高 晨,田立樁,朱文霞,白 潔,王瑞娟,高菱宜,趙 靜
(1.蘭州軍區(qū)蘭州總醫(yī)院安寧分院,蘭州 730070;2.蘭州軍區(qū)蘭州總醫(yī)院,蘭州 730050)
低氧預(yù)處理降低大鼠癲癇易感性及其腦保護(hù)作用的機(jī)制初探
高 晨1,田立樁2,朱文霞1,白 潔1,王瑞娟1,高菱宜1,趙 靜1
(1.蘭州軍區(qū)蘭州總醫(yī)院安寧分院,蘭州 730070;2.蘭州軍區(qū)蘭州總醫(yī)院,蘭州 730050)
目的初步探討間斷低氧預(yù)處理(intermittent hypoxia preconditioning,IHP)對(duì)氯化鋰-匹魯卡品(lithium-pilocarpine,Li-pilo)致癇大鼠癇性發(fā)作的影響及其腦保護(hù)作用機(jī)制。方法96只清潔級(jí) SD大鼠,隨機(jī)均分為對(duì)照組,癲癇組和4個(gè)間斷低氧預(yù)處理+癲癇組。癲癇組及4個(gè)間斷低氧預(yù)處理+癲癇組(分別在5 d IHP預(yù)處理后1,3,7,14日注射)大鼠通過腹腔注射氯化鋰-匹魯卡品建立癲癇模型。隨后進(jìn)行240 min的發(fā)作行為學(xué),全身性發(fā)作潛伏期及百分比量化分析并通過水迷宮實(shí)驗(yàn)測(cè)試大鼠認(rèn)知功能。接著利用TUNEL標(biāo)記和免疫印跡方法進(jìn)行大鼠海馬神經(jīng)元凋亡及相關(guān)蛋白(BCL-2,Bax和cleaved-caspase-3)的檢測(cè)。結(jié)果氯化鋰-匹魯卡品注射后50~150 min之間,癲癇發(fā)作的改良 Racine評(píng)分達(dá)到峰值。間斷低氧預(yù)處理后3日誘發(fā)癲癇組大鼠其平均改良Racine評(píng)分明顯低于其余各組,該組全身性發(fā)作潛伏期及百分比與癲癇組相比差異亦有統(tǒng)計(jì)學(xué)意義(P<0.05)。相比癲癇組和其余3個(gè)間斷低氧預(yù)處理+癲癇組大鼠,間斷低氧預(yù)處理后3日誘發(fā)癲癇組大鼠逃避潛伏期(escape latency)較短,神經(jīng)元凋亡計(jì)數(shù)較低,而目標(biāo)象限停留時(shí)間百分比較高(P<0.05)。間斷低氧預(yù)處理后3日誘發(fā)癲癇組的水迷宮以及凋亡檢測(cè)參數(shù)與對(duì)照組相比較無明顯差異(P>0.05)。結(jié)論IHP預(yù)處理通過抑制異常凋亡降低大鼠癲癇易感性,并具有腦保護(hù)作用。
低氧預(yù)處理;癲癇;腦保護(hù);大鼠
接近且低于細(xì)胞損傷閾值的多種有害刺激誘導(dǎo)機(jī)體產(chǎn)生適應(yīng)性以保護(hù)器官對(duì)抗后續(xù)的同種(耐受)或不同種(交叉耐受)損傷刺激,這一機(jī)體的內(nèi)生性保護(hù)機(jī)制已成為腦保護(hù)研究熱點(diǎn)[1]。研究表明癲癇預(yù)處理通過交叉耐受保護(hù)大腦抵抗缺血/缺氧損傷[2]。本研究通過 IHP預(yù)處理后藥物致癇大鼠癲癇易感性的實(shí)驗(yàn)觀察以及海馬神經(jīng)元凋亡檢測(cè),初步探討適度低氧對(duì)癲癇的影響及其腦保護(hù)機(jī)制,為相關(guān)疾病新的治療方案奠定理論基礎(chǔ)。
1.1 實(shí)驗(yàn)動(dòng)物及主要試劑
清潔級(jí)8周齡雄性SD大鼠96只,蘭州大學(xué)醫(yī)學(xué)實(shí)驗(yàn)動(dòng)物中心提供【SCXK(甘)2014-0016】,體重200~250 g,常規(guī)分籠飼養(yǎng)。動(dòng)物實(shí)驗(yàn)經(jīng)蘭州軍區(qū)蘭州總醫(yī)院倫理委員會(huì)書面同意,具備動(dòng)物實(shí)驗(yàn)資格【SYXK(軍)2014-022】。動(dòng)物隨機(jī)分為6組(每組16只):對(duì)照組(control;始終正常飼養(yǎng)),癲癇組(seizure;制作Li-pilo癲癇模型)和4個(gè)間斷低氧預(yù)處理+癲癇組(IHP-seizure,分別在 IHP預(yù)處理后第1,3,7,14日制作Li-pilo癲癇模型)。
