016-08-05;
2016-12-20.
鄭征帆(1990-),女,碩士研究生;研究方向:甲殼動物生長發(fā)育的體液調(diào)節(jié). E-mail: zhengzhengfan@163.com.通訊作者:寧黔冀(1964-),女,教授,博士;研究方向:甲殼動物激素調(diào)控. E-mail: nqjnqj1964@163.com.