亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        致密儲(chǔ)層體積改造潤(rùn)濕反轉(zhuǎn)提高采收率的研究

        2017-01-19 03:02:26丁云宏劉廣峰顧岱鴻
        關(guān)鍵詞:潤(rùn)濕性潤(rùn)濕壓裂液

        李 帥,丁云宏,劉廣峰,顧岱鴻,才 博

        1) 中國(guó)石油勘探開發(fā)研究院,北京 100083; 2) 中國(guó)石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007;3) 國(guó)家能源致密油氣研發(fā)中心,北京 100083;4) 中國(guó)石油大學(xué)(北京)石油工程教育部重點(diǎn)實(shí)驗(yàn)室,北京102249

        【環(huán)境與能源 / Environment and Energy】

        致密儲(chǔ)層體積改造潤(rùn)濕反轉(zhuǎn)提高采收率的研究

        李 帥1,2,丁云宏2,3,劉廣峰4,顧岱鴻4,才 博2

        1) 中國(guó)石油勘探開發(fā)研究院,北京 100083; 2) 中國(guó)石油勘探開發(fā)研究院廊坊分院,河北廊坊 065007;3) 國(guó)家能源致密油氣研發(fā)中心,北京 100083;4) 中國(guó)石油大學(xué)(北京)石油工程教育部重點(diǎn)實(shí)驗(yàn)室,北京102249

        以致密油氣體積改造注入的壓裂液為切入口,將表面活性劑復(fù)配至壓裂液中,探索在壓裂過程中改變儲(chǔ)層基質(zhì)潤(rùn)濕性,提高采收率的方法.基于接觸角和界面張力測(cè)量,在壓裂液中分別添加陽(yáng)離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤(rùn)濕狀態(tài)下對(duì)致密巖心進(jìn)行滲吸物模實(shí)驗(yàn).通過改變潤(rùn)濕反轉(zhuǎn)前后的相滲曲線和毛管壓力曲線,對(duì)該過程進(jìn)行模擬研究.結(jié)果顯示:僅依靠壓裂液不能引起潤(rùn)濕反轉(zhuǎn),滲吸采收率僅為4.95%.添加表面活性劑后潤(rùn)濕性發(fā)生變化,滲吸采收率有大幅提高,其中陽(yáng)離子表面活性劑改變潤(rùn)濕性的能力要好于非離子表面活性劑和陰離子表面活性劑;考慮潤(rùn)濕反轉(zhuǎn)的模型可對(duì)表面活性劑潤(rùn)濕反轉(zhuǎn)過程進(jìn)行較好描述,模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)擬合較好;現(xiàn)場(chǎng)一平臺(tái)井壓裂液中加入潤(rùn)濕反轉(zhuǎn)劑DL-15后,體積壓裂形成復(fù)雜裂縫,產(chǎn)量比鄰井提高2~4 t/d.建議體積改造形成復(fù)雜縫網(wǎng)的前提下,在壓裂液中添加表面活性劑,延長(zhǎng)燜井時(shí)間,依靠停泵后的壓差驅(qū)替和滲吸置換作用,提高開井后產(chǎn)量.

        油田開發(fā);致密儲(chǔ)層;體積改造;潤(rùn)濕反轉(zhuǎn);表面活性劑;提高采收率

        致密油氣儲(chǔ)量豐富,以美國(guó)巴肯和鷹潭為代表的致密油的開發(fā)已成為新的經(jīng)濟(jì)增長(zhǎng)點(diǎn)[1].致密油氣的有效開發(fā)主要得益于“水平井+體積改造”模式[2],然而該方法一次采收率僅限于5%~10%左右[3],進(jìn)一步提高致密儲(chǔ)層采收率問題亟需解決.

        潤(rùn)濕性是儲(chǔ)層重要物理特性,影響儲(chǔ)層流體性質(zhì)(相對(duì)滲透率[4]、毛管壓力以及流體分布等[5]).潤(rùn)濕性與溫度[6]、礦物成分[7]等有關(guān),通常可通過加熱[8]、低礦化度鹽水[9]和表面活性劑[10]等方法改變儲(chǔ)層潤(rùn)濕性.