氯化鋰(Q2084)和匹魯卡品(P6503)購(gòu)自美國(guó)Sigma公司。TUNEL凋亡檢測(cè)試劑盒(QIA33)購(gòu)自美國(guó) Merck Millipore公司。Cleaved-caspase-3單抗(#9664),Bax多抗(#2772)和 α-tubulin(#2144)購(gòu)自美國(guó) Cell Signaling Technology公司。Bcl-2(N-19)多抗(sc-492)購(gòu)自Santa Cruz上海分公司。辣根過氧化酶(horseradish peroxidase,HRP)二抗(ab136817)購(gòu)自美國(guó)Abcam公司。
1.2 大鼠IHP預(yù)處理
大鼠被分組置于密閉的預(yù)處理有機(jī)玻璃盒子(70×40×20)cm3中,盒內(nèi)溫度維持在22~25°C。自充氣口向盒內(nèi)充入低氧混合氣體(9%O2+91% N2),流量4 L/min,每日90 min,連續(xù)5 d。對(duì)照組及癲癇組大鼠也間斷置于盒子中飼養(yǎng),但不密閉隔絕空氣。
1.3 大鼠Li-pilo癲癇模型制作
大鼠先行腹腔注射氯化鋰(125 mg/kg),18~24 h后再次腹腔注射匹魯卡品(20 mg/kg)。在匹魯卡品注射前30 min,以1 mg/kg劑量腹腔注射東莨菪堿可以減輕其膽堿能副作用。對(duì)照組大鼠腹腔注射氯化鋰,18~24 h后以等容量生理鹽水代替匹魯卡品腹腔注射。
1.4 癲癇模型的行為學(xué)觀察及量化分析
癲癇組及IHP-癲癇組各組隨機(jī)選取8只進(jìn)行行為學(xué)視頻監(jiān)測(cè),持續(xù)240 min。依據(jù)改良 Racine評(píng)分法[3]對(duì)監(jiān)測(cè)視頻每5 min進(jìn)行1次評(píng)分,每只大鼠48個(gè)評(píng)分點(diǎn)。具體評(píng)分標(biāo)準(zhǔn)如下:0級(jí),靜止不動(dòng),立毛,興奮和快速呼吸;1級(jí),嘴部活動(dòng),唇舌和觸須,流涎;2級(jí),頭和眼陣攣;3級(jí),前肢陣攣,濕狗樣顫栗;4級(jí),陣攣性直立;5級(jí),陣攣性直立合并姿勢(shì)失控及不自控的跳躍。另外計(jì)算癲癇大鼠藥物注射后達(dá)到改良 Racine 4級(jí)(即全身性發(fā)作)的平均潛伏期以及48個(gè)評(píng)分點(diǎn)達(dá)到全身性發(fā)作(改良Racine 4,5級(jí))的百分比。
1.5 水迷宮實(shí)驗(yàn)
各組剩余8只大鼠進(jìn)行Morris水迷宮實(shí)驗(yàn)。以定位航行實(shí)驗(yàn)測(cè)試大鼠的認(rèn)知學(xué)習(xí)能力。將大鼠隨機(jī)放入圓形泳池等分的4個(gè)象限內(nèi)自由游動(dòng),直至尋找并爬上水中平臺(tái)。如在1 min內(nèi)大鼠找到平臺(tái),逃避潛伏期即為尋找平臺(tái)實(shí)際時(shí)間。如1 min內(nèi)找不到平臺(tái),逃避潛伏期記為60 s。計(jì)算每日2次8個(gè)象限的平均逃避潛伏期。連續(xù)進(jìn)行5 d實(shí)驗(yàn)。
以空間探索實(shí)驗(yàn)測(cè)試大鼠的記憶能力。在定位航行實(shí)驗(yàn)的第1日和第5日測(cè)試后進(jìn)行空間探索試驗(yàn)。撤除平臺(tái)后將大鼠從平臺(tái)所在對(duì)側(cè)象限中點(diǎn)放入水中,計(jì)算120 s內(nèi)大鼠在平臺(tái)象限平均停留的時(shí)間百分比。
1.6 鼠腦免疫組化切片制備
各組隨機(jī)選取8只大鼠在水合氯醛麻醉下經(jīng)心臟灌流處死,斷頭取腦。4%多聚甲醛固定24 h,蔗糖PB溶液階梯脫水48 h。包埋后連續(xù)冰凍切片(厚度6 μm)。
