亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        下丘腦-垂體-腎上腺軸與重度抑郁癥關(guān)系的研究進展

        2017-01-17 10:07:12張曉杰費洪新
        中國老年學雜志 2017年11期
        關(guān)鍵詞:血清水平

        張曉杰 費洪新

        (齊齊哈爾醫(yī)學院,黑龍江 齊齊哈爾 161006)

        下丘腦-垂體-腎上腺軸與重度抑郁癥關(guān)系的研究進展

        張曉杰 費洪新

        (齊齊哈爾醫(yī)學院,黑龍江 齊齊哈爾 161006)

        下丘腦-垂體-腎上腺軸;重度抑郁癥;糖皮質(zhì)激素

        重度抑郁癥(MDD)主要表現(xiàn)為情緒低落、活動減少、思維減退、認知功能障礙、雙相情感障礙等〔1〕。世界衛(wèi)生組織(WTO)專家預(yù)測2020年后MDD將會成為現(xiàn)有疾病中致殘和死亡的第二大疾病之一,其終身患病率可以達到15%以上〔2,3〕,這將會給全球國家、社會和家庭帶來沉重的心理負擔和經(jīng)濟負擔〔4〕。盡管中醫(yī)藥和西藥治療MDD的研究文獻很多,但是仍然缺乏抗MDD的特效藥物,同時西藥抗MDD的治療效果還存在一定的局限性。MDD的病因和發(fā)病機制也是極其復(fù)雜的,涉及遺傳〔5,6〕、肥胖〔7〕、應(yīng)激〔8〕、心理、環(huán)境、內(nèi)分泌、神經(jīng)、社會等多種因素。近幾年來關(guān)于MDD的神經(jīng)內(nèi)分泌系統(tǒng)紊亂逐漸成為研究熱點,例如機體下丘腦-垂體-腎上腺(HPA)軸的活性上調(diào)機制逐漸引起了抗MDD研究者的高度重視〔9,10〕。30%~50%的MDD患者血清伴有糖皮質(zhì)激素(GC)、促腎上腺皮質(zhì)激素(ACTH)、促腎上腺皮質(zhì)激素釋放激素(CRH)含量增加〔11〕,且伴有雌激素含量降低,海馬GC受體(GR)減少,并影響GR和鹽皮質(zhì)激素(MR)比值,造成海馬神經(jīng)元損傷并抑制HPA軸活性,同時可以使GC對HPA軸反饋抑制減弱,造成HPA軸亢奮,加重MDD病情??梢奙DD腦內(nèi)神經(jīng)元損傷機制與HPA軸失調(diào)密切相關(guān)。本文主要介紹HPA軸與MDD關(guān)系的研究進展。

        1 HPA軸簡介

        HPA軸包括下丘腦、垂體、腎上腺和下游相應(yīng)的靶器官等。下丘腦分泌的激素稱為下丘腦激素,下丘腦激素包括CRH、促甲狀腺激素釋放激素(TRH)〔12〕、促黃體激素釋放激素(LHRH)〔13〕、生長素釋放激素(GHRH)〔14〕、促卵泡激素釋放激素(FSHRH)、催乳素釋放因子(PRF)、促黑素細胞激素釋放因子(MRF)和部分釋放激素相關(guān)的抑制因子等。CRH通過垂體門脈系統(tǒng)運輸?shù)酱贵w的腺垂體部位,刺激腺垂體分泌ACTH,參與下游信號腎上腺分泌GC、MR、雌激素和雄激素等激素水平的調(diào)控,結(jié)合于相應(yīng)的靶器官上受體而發(fā)揮作用。

        1.1 下丘腦 下丘腦位于大腦的腹側(cè)面,丘腦的下方也稱為丘腦下部,主要包括視上部、結(jié)節(jié)部、乳頭部。CRH參與HPA軸的神經(jīng)、精神、內(nèi)分泌和免疫等方面的綜合性應(yīng)激反應(yīng),還可以參與應(yīng)急反應(yīng)。CRH引起HPA軸興奮,而腎上腺分泌GC、MR、雌激素和雄激素等可以反饋抑制HPA軸。