        對(duì)于天然裂縫發(fā)育的親油性儲(chǔ)層,體積壓裂后注水開發(fā)容易導(dǎo)致水竄,大量的原油仍存在于基質(zhì)中,水驅(qū)采收率低[11-12].本研究針對(duì)該類儲(chǔ)層探索了將表面活性劑復(fù)配至壓裂液中,壓裂結(jié)束后燜井改變基質(zhì)潤(rùn)濕性進(jìn)而提高采收率的方法.首先,基于接觸角和界面張力測(cè)量,在壓裂液中分別添加陽(yáng)離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤(rùn)濕狀態(tài)下對(duì)致密巖心分別進(jìn)行物模實(shí)驗(yàn).其次,進(jìn)行了潤(rùn)濕反轉(zhuǎn)的數(shù)值模擬研究,與實(shí)驗(yàn)結(jié)果相互驗(yàn)證.最后,以新疆油田瑪18井區(qū)4口平臺(tái)井進(jìn)行了現(xiàn)場(chǎng)試驗(yàn).

        1 致密巖心潤(rùn)濕反轉(zhuǎn)實(shí)驗(yàn)

        1.1 實(shí)驗(yàn)原理

        儲(chǔ)層巖石與經(jīng)過原油飽和并長(zhǎng)時(shí)間老化后,原油中的有機(jī)酸吸附在固體界面,同時(shí)增加膠質(zhì)瀝青質(zhì)的吸附量,使巖心呈現(xiàn)油濕狀態(tài).油濕巖心與表面活性劑相互作用則可逐步轉(zhuǎn)變?yōu)樗疂駹顟B(tài)[13-14].本實(shí)驗(yàn)將3種表面活性劑(陽(yáng)離子型、陰離子型和非離子型)按一定比例復(fù)配至壓裂液中,對(duì)油濕巖心進(jìn)行潤(rùn)濕反轉(zhuǎn)及滲吸實(shí)驗(yàn).

        1.2 實(shí)驗(yàn)材料

        選擇新疆油田瑪18井區(qū)塊致密巖心柱1—巖心柱4,其空氣滲透率為2×10-3~5×10-3μm2,孔隙度為8%~10%.將同一塊巖心切為2部分:上部為巖心切片(直徑為25 mm,厚度 為2 mm)用于進(jìn)行接觸角測(cè)量;下部為巖心柱(直徑為25 mm,高度為26 mm)用于進(jìn)行滲吸實(shí)驗(yàn).按照?qǐng)D1分別制作巖心柱(編號(hào)為巖心柱1、巖心柱2、巖心柱3、巖心柱4)和巖心切片(編號(hào)為切片1-1、2-1、3-1和4-1).表面活性劑為質(zhì)量分?jǐn)?shù)0.3%的陽(yáng)離子型表面活性劑(1831)、陰離子型表面活性劑(K12)和非離子型表面活性劑(APG0180).實(shí)驗(yàn)所用壓裂液配方為蒸餾水+質(zhì)量分?jǐn)?shù)為0.1%的羥丙基瓜膠(hydroxypropyl guargum, HPG)+質(zhì)量分?jǐn)?shù)為2%的KCl,實(shí)驗(yàn)用油為采出原油與煤油按照體積比3∶1配置,該模擬油儲(chǔ)層在溫度為86 ℃時(shí)密度為0.83 g/cm3,黏度為2.1 mPa·s.

        圖1 接觸角測(cè)量及滲吸實(shí)驗(yàn)所用巖心柱示意圖Fig.1 Core sample for contact angle measurement and imbibition experiment

        1.3 實(shí)驗(yàn)方法

        1.3.1 接觸角測(cè)定

        將飽和巖心切片放于烘箱內(nèi),在60 ℃條件下老化7 d,取出并打磨光滑后采用三相法DSA100接觸角測(cè)量?jī)x測(cè)量接觸角.