1.7 原位末端脫氧核苷酸轉(zhuǎn)移酶介導(dǎo)生物素標(biāo)記的脫氧尿嘧啶核苷三磷酸缺口末端標(biāo)記(TUNEL)凋亡檢測(cè)(顯色法)
每組隨機(jī)選8張鼠腦切片,順序滴加蛋白酶K工作液(90 min),3%H2O2甲醇溶液(5 min),TdT平衡緩沖液(30 min),均室溫孵育。滴加60 μL TdT標(biāo)記反應(yīng)混合物,37°C避光濕盒內(nèi)孵育90 min。滴加終止液室溫孵育5 min。隨后順序滴加封閉緩沖液(10 min),偶聯(lián)物(30 min)以及3,3-二氨基聯(lián)苯胺(DAB)工作液(10~15 min),均室溫孵育,甲基綠復(fù)染 3 min,顯微鏡明場(chǎng)條件下觀察并拍照。Images J軟件圖像分析,每組切片隨機(jī)選擇海馬CA1區(qū)10個(gè)不同的高倍視野(×200)計(jì)數(shù)陽性細(xì)胞數(shù),取平均值。
1.8 免疫印跡(Western blot)凋亡相關(guān)因子及蛋白檢測(cè)
各組剩余大鼠在水合氯醛麻醉下直接斷頭處死。取海馬組織勻漿后裂解,提取總蛋白,BCA法測(cè)定濃度。聚丙烯酰胺凝膠電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)每孔上樣蛋白總量為20 μg,時(shí)間120 min。350 mA恒流帶電轉(zhuǎn)膜(120 min),5%牛血清白蛋白室溫震蕩封閉 1 h,5%脫脂奶粉稀釋后分別加入一抗(BCL-2,Bax,cleaved-caspase-3,1∶1000),以 αtubulin(1∶1000)作為內(nèi)參,4°C孵育過夜。1∶5000稀釋的HRP二抗在室溫下震蕩孵育2 h。滴加發(fā)光檢測(cè)液在凝膠成像系統(tǒng)中拍照。Image J軟件灰度量化分析,重復(fù)3次實(shí)驗(yàn)取平均值。
1.9 統(tǒng)計(jì)學(xué)方法
本研究數(shù)據(jù)資料采用SPSS 13.0統(tǒng)計(jì)軟件包進(jìn)行分析。計(jì)量資料采用均數(shù)±標(biāo)準(zhǔn)差(±s)表示。不同組樣本均數(shù)間的兩兩比較采用單因素方差分析(One-way ANOVA)。根據(jù)各組總體方差齊同與否,選擇Bonferroni法或Tamhane’s T2法修正結(jié)果,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 癲癇模型大鼠視頻行為學(xué)表現(xiàn)及量化分析
各組8只視頻監(jiān)測(cè)癲癇大鼠48個(gè)時(shí)間點(diǎn)改良Racine評(píng)分均值折線圖如圖1所示。急性期發(fā)作峰值在匹魯卡品注射后50-150 min之間。IHP-1d癲癇組,IHP-3d癲癇組和 IHP-7d癲癇組平均改良Racine評(píng)分均低于癲癇組(P<0.05),而IHP-3d癲癇組則明顯低于其余各組(P<0.05)。IHP-14d癲癇組發(fā)作表現(xiàn)與癲癇組基本相似(P>0.05)。
各組大鼠全身性發(fā)作平均潛伏期,如表1所示。IHP-3d癲癇組潛伏期最長(zhǎng)為76.88±20.90 min,與其余各組均有明顯區(qū)別(P<0.05)。癲癇組潛伏期最短為21.64±2.22 min,與IHP-3d癲癇組和IHP-7d癲癇組(36.73±4.50 min)有明顯區(qū)別(P<0.05),與IHP-1d癲癇組(25.64±4.10 min)組及IHP-14d癲癇組(24.65±3.89 min)比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。