        1.2 垂體 垂體位于丘腦下部腹側(cè)面的垂體窩內(nèi),呈現(xiàn)橢圓形,主要分為腺垂體和神經(jīng)垂體。腺垂體主要分泌ACTH、促甲狀腺激素(TSH)〔15〕、卵泡刺激素(FSH)〔16〕、黃體生成素(LH)〔17〕、催乳素〔18〕、生長激素(GH)〔19〕、黑色素細胞刺激素(MSH)〔20〕;只神經(jīng)垂體并不分泌激素,只是暫時貯存下丘腦視上核和室旁核分泌的抗利尿激素(ADH)〔21〕、催產(chǎn)素。其中腺垂體分泌的ACTH,通過機體的血液循環(huán)(體循環(huán)),ACTH到達腎臟上方腎上腺皮質(zhì)的束狀帶、球狀帶、網(wǎng)狀帶。ACTH刺激腎上腺皮質(zhì)束狀帶分泌GC,參與機體HPA軸的反饋調(diào)節(jié)和調(diào)節(jié)機體很多器官的合成和分解代謝。GC包括人類的皮質(zhì)醇(CORT)和嚙齒類的CORT;ACTH還能通過環(huán)磷酸腺苷(cAMP)和蛋白激酶A激活cAMP反應(yīng)元件結(jié)合蛋白(CREB),進而促進醛固酮的分泌。

        1.3 腎上腺 腎上腺位于機體兩側(cè)腎臟的上方,左右各一,主要分為腎上腺周圍部分的皮質(zhì)和腎上腺中央部分的髓質(zhì),腎上腺皮質(zhì)又分為球狀帶、束狀帶和網(wǎng)狀帶3個部分。腎上腺皮質(zhì)主要分泌GC、MR〔22〕、雌激素〔23〕、雄激素〔24〕。腎上腺髓質(zhì)主要分泌作用于心肌的腎上腺素(A)〔25〕、作用于小動脈的去甲腎上腺素(NA)。GC分泌受到機體生物節(jié)律和應(yīng)激刺激的影響,當GC濃度快速升高可以作用于腦組織海馬區(qū)域的GR,減少腦組織垂體ACTH的釋放。另外GC的濃度慢速升高還可以作用于垂體和腎上腺的GR受體,減少腦組織垂體ACTH的釋放,以此阻斷ACTH的興奮作用。

        2 HPA軸與MDD的關(guān)系

        2.1 下丘腦和MDD的關(guān)系 在HPA軸中,下丘腦分泌的CRH是參與MDD發(fā)病非常重要的內(nèi)分泌激素之一。研究表明,急性或者慢性應(yīng)激可以誘發(fā)MDD,促進下丘腦分泌CRH。CRH促進腺垂體分泌ACTH,ACTH促進腎上腺皮質(zhì)束狀帶分泌GC(CORT),CORT與下丘腦GR結(jié)合進一步損傷MDD海馬的基本結(jié)構(gòu),促進MDD的病情惡化〔26〕。GR可以介導(dǎo)下丘腦的內(nèi)分泌應(yīng)激反應(yīng),若GR基因突變,可以干擾下丘腦CRH上調(diào)〔27〕。CRH受體(CRHR)1突變會促進MDD的發(fā)生發(fā)展〔28〕,CRH多態(tài)性還會影響抗抑郁藥物對MDD的治療評價〔29〕。MDD出現(xiàn)腦組織HPA失調(diào)伴有下丘腦CRH分泌增加,促進中樞性或者周圍性胰島素抵抗(IR),進而引發(fā)2型糖尿病(T2DM)或者3型糖尿病(T3DM)〔30〕。女性妊娠期間也可以出現(xiàn)腦組織HPA失調(diào)伴有下丘腦CRH分泌增加〔31〕,通過產(chǎn)前和產(chǎn)后測定下丘腦CRH水平對MDD產(chǎn)后女性患者尤為重要〔32〕。倘若親代患有MDD,那么子代患有MDD的概率也會明顯增加,這與腦組織HPA軸的CRHR1突變有關(guān)〔33〕,而MDD伴有嚴重的精神疾患時CRHR1也可以出現(xiàn)突變〔34〕。MDD患者多伴有運動量減少、下丘腦CRH水平上調(diào),而經(jīng)過特殊的運動方式例如瑜伽鍛煉或使用非典型抗精神病藥喹硫平(QUE)可以促進MDD患者下丘腦CRH水平下調(diào)〔35,36〕。臨床研究顯示,與133例健康人相比,77例MDD患者下丘腦CRH水平上調(diào),若改善下丘腦CRH水平則有利于MDD的基礎(chǔ)治療〔37〕。