        1.3.2 界面張力測(cè)定

        采用德國(guó)KRUSS公司生產(chǎn)的K100表面/界面張力儀,在86 ℃條件下分別測(cè)量壓裂液、陽(yáng)離子表面活性劑、非離子表面活性劑以及陰離子表面活性劑與實(shí)驗(yàn)用油之間的界面張力.

        1.3.3 滲吸實(shí)驗(yàn)

        1)在變排量下(0.1 mL/min→0.2 mL/min→0.3 mL/min)向巖心柱1至巖心柱4注入10倍孔隙體積的實(shí)驗(yàn)用油,以此飽和巖心,同樣將巖心在實(shí)驗(yàn)溫度下老化7 d,使其具油濕性.

        2)將老化后的巖心分別放入壓裂液和3種表面活性劑中進(jìn)行滲吸實(shí)驗(yàn),滲吸過程中采用電子天平實(shí)時(shí)記錄巖心質(zhì)量變化,巖心在不同溶液中的滲吸采收率為

        (1)

        其中, R為滲吸采收率; Δm為巖樣質(zhì)量增量; ρw為表活劑密度; ρo為原油密度; Vo為飽和油的體積(單位:cm3).

        3)滲吸實(shí)驗(yàn)結(jié)束后,將巖心取出,50 ℃烘烤2~3 min, 冷卻后切片, 再重新測(cè)量接觸角.

        2 結(jié)果與討論

        2.1 實(shí)驗(yàn)現(xiàn)象

        2.1.1 接觸角

        初始狀態(tài):清水在初始飽和油巖心切片上的接觸角為105°~125°,說明實(shí)驗(yàn)初期巖心呈現(xiàn)一定的油濕性(圖2).

        圖2 潤(rùn)濕反轉(zhuǎn)前后接觸角變化Fig.2 Contact angle before and after wettability alteration

        潤(rùn)濕反轉(zhuǎn)后:滲吸實(shí)驗(yàn)結(jié)束后,重新切片并測(cè)量接觸角,巖心柱1(壓裂液處理)接觸角的變化不大,為103.1°,說明巖心1經(jīng)過壓裂液處理后,原油吸附量有所減少,親油性有所減弱;巖心柱2(陽(yáng)離子表面活性劑處理)的接觸角最小,為32.6°,巖心柱3(非離子表面活性劑處理)和巖心柱4(陰離子表面活性劑處理)的接觸角分別為53.9°和73.4°.說明巖心柱2到巖心柱4經(jīng)過表面活性劑處理則出現(xiàn)不同程度的潤(rùn)濕反轉(zhuǎn),巖心由親油性向親水性發(fā)生轉(zhuǎn)變.

        2.1.2 界面張力

        經(jīng)測(cè)量,實(shí)驗(yàn)用油與壓裂液之間的界面張力最高,為30.26 mN/m,與陰離子表面活性劑之間的界面張力最低.且隨表面活性劑質(zhì)量分?jǐn)?shù)的增加,界面張力呈漸減趨勢(shì)(圖3).

        圖3 液體與原油間界面張力Fig.3 Interfacial tension between fluid and oil

        2.1.3 滲吸實(shí)驗(yàn)

        巖心柱1:置于壓裂液溶液中,11.4 h后開始出現(xiàn)油滴,且油滴出現(xiàn)非常緩慢,曲線平穩(wěn)后,最終采收率僅為4.95%.

        巖心柱2至巖心柱4:分別置于添加陽(yáng)離子表面活性劑、非離子表面活性劑和陰離子表面活性劑的壓裂液溶液中.實(shí)驗(yàn)過程中可以看到油滴出現(xiàn)較快,采出油量較多,巖心柱2采收率最高,為21.29%;巖心柱3和巖心柱4分別為9.91%和15.84%(圖4).巖心經(jīng)過表面活性劑的處理,一方面降低了界面張力,使油滴更容易脫離束縛,在達(dá)到平衡時(shí)置換出更多原油.另一方面,改變了巖心的潤(rùn)濕性,由油濕向水濕轉(zhuǎn)變,毛管力由滲吸的阻力變?yōu)闈B吸的動(dòng)力,提高了滲吸采出程度.