各組大鼠全身性發(fā)作百分比,如表2所示。癲癇組最高為 41.94±16.34%,與 IHP-1d癲癇組(31.79±9.17%),IHP-3d癲癇組(11.13±4.72%),IHP-7d癲癇組(29.77±7.76%)之間差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)。IHP-3d癲癇組明顯低于其余各組(P<0.05)。IHP-14d癲癇組(38.56± 13.53%)與癲癇組無顯著差異(P>0.05)。
表1 各組癲癇大鼠全身性發(fā)作潛伏期(單位:min,n=8)Tab.1 Latency of generalized seizure in epileptic rats from all groups(Unit:min,n=8 per group)
表2 各組癲癇大鼠全身性發(fā)作評(píng)分時(shí)間點(diǎn)百分比(單位:%,n=8)Tab.2 Percentage of generalized seizure time points in epileptic rats from all groups(Unit:%,n=8 per group)
2.2 癲癇模型大鼠認(rèn)知和記憶能力評(píng)估結(jié)果
如圖2A所示,定位航行實(shí)驗(yàn)中,癲癇組逃避潛伏期明顯長(zhǎng)于對(duì)照組、IHP-1d癲癇組、IHP-3d癲癇組和IHP-7d癲癇組(P<0.05),與IHP-14d癲癇組無明顯差異(P>0.05)。IHP-3d癲癇組則與對(duì)照組無明顯差異(P>0.05)。如圖2B所示,空間探索實(shí)驗(yàn)結(jié)果表明癲癇組大鼠在目標(biāo)象限停留時(shí)間明顯短于其余各組(P<0.05),而IHP-3d癲癇組與對(duì)照組無明顯差異(P>0.05)。
2.3 鼠腦海馬CA1區(qū)神經(jīng)元凋亡情況
各組大鼠海馬CA1區(qū)神經(jīng)元凋亡情況,如圖3所示。同一倍數(shù)視野下,癲癇組大鼠海馬神經(jīng)元平均凋亡計(jì)數(shù)高達(dá) 69.3±12.8 cells/HP,與對(duì)照組(15.5±6.8 cells/HP),IHP-1d癲癇組(26.3±7.2 cells/HP),IHP-3d癲癇組(18.7±9.6 cells/HP)及IHP-7d癲癇組(30.8±10.6 cells/HP)均有明顯差異(P<0.05)。IHP-14d癲癇組(61.0±8.4 cells/ HP)與癲癇組無明顯差異(P>0.05)。相反,IHP-3d癲癇組凋亡計(jì)數(shù)與對(duì)照組及IHP-1d癲癇組相比較無明顯差異(P>0.05),明顯低于其余各組(P<0.05)。
2.4 鼠腦海馬組織凋亡相關(guān)因子及蛋白檢測(cè)情況
免疫印跡檢測(cè)如圖4所示,對(duì)照組大鼠海馬組織 BCL-2,Bax及 cleaved-caspase-3均有少量正常表達(dá)。癲癇組大鼠 Bax及 cleaved-caspase-3表達(dá)明顯升高,BCL-2明顯降低,與IHP-14d癲癇組以外的其余各組均有明顯差異(P<0.05)。IHP-3d癲癇組的上述指標(biāo)與對(duì)照組無統(tǒng)計(jì)學(xué)差異(P>0.05)與其余各組之間均有明顯差異(P<0.05)。
綜上所述,IHP預(yù)處理后大鼠癲癇易感性降低,發(fā)作后認(rèn)知和記憶能力損害減輕。在細(xì)胞及分子水平神經(jīng)元凋亡檢測(cè)顯示IHP預(yù)處理的保護(hù)作用在第3天達(dá)到最佳效果,14 d后保護(hù)作用基本消失。
圖1 癲癇大鼠模型改良Racine評(píng)分情況Note.*P<0.05 versus the seizure group,#P<0.05 versus IHP 3d seizure group,ANOVA with post hoc Bonferroni correction,n=8 per group.Fig.1 The scoring results rated with modified Racine Scale of epileptic rat models in all groups