        2.2 垂體和MDD的關(guān)系 在HPA軸中,腺垂體分泌的激素ACTH參與MDD的調(diào)控。臨床研究顯示,MDD患者與健康人相比,血清ACTH含量明顯增加,降低血清ACTH水平則有利于HPA軸的調(diào)控〔38,39〕,這種調(diào)控可以使用地塞米松抑制實驗(DST)進行測定評價〔40〕。另外經(jīng)過40年18 454例MDD患者的血清ACTH含量測定,總結(jié)顯示MDD患者出現(xiàn)情緒低落等典型癥狀且伴有血清ACTH水平增加〔41〕,可見腺垂體分泌的激素ACTH在HPA軸中扮演重要的角色。動物實驗顯示,通過測定大鼠血清ACTH水平,可以評價食品添加劑味精對新生大鼠MDD的行為學指標,進而評價出腺垂體分泌的激素ACTH在HPA軸中的作用〔42〕。使用抗抑郁藥物可以降低血清ACTH含量、減弱雌激素受體(ER)β表達,進而抑制HPA通路〔43〕。通過觀察15例復(fù)發(fā)MDD與健康人的影像學和血清ACTH測定實驗顯示,MDD與HPA軸失調(diào)密切相關(guān)〔44〕。MDD經(jīng)過神經(jīng)肽(NP)Y治療后,血清ACTH水平下調(diào),提示腦組織NPY對HPA軸失調(diào)的調(diào)節(jié)效果較好〔45〕。觀察雄性MDD獼猴測定ACTH/CORT的比值顯示,MDD與HPA軸失調(diào)也是密切相關(guān),MDD獼猴血清ACTH含量增加〔46〕。通過觀察54例MDD患者,2年后進行隨訪顯示MDD患者血清ACTH水平下調(diào),預(yù)示HPA軸的功能恢復(fù)正常,也預(yù)示血清ACTH是MDD治療評價的重要指標之一〔47〕。另外,谷氨酸能系統(tǒng)在MDD中也發(fā)揮重要作用,N-甲基-D-天冬氨酸(NMDA)受體拮抗劑美金剛可以降低大鼠血清ACTH水平,改善腦組織HPA軸失調(diào),進而改善MDD動物模型的抑郁樣行為學,以此治療MDD〔48〕。

        2.3 腎上腺皮質(zhì)和MDD的關(guān)系 在HPA中,腎上腺皮質(zhì)主要分泌的激素包括GC、鹽皮質(zhì)激素、雄激素和雌激素。MDD伴有GC、腦源性神經(jīng)營養(yǎng)因子(BDNF)、胰島素等失調(diào),提示GC與MDD密切相關(guān)〔49〕。GC水平增加可以破壞BDNF和酪氨酸羥化酶(TH)等靶蛋白的表達〔50〕,從而干擾神經(jīng)元的基本結(jié)構(gòu)和功能。MDD伴有CORT水平增加,同時MR表達下調(diào),影響了GR/MR的比值,干擾了糖、脂肪、蛋白質(zhì)、水、鹽等代謝,促進了MDD的發(fā)生發(fā)展〔51〕。MDD在女性產(chǎn)后出現(xiàn)較多,這與生殖激素之一雌激素在產(chǎn)后水平下降密切相關(guān),通過腦組織HPA軸間接反饋而促進MDD的病情加重〔52〕。

        動物實驗顯示,GC誘導(dǎo)小鼠出現(xiàn)MDD行為學異常,小鼠體內(nèi)活性氧(ROS)水平增加,超氧化物歧化酶(SOD)1和SOD2可以通過腦組織HPA通路逆轉(zhuǎn)小鼠MDD行為學異常〔53〕,慢性的高水平GC可以活化細胞周期蛋白依賴性激酶(CDK)5,通過磷酸化的方式調(diào)節(jié)腦組織GR,誘導(dǎo)大鼠出現(xiàn)MDD〔54〕。大鼠產(chǎn)后給予高水平的CORT,依據(jù)此法建立產(chǎn)后MDD模型,實驗結(jié)果顯示行為學檢測強迫游泳試驗(FST)和形態(tài)學檢測腦組織海馬CA3區(qū)錐體細胞均出現(xiàn)異?!?5〕。