        圖4 不同類型液體下的滲吸采收率Fig.4 Imbibition recovery rates of different fluids

        2.2 結(jié)果分析

        表面活性劑與儲(chǔ)層巖石接觸過程中,既會(huì)降低界面張力,又會(huì)改變巖石表面的潤(rùn)濕性.采用黏附功降低因子(黏附功降低因子=界面張力因子×潤(rùn)濕性因子)來描述這一綜合作用[15].

        1)界面張力因子為

        (1)

        其中, σ0為壓裂液與實(shí)驗(yàn)用油的界面張力(單位: mN/m); σ1為表面活性劑與實(shí)驗(yàn)用油的界面張力(單位:mN/m).

        2)潤(rùn)濕性因子為

        (2)

        其中, θ0為潤(rùn)濕反轉(zhuǎn)前清水在巖石表面的接觸角; θ1為潤(rùn)濕反轉(zhuǎn)后清水在巖石表面的接觸角.

        3)黏附功降低因子

        滲吸過程中,毛管力作用將原油從巖石表面拉開脫落,需要克服黏附功.黏附功W黏與界面張力σ和接觸角θ有直接關(guān)系,定義為

        W黏=σ(1-cos θ)

        (3)

        因此,添加表面活性劑后的黏附功降低因子為

        (4)

        那么, Eσ、 Eθ、 E降表征的實(shí)驗(yàn)參數(shù)見表1.

        表1 壓裂液與不同類型表面活性劑復(fù)配溶液下巖心實(shí)驗(yàn)結(jié)果

        將表1中的Eσ、 Eθ、 E降以及采出程度繪制成對(duì)數(shù)坐標(biāo)系結(jié)果如圖5.由圖5可見,盡管陰離子表面活性劑降低界面張力的能力好于其他液體,但最終決定滲吸采收率的仍是黏附功降低因子,黏附功降低因子和滲吸采收率保持了較好的反比性,即黏附功降低因子越低,滲吸采收率越高.

        圖5 四種液體潤(rùn)濕反轉(zhuǎn)性能分析Fig.5 Performance of the four different liquids

        含有親水基和親油基的表面活性劑與親油性質(zhì)的巖石表面接觸時(shí),親油基一頭會(huì)依附于巖石表面,親水基一頭向外,導(dǎo)致巖石向親水性轉(zhuǎn)變.但由于表面活性劑的雙層或多層吸附,可能導(dǎo)致潤(rùn)濕反轉(zhuǎn)并不完全,即巖石也可能并不完全轉(zhuǎn)變?yōu)橛H水.另外,由于陽(yáng)離子表面活性劑本身帶有正電荷,與帶有負(fù)電荷的巖石表面接觸時(shí),還會(huì)存在電荷之間的靜電吸引作用,加劇了潤(rùn)濕性的改變程度[16].因此,將表面活性劑復(fù)配到壓裂液中,提高壓裂完成后的采收率具有可行性:① 表面活性劑降低了黏附功,提高了洗油效率;② 降低界面張力,減小油滴的變形阻力,減小賈敏效應(yīng),使油滴容易剝離脫落,提高驅(qū)油效率;③ 巖石潤(rùn)濕性發(fā)生變化,孔道壁面的親水性增強(qiáng),縮小孔隙表面油膜厚度,擴(kuò)大滲吸波及范圍的同時(shí),也將殘余油逐漸驅(qū)替出來[17].

        3 潤(rùn)濕反轉(zhuǎn)的模擬

        表面活性劑降低黏附功、改變接觸角、降低界面張力,使儲(chǔ)層巖石由油濕向水濕轉(zhuǎn)變,在宏觀上體現(xiàn)為毛管壓力、相對(duì)滲透率以殘余油飽和度的改變[18].由于致密儲(chǔ)層殘余油飽和度改變程度有限,這里僅通過定義潤(rùn)濕反轉(zhuǎn)前后不同的相對(duì)滲透率曲線和毛管壓力曲線來模擬潤(rùn)濕反轉(zhuǎn)的過程[19].