癲癇嚴(yán)重威脅人類健康,近年來機(jī)體內(nèi)生性神經(jīng)保護(hù)機(jī)制已成為抗癲癇研究的關(guān)注熱點(diǎn)。研究表明各類物理或化學(xué)性的低于細(xì)胞損傷閾值的傷害性刺激所誘導(dǎo)的耐受效應(yīng)具有器官普遍性[4]和交叉性[2]。本研究證實(shí)輕度缺氧交叉誘導(dǎo)癲癇之間存在“交叉耐受”,IHP預(yù)處理降低實(shí)驗(yàn)大鼠癲癇易感性的同時(shí)減輕其認(rèn)知及記憶功能損害。癲癇導(dǎo)致認(rèn)知功能障的始作俑者是發(fā)作過程中缺血/缺氧造成的海馬神經(jīng)元損傷。海馬與認(rèn)知功能密切相關(guān)[5],而海馬解剖、病理變化所帶來的細(xì)胞分子生物學(xué)改變則與癲癇發(fā)病機(jī)制密切相關(guān)。因此本研究進(jìn)一步引入了海馬神經(jīng)細(xì)胞凋亡檢測(cè)以初步探討癇性腦損傷及IHP預(yù)處理腦保護(hù)機(jī)制。細(xì)胞凋亡調(diào)控的多種蛋白因子中 Bcl-2和 Bax尤為重要,前者阻止凋亡,后者則促進(jìn)凋亡[6]。Bcl-2/Bax含量比下降激活下游caspase蛋白家族的瀑布式反應(yīng),最后通過 caspase-3產(chǎn)生細(xì)胞凋亡[7],后者在凋亡執(zhí)行階段,負(fù)責(zé)關(guān)鍵性蛋白的酶切。海馬神經(jīng)元絕對(duì)數(shù)量減少以及神經(jīng)纖維變性,造成神經(jīng)軸突出芽和突觸重塑,形成了反復(fù)異常的興奮點(diǎn),造成大腦興奮性和抑制性網(wǎng)絡(luò)失衡,進(jìn)而導(dǎo)致癲癇發(fā)作[8]。本研究結(jié)果表明,癲癇大鼠海馬神經(jīng)元出現(xiàn)了以凋亡失調(diào)為主要特征的病理?yè)p害,促凋亡因子升高,凋亡抑制因子下調(diào),最終導(dǎo)致神經(jīng)元大量丟失。IHP預(yù)處理逆轉(zhuǎn)了上述病理過程,大鼠癲癇易感性隨之降低,功能性腦損傷亦明顯減輕。
圖2 各組大鼠認(rèn)知和記憶能力評(píng)估Note.*P<0.05,versus the seizure group,#P<0.05,versus the IHP 3d seizure group. ANOVA with post hoc Tamhane’s T2 correction,n=8 per group.Fig.2 Evaluation of the cognition and memory ability in rats from all groups
圖3 各組大鼠海馬CA1區(qū)TUNEL顯色法染色情況(×200)Fig.3 The TUNEL labeling of hippocampal CA1 region in the rats from all groups(Bar=50 μm)
圖4 各組大鼠海馬凋亡相關(guān)因子及蛋白檢測(cè)情況Note.*P<0.05 versus the seizure group,#P<0.05 versus the IHP 3d seizure group,ANOVA with post hoc Tamhane’s T2 correction,n=8 per group.Fig.4 Detection of apoptosis-related factors and proteins in the rat hippocampus from all groups