        體外實驗表明,依據(jù)HPA軸在MDD的作用機制,采用CORT誘導(dǎo)PC12細胞建立MDD細胞損傷模型,探索到MAPK信號轉(zhuǎn)導(dǎo)是GC影響MDD細胞損傷模型神經(jīng)元細胞活力和樹突生長的關(guān)鍵信號靶點〔56〕。另外,CORT誘導(dǎo)HT-22海馬神經(jīng)元也可以建立MDD海馬HT-22細胞損傷模型,雌激素通過HPA軸可以上調(diào)GR的表達,顯示雌激素在MDD中具有重要作用〔57〕??筂DD藥物丁螺環(huán)酮是5-羥色胺(5-HT)1A受體的激動劑,丁螺環(huán)酮除了通過5-HT1A發(fā)揮抗MDD作用外,還可以通過降低機體HPA軸的活性,減少GC水平來,以此來發(fā)揮抗MDD的積極作用〔58〕。

        臨床研究顯示,依據(jù)抗MDD藥物的HPA軸通路機制,目前GR是抗MDD治療的重要靶點蛋白之一〔59〕,CORT使用過多可以誘導(dǎo)MDD的發(fā)生,并導(dǎo)致MDD患者出現(xiàn)應(yīng)激障礙和人格障礙〔60〕。MDD伴有邊緣性人格障礙時,通過機體HPA軸觀察到GC對T細胞功能的敏感性較差〔61〕,長效GC的DST顯示MDD青少年可以出現(xiàn)自我傷害等等極端行為〔62〕。MDD伴有心血管疾病(CVD)時女性的致殘風險比男性高,尤其是女性絕經(jīng)期后,伴有女性激素水平明顯下降的時候致殘風險會更高〔63〕。MDD伴有創(chuàng)傷后應(yīng)激障礙(PTSD)時DST顯示50例住院患者血清C反應(yīng)蛋白(CRP)升高,進而加快MDD的病情發(fā)展〔64〕;具有復(fù)發(fā)性的73例MDD患者唾液CORT與脂肪酸(FA)變化趨勢同步〔65〕。通過837例MDD患者與正常人進行比較顯示唾液CORT水平增加且伴有睡眠障礙、焦慮等MDD典型癥狀〔66〕,MDD可以出現(xiàn)GC水平增加且伴有血清炎癥介質(zhì)白細胞介素(IL)-6、IL-1水平上調(diào),進而預(yù)示GC和炎癥反應(yīng)均參與MDD的發(fā)病機制當中〔67〕。門診87例MDD患者DST和CRH實驗顯示CORT和CRH的變化趨勢高度相關(guān)〔68〕?;跈C體HPA通路,長效GC之一地塞米松可以抑制腦組織BDNF誘導(dǎo)的神經(jīng)元樹突生長和突觸形成,促進MDD的病情發(fā)展〔69〕。通過選擇64例MDD患者和49例健康人的DST進行對比,顯示MDD與機體HPA也是高度相關(guān)的,且DST顯示經(jīng)過2 w后GC水平的變化與MDD病情的好轉(zhuǎn)正相關(guān),但是隨著時間的進一步延長,DST顯示GC水平的變化與MDD病情的相關(guān)系數(shù)則就會變小〔70〕。

        3 結(jié)論與展望

        綜上所述,HPA軸失調(diào)是MDD非常重要的病理生理機制之一,CRH、ACTH、GC參與調(diào)控MDD的發(fā)病進程,且可作為MDD的生物學檢測靶點蛋白。推測調(diào)控HPA軸或許是治療MDD的新策略之一。隨著MDD研究的不斷深入,必將進一步揭示MDD的病理生理機制,這會為MDD的治療和干預(yù)策略提供理論依據(jù)。

        1 Muneer A.The neurobiology of bipolar disorder:an integrated approach〔J〕.Chonnam Med J,2016;52(1):18-37.

        2 Ng M,F(xiàn)leming T,Robinson M,etal.Global,regional,and national prevalence of overweight and obesity in children and adults during 1980-2013:a systematic analysis for the Global Burden of Disease Study 2013〔J〕.Lancet,2014;384(9945):766-81.