        圖6 潤(rùn)濕反轉(zhuǎn)模型Fig.6 Sketch map of wettability alteration

        3.1 模型建立

        表2 潤(rùn)濕反轉(zhuǎn)前后相關(guān)參數(shù)

        圖7 潤(rùn)濕反轉(zhuǎn)前后相對(duì)滲透率變化Fig.7 Relative permeability before/after wettability alteration

        圖8 潤(rùn)濕反轉(zhuǎn)前后毛管壓力變化Fig.8 Capillary pressure before/after wettability alteration

        3.2 模型驗(yàn)證

        采用該模型分別計(jì)算了巖心柱1和巖心柱2的滲吸采收率(圖9),可以發(fā)現(xiàn),采用潤(rùn)濕反轉(zhuǎn)模型時(shí)計(jì)算的滲吸采收率約為19.6%,與巖心柱2的實(shí)驗(yàn)結(jié)果較為一致;不采用潤(rùn)濕反轉(zhuǎn)模型時(shí),最終采收率為5 %左右,與巖心柱1的實(shí)驗(yàn)結(jié)果一致.

        圖9 實(shí)驗(yàn)和模擬擬合圖Fig.9 Data fitting of experiment and modeling

        4 現(xiàn)場(chǎng)應(yīng)用

        選擇新疆油田瑪18井區(qū)4口平臺(tái)井進(jìn)行現(xiàn)場(chǎng)試驗(yàn),將表面活性劑復(fù)配至壓裂液中,并通過高排量泵入地層.該區(qū)塊油藏埋深3 840~3 870 m,儲(chǔ)層溫度為86℃,目的層平均孔隙度約為9%,平均滲透率約為2×10-3~6×10-3μm2.該平臺(tái)共泵入壓裂液5 400 m3,其中滑溜水2 250 m3,滑溜水中按照0.1%的質(zhì)量濃度比加入潤(rùn)濕反轉(zhuǎn)劑,以此探索體積壓裂形成復(fù)雜裂縫,并在裂縫周圍改變儲(chǔ)層潤(rùn)濕性以提高采收率的可行性.

        該平臺(tái)井目前以4 mm油嘴自噴,平均日產(chǎn)油量約為9~10 t/d,比相同改造規(guī)模下的鄰井產(chǎn)量高出2~4 t/d,現(xiàn)場(chǎng)生產(chǎn)也說明將表面活性劑復(fù)配至壓裂液中,改變裂縫周圍儲(chǔ)層潤(rùn)濕性,提高油井產(chǎn)量方法的可行性.

        5 結(jié) 論

        1) 為探究致密儲(chǔ)層體積改造后提高采收率的方法,基于接觸角、界面張力測(cè)量和滲吸實(shí)驗(yàn),在壓裂液中分別添加陽(yáng)離子表面活性劑、陰離子表面活性劑和非離子表面活性劑,在不同潤(rùn)濕狀態(tài)下對(duì)致密巖心分別進(jìn)行了物模實(shí)驗(yàn).

        2) 僅依靠壓裂液不能引起潤(rùn)濕反轉(zhuǎn),采收率僅為4.95%,添加表面活性劑后潤(rùn)濕性發(fā)生變化,采收率有大幅提高.陰離子表面活性劑的負(fù)電荷效應(yīng)使其改變潤(rùn)濕性的能力要好于非離子表面活性劑和陽(yáng)離子表面活性劑.

        3) 采用不同的相滲曲線和毛管壓力曲線,對(duì)潤(rùn)濕反轉(zhuǎn)過程進(jìn)行模擬,并對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合,驗(yàn)證了模型的準(zhǔn)確性.

        4)在致密儲(chǔ)層體積改造形成復(fù)雜縫網(wǎng)的基礎(chǔ)上,發(fā)揮壓裂液的潤(rùn)濕反轉(zhuǎn)功能,改變儲(chǔ)層潤(rùn)濕性,提高滲吸采油能力,增加油井產(chǎn)能,提高采收率,對(duì)于該類儲(chǔ)層的開發(fā)具有現(xiàn)實(shí)意義.