神經(jīng)元正常生理功能的實(shí)現(xiàn)依賴于膠質(zhì)細(xì)胞對(duì)其能量代謝的維護(hù)[9]。星形膠質(zhì)細(xì)胞-神經(jīng)元乳酸穿梭(astrocyte-neuron lactate shuttle hypothesis,ANLSH)理論詮釋了二者能量代謝上聯(lián)系的重要性。神經(jīng)興奮性和癲癇發(fā)作與快速葡萄糖利用及糖酵解相關(guān),腦能量代謝從葡萄糖利用轉(zhuǎn)變?yōu)槿毖鯛顟B(tài)下的乳酸及酮體利用,通過復(fù)雜集成系統(tǒng)降低神經(jīng)興奮性增強(qiáng)抑制性,表明癲癇起病與腦能量?jī)?nèi)穩(wěn)態(tài)改變相關(guān)[10],而維護(hù)大腦自穩(wěn)態(tài)是星形膠質(zhì)細(xì)胞最重要的生理功能[11]。高壓氧治療過程中氧化一氮將增加癲癇易感性[12],進(jìn)一步反證缺血/缺氧對(duì)癲癇的抑制作用。因此,我們認(rèn)為IHP預(yù)處理所誘導(dǎo)的癲癇耐受正是通過星形膠質(zhì)細(xì)胞對(duì)神經(jīng)元能量代謝的維護(hù)而得以實(shí)現(xiàn)的。IHP預(yù)處理后3d為最佳保護(hù)期,隨后保護(hù)效果逐漸減退,考慮系預(yù)處理激活的內(nèi)生性保護(hù)因子經(jīng)過機(jī)體代謝逐漸消失所致。
ANLSH依賴于單羧酸轉(zhuǎn)運(yùn)體(monocarboxylate transporters,MCTs)對(duì)乳酸調(diào)控[13]。MCT4是低氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α,HIF-1α)的靶基因之一[14]。后者通過調(diào)控靶基因?qū)θ毖?缺氧及時(shí)應(yīng)答以保持體內(nèi)氧平衡[15]。缺血/缺氧與癲癇之間交叉耐受系多種低氧及神經(jīng)興奮性效應(yīng)分子共同作用的結(jié)果。針對(duì)這些保護(hù)因素的深入研究將為開發(fā)新的診療手段提供重要的理論支撐。
[1]Dirnagl U,Becker K,Meisel A.Preconditioning and tolerance against cerebral ischemia:from experimental strategies to clinical use[J].Lancet Neurol,2009,8(4):398-412.
[2]Plamondon H,Blondeau N,Heurteaux C,et al.Mutually protective actions of kainic acid epileptic preconditioning and sublethalglobalischemia on hippocampalneuronaldeath: involvement of adenosine A1 receptors and K(ATP)channels[J].J Cereb Blood Flow Metab,1999,19(12):1296-1308.
[3]Medina-Ceja L,Sandoval-Garcia F,Morales-Villagran A,et al. Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus[J].J Biomed Sci,2012,19:78.
[4]Sharp FR,Ran R,Lu A,et al.Hypoxic preconditioning protects against ischemic brain injury[J].NeuroRx,2004,1(1):26-35.
[5]Titiz AS,Mahoney JM,Testorf ME,et al.Cognitive impairment in temporal lobe epilepsy:Role of online and offline processing of single cell information[J].Hippocampus,2014,24(9):1129 -1145.
[6]Cory S,Adams JM.Killing cancer cells by flipping the Bcl-2/ Bax switch[J].Cancer Cell,2005,8(1):5-6.
[7]Mehmet H.Caspases find a new place to hide[J].Nature,2000,403(6765):29-30.
[8]SloviterRS. Progress on the issue of excitototic injury modification vs realneuroprotection: implications forposttraumatic epilepsy[J].Neuropharmacology,2011,61(5-6): 1048-1050.
[9]Araque A,Perea G.Glial modulation of synaptic transmission in culture[J].Glia,2004,47(3):241-248.
[10]Hartman AL.Does the effectiveness of the ketogenic diet in different epilepsies yield insights into its mechanisms?[J]. Epilepsia,2008,49(Suppl 8):53-56.
[11]Lauritzen F,Perez EL,Melillo ER,et al.Altered expression of brain monocarboxylate transporter 1 in models of temporal lobe epilepsy[J].Neurobiol Dis,2012,45(1):165-176.
[12]Liu W,Li J,Sun X,et al.Repetitive hyperbaric oxygen exposures enhance sensitivity to convulsion by upregulation of eNOS and nNOS[J].Brain Res,2008,1201:128-134.
[13]Simpson IA,Carruthers A,Vannucci SJ.Supply and demand in cerebral energy metabolism:the role of nutrient transporters[J]. J Cereb Blood Flow Metab,2007,27(11):1766-1791.
[14]Rademakers SE,Lok J,van der Kogel AJ,et al.Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole,HIF-1alpha,CAIX,LDH-5,GLUT-1,MCT1 and MCT4[J].BMC Cancer,2011,11:167.
[15]Majmundar AJ,Wong WJ,Simon MC.Hypoxia-inducible factors and the response to hypoxic stress[J].Mol Cell,2010,40 (2):294-309.
Preliminary study on the role of hypoxia preconditioning in decreasing the susceptibility to epilepsy and brain protection in rats
GAO Chen1,TIAN Li-zhuang2,ZHU Wen-xia1,BAI Jie1,WANG Rui-juan1,GAO Ling-yi1,ZHAO Jing1
(1.AnNing Branch Hospital,Lanzhou General Hospital of Lanzhou Military Region,Lanzhou 730070,China. 2.Lanzhou General Hospital of Lanzhou Military Region,Lanzhou 730050.)
ObjectiveTo preliminarily explore the effects and brain protective mechanism of intermittent hypoxia preconditioning(IHP)on rats with seizures induced by lithium-pilocarpine(Li-pilo).MethodsA total of 96 8-week old male Sprague Dawley rats(clean grade)were randomly divided into control group,seizure group and four IHP-seizure groups.The animal model of epilepsy was established by intraperitoneal injection of Li-pilo in the seizure group and four IHP-seizure groups(Li-pilo was injected at 1,3,7,or 14 days after a 5-day regimen of IHP).Subsequent seizure behavior,the latency period and percentage of generalized seizures were quantitatively evaluated for 240 min and the cognitive function was tested by Morris water maze task,and followed by the detection of hippocampus neuron apoptosis and related protein(BCL-2,Bax,and cleaved-caspase-3)by TUNEL labeling and Western blot,respectively.ResultsTheinduced seizure peaked on an average between 50-150 min after Li-pilo administration,scored using a modified Racine scale.The average scores of modified Racine scale in the IHP-3d seizure group was significantly lower than that in the other groups.The latency period and percentage of generalized seizures in the IHP-3d seizure group rats were significantly different from the parameters in the seizure group rats(P<0.05).IHP-3d seizure rats showed lower escape latency,neuronal apoptosis counts and higher percentage of time in the probe quadrant compare with the seizure group and the other three IHP-seizure groups(P<0.05).Compared with the control group,the parameters of water maze and apoptosis detection in the IHP-3d seizure group showed no significant changes(P>0.05).ConclusionsThe results indicate that IHP treatment may help to decrease the susceptibility to epilepsy by reducing abnormal apoptosis,and has a brain protective effect on the seizure rats.
Hypoxia preconditioning;Epilepsy;Brain protection;Rat
R-33
A
1671-7856(2016)12-0032-06
10.3969.j.issn.1671-7856.2016.12.007
2016-07-01
高晨(1977-),男,醫(yī)學(xué)博士,主治醫(yī)師。研究方向:功能神經(jīng)外科的基礎(chǔ)與臨床研究。Email:gc2006418@163.com。