        / References:

        [1] 吳 奇,胥 云,王曉泉,等.非常規(guī)油氣藏體積改造技術(shù)——內(nèi)涵、優(yōu)化設(shè)計(jì)與實(shí)現(xiàn)[J].石油勘探與開發(fā),2012,39(3):352-358. Wu Qi, Xu Yun, Wang Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.(in Chinese)

        [2] 袁 彬, 蘇玉亮, 豐子泰,等. 體積壓裂水平井縫網(wǎng)滲流特征與產(chǎn)能分布研究[J].深圳大學(xué)學(xué)報(bào)理工版,2013,30(5):545-550. Yuan Bin, Su Yuliang, Feng Zitai, et al. Productivity distribution and flow characteristics of volume-fractured horizontal wells[J]. Journal of Shenzhen University Science and Engineering, 2013, 30(5): 545-550.(in Chinese)

        [3] 朱世琰,李海濤,孫正麗,等.低滲透氣藏分段壓裂水平井非穩(wěn)態(tài)產(chǎn)能模型[J].深圳大學(xué)學(xué)報(bào)理工版,2014,31(3):266-272. Zhu Shiyan, Li Haitao, Sun Zhengli, et al. Unsteady productivity model of multi-stage fractured horizontal well in low permeability gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(3): 266-272.(in Chinese)

        [4] 劉中云,曾慶輝,唐周懷,等.潤(rùn)濕性對(duì)采收率及相對(duì)滲透率的影響[J].石油與天然氣地質(zhì),2000,21(2):148-150. Liu Zhongyun, Zeng Qinghui, Tang Zhouhuai, et al. Effect of wettability on recovery and relative permeability[J]. Oil & Gas Geology, 2000, 21(2):148-150.(in Chinese)

        [5] 姚鳳英,姚同玉,李繼山.油層潤(rùn)濕性反轉(zhuǎn)的特點(diǎn)與影響因素[J].油氣地質(zhì)與采收率,2007,14(4):76-78. Yao Fengying, Yao Tongyu, Li Jishan. Characteristics and influencing factors of reservoir wettability reversal[J]. Petroleum Geology and Recovery Efficiency, 2007, 14(4): 76-78.(in Chinese)

        [6] Wang W, Gupta A. Investigation of the effect of temperature and pressure on wettability using modified pendant drop method[C]// SPE Annual Technical Conference and Exhibition. Dallas, USA: Society of Petroleum Engineers, 1995. http://dx.doi.org/10.2118/30544-MS.

        [7] 蔣 平,張貴才,葛際江,等.潤(rùn)濕反轉(zhuǎn)機(jī)理的研究進(jìn)展[J].西安石油大學(xué)學(xué)報(bào)自然科學(xué)版,2007,22(6):78-84. Jiang Ping, Zhang Guicai, Ge Jijiang, et al. Progress in the research of wettability reversal mechanism[J]. Journal of Xi’an Shiyou University Natural Science Edition, 2007, 22(6):78-84.(in Chinese)

        [8] Al-Hadhrami H S, Blunt M J. Thermally induced wettability alteration to improve oil recovery in fractured reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2001, 4(3): 179-186.

        [9] Nasralla R A, Bataweel M A, Nasr-El-Din H A. Investigation of wettability alteration and oil-recovery improvement by low-salinity water in sandstone rock[J]. Journal of Canadian Petroleum Technology, 2013, 52(2): 144-154.

        [10] Kumar K, Dao E K, Mohanty K K. Atomic force microscopy study of wettability alteration by surfactants[J]. Spe Journal, 2008, 13(2): 137-145.

        [11] 楊 智,鄒才能,吳松濤,等.含油氣致密儲(chǔ)層納米級(jí)孔喉特征及意義[J].深圳大學(xué)學(xué)報(bào)理工版,2015,32(3):257-265. Yang Zhi, Zou Caineng, Wu Songtao, et al. Characte-ristics of nano-sized pore-throat in unconventional tight reservoir rocks and its scientific value[J]. Journal of Shenzhen University Science and Engineering, 2015, 32(3):257-265.(in Chinese)

        [12] 李 帥,丁云宏,才 博,等.致密油藏體積壓裂水平井?dāng)?shù)值模擬及井底流壓分析[J].大慶石油地質(zhì)與開發(fā), 2016,35(4):72-75. Li Shuai, Ding Yunhong, Cai Bo, et al. Numerical simulation and bottom hole pressure analysis of volume fractured horizontal well in tight oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 72-75.(in Chinese)

        [13] Zhou Zhou, Abass H, Li Xiaopeng, et al. Experimental investigation of the effect of imbibition on shale permeability during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2016, 29: 413-430.

        [14] Alvarez J O, Schechter D S. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives[C]// SPE Latin American and Caribbean Petroleum Engineering Conference. Quito, Ecuador: Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/177057-MS

        [15] Standnes D C, Austad T. Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants[J]. Journal of Petroleum Science and Engineering, 2000, 28(3): 123-143.

        [16] Shariatpanahi S F, Hopkins P, Aksulu H, et al. Water based EOR by wettability alteration in dolomite[J]. Energy & Fuels, 2016, 30(1): 180-187.

        [17] Hou B, Wang Y, Cao X, et al. Mechanisms of enhanced oil recovery by surfactant-induced wettability alteration[J]. Journal of Dispersion Science and Technology, 2016, 37(9): 1259-1267.

        [18] Delshad M, Pope G A, Sepehrnoori K, et al. Modeling wettability alteration using chemical EOR processes in naturally fractured reservoirs[J]. Third Semiannual Report for Work Performed under Contract, 2006. DOI: 10.2172/927590.

        [19] Li Shuai, Ding Yunhong, Cai Bo, et al. Solution for counter-current imbibition of 1D immiscible two-phase flow in tight oil reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2016: 1-7.

        [20] 李 帥,丁云宏,才 博,等.致密儲(chǔ)層體積改造潤(rùn)濕反轉(zhuǎn)實(shí)驗(yàn)及模擬研究[J].特種油氣藏,2016 (6):89-92. Li Shuai, Ding Yunhong, Cai Bo, et al. Experimental and modeling of wettability alteration during volume fracturing in tight oil formation[J]. Special Oil & Gas Reservoirs, 2016(06):89-92.(in Chinese)

        【中文責(zé)編:英 子;英文責(zé)編:天 瀾】

        Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs

        Li Shuai1,2, Ding Yunhong2,3?, Liu Guangfeng4, Gu Daihong4, and Cai Bo2

        1) Research Institute of Petroleum Exploration & Development, Beijing 100083, P.R.China 2) Research Institute of Petroleum Exploration & Development-Langfang, Langfang 65007, Hebei Province, P.R.China 3) National Energy Tight Oil R&D Center, Beijing 100083, P.R.China 4) EOM Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, P.R.China

        In view of the comparison of contact angle and interfacial tension, we study the performance of the method of enhanced oil recovery (EOR) by altering the wettability of reservoir rock surfaces through adding different types of surfactant into the fracturing fluids during hydraulic fracturing. Firstly, the cationic surfactant, anionic surfactant and nonionic surfactant, respectively, were added into fracturing fluids. Afterwards, the imbibition experiments for tight cores after treated with different surfactants were performed. Lastly, a numerical simulation was carried to model the effects of wettability alteration by changing relative permeability curves and capillary curves. The main conclusions have been summarized as follows: (i) Only fracturing fluids cannot bring wettability alteration with a recovery as just of 4.95%. However, fracturing fluids added with surfactants can bring the changes of contact angle, and the recovery can be increased to be 21.29% (anionic surfactant), 15.84% (nonionic surfactant) and 9.91% (cationic surfactant). (ii) The simulation results with different relative permeability and capillary curves can achieve excellent agreement with the experimental data, hence this numerical simulation can be an effective method to describe wettability alteration in this study. (iii) As for field application, the oil production rate of a multi-stage fractured horizontal well with added surfactants (DL-15) into the fracturing fluids can have about 2~4 t/d more than that of other wells. (iv) The practices to add appropriate surfactants into the fracturing fluids during hydraulic fracturing and extend the shut-in period after fracturing are recommended in order to improve oil production performance.

        tight oil formation; volume fracturing; wettability alteration; surfactant; imbibition; enhanced oil recovery

        Received:2016-11-10;Accepted:2016-11-24

        Foundation:National Science and Technoogy Major Progect (2016ZX05023)

        ? Corresponding author:Professor Ding Yunhong. E-mail: dingyh@petrochina.com.cn

        :Li Shuai, Ding Yunhong, Liu Guangfeng, et al.Enhancing oil recovery by wettability alteration during fracturing in tight reservoirs[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(1): 98-104.(in Chinese)

        TE 355

        A

        10.3724/SP.J.1249.2017.01098

        國(guó)家科技重大專項(xiàng)資助項(xiàng)目(2016ZX05023)

        李 帥(1987—),男,中國(guó)石油勘探開發(fā)研究院博士研究生.研究方向:儲(chǔ)層改造與油藏?cái)?shù)值模擬.E-mail: ls_cupb@163.com

        引 文:李 帥,丁云宏,劉廣峰,等.致密儲(chǔ)層體積改造潤(rùn)濕反轉(zhuǎn)提高采收率的研究[J]. 深圳大學(xué)學(xué)報(bào)理工版,2017,34(1):98-104.

        猜你喜歡
        潤(rùn)濕性潤(rùn)濕壓裂液
        分子動(dòng)力學(xué)模擬研究方解石表面潤(rùn)濕性反轉(zhuǎn)機(jī)理
        基于低場(chǎng)核磁共振表征的礦物孔隙潤(rùn)濕規(guī)律
        大慶油田不返排壓裂液技術(shù)研究及應(yīng)用
        可在線施工的反相微乳液聚合物壓裂液
        等離子體對(duì)老化義齒基托樹脂表面潤(rùn)濕性和粘接性的影響
        乙醇潤(rùn)濕對(duì)2種全酸蝕粘接劑粘接性能的影響
        預(yù)潤(rùn)濕對(duì)管道潤(rùn)濕性的影響
        胍膠壓裂液與EM30壓裂液的對(duì)比研究
        利用表面電勢(shì)表征砂巖儲(chǔ)層巖石表面潤(rùn)濕性
        低傷害合成聚合物壓裂液體系研究與應(yīng)用
        女同久久精品国产99国产精品| 亚洲天堂av社区久久| 国产三级国产精品三级在专区 | 国产3p一区二区三区精品| 午夜无码一区二区三区在线观看| 成人a级视频在线播放| 99国产精品久久久蜜芽| 久久夜色精品国产| 成人国产精品免费视频| 久久免费精品国产72精品剧情| 亚洲一区二区三区码精品色| 自拍视频在线观看国产| 极品尤物人妻堕落沉沦| 婷婷综合另类小说色区| 国产精自产拍久久久久久蜜| 久青草国产在线观看| 麻豆变态另类视频在线观看| 丝袜人妻无码中文字幕综合网| 蜜臀av一区二区三区精品| 国产最新女主播福利在线观看| 99精品国产一区二区| 久久久久亚洲AV无码专| 久久精品韩国日本国产| 久久精品国产亚洲av夜夜| 男人国产av天堂www麻豆| 欧美精品亚洲精品日韩专区| 日本做受高潮好舒服视频| 欧美z0zo人禽交欧美人禽交| 91精品国产免费青青碰在线观看| 日韩人妻美乳中文字幕在线| 亚洲熟妇无码av在线播放 | 亚洲精品中文字幕乱码三区| 久久久精品久久日韩一区综合| 丰满人妻中文字幕乱码| 国产毛女同一区二区三区| 色一情一乱一乱一区99av| 91亚洲精品福利在线播放| 精品少妇一区二区三区入口| 国产精品a免费一区久久电影| 久久婷婷成人综合色| 国产中文制服丝袜另类|