        3 Ching-Lopez A,Cervilla J,Rivera M,etal.Epidemiological support for genetic variability at hypothalamic pituitary adrenal axis and serotonergic system as risk factors for major depression 〔J〕.Neuropsychiatr Dis Treat,2015;22(11):2743-54.

        4 Rosenblat JD,Gregory JM,Carvalho AF,etal.Depression and disturbed bone metabolism:a narrative review of the epidemiological findings and postulated mechanisms〔J〕.Curr Mol Med,2016;16(2):165-78.

        5 Hamm AO,Richter J,Pane-Farre C,etal.Panic disorder with agoraphobia from a behavioral neuroscience perspective:applying the research principles formulated by the research domain criteria (RDoC) initiative〔J〕.Psychophysiology,2016;53(3):312-22.

        6 Grabe HJ,Wittfeld K,Van der Auwera S,etal.Effect of the interaction between childhood abuse and rs1360780 of the FKBP5 gene on gray matter volume in a general population sample〔J〕.Hum Brain Mapp,2016;37(4):1602-13.

        7 Lee SH,Paz-Filho G,Mastronardi C,etal.Is increased antidepressant exposure a contributory factor to the obesity pandemic〔J〕?Transl Psychiatry,2016;15(6):e759.

        8 Dieleman GC,Huizink AC,Tulen JH,etal.Stress reactivity predicts symptom improvement in children with anxiety disorders〔J〕.J Affect Disord,2016;15(196):190-9.

        9 Kim LU,Dorsogna MR,Chou T.Onset,timing,and exposure therapy of stress disorders:mechanistic insight from a mathematical model of oscillating neuroendocrine dynamics〔J〕.Biol Direct,2016;11(1):13.

        10 Saiyudthong S,Mekseepralard C.Effect of inhaling bergamot oil on depression related behaviors in chronic stressed rats 〔J〕.J Med Assoc Thai,2015;98(19):S152-9.

        11 Naughton M,Dinan TG,Scott LV.Corticotropin-releasing hormone and the hypothalamic pituitary adrenal axis in psychiatric disease〔J〕.Handb Clin Neurol,2014;124:69-91.

        12 Meena CL,Thakur A,Nandekar PP,etal.Synthesis and biology of ring-modified l-Histidine containing thyrotropin-releasing hormone (TRH) analogues〔J〕.Eur J Med Chem,2016;111:72-83.

        13 Iversen P,Damber JE,Malmberg A,etal.Degarelix monotherapy compared with luteinizing hormone releasing hormone (LHRH) agonists plus anti-androgen flare protection in advanced prostate cancer:an analysis of two randomized controlled trials〔J〕.Ther Adv Urol,2016;8(2):75-82.

        14 Zhang L,Cao J,Wang Z,etal.Melatonin modulates monochromatic light-induced GHRH expression in the hypothalamus and GH secretion in chicks〔J〕.Acta Histochem,2016;118(3):286-92.

        15 Ozemir IA,Gurbuz B,Bayraktar B,etal.The effect of thyroid-stimulating hormone on tumor size in differentiated thyroid carcinoma〔J〕.Indian J Surg,2015;77(Suppl 3):967-70.

        16 Bramble MS,Goldstein EH,Lipson A,etal.A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure:a fertility application of whole exome sequencing〔J〕.Hum Reprod,2016;31(4):905-14.

        17 Xia L,Wen H,Han X,etal.Luteinizing hormone inhibits cisplatin-induced apoptosis in human epithelial ovarian cancer cells〔J〕.Oncol Lett,2016;11(3):1943-7.

        18 Soto L,Lagos AF,Isla A,etal.Immunostimulatory effects of prolactin on TLR1 and TLR5M in SHK-1 cells infected with Piscirickettsia salmonis〔J〕.Dis Aquat Organ,2016;118(3):237-45.

        19 Singh PP,Tomar SS,Thakur MS,etal.Polymorphism and association of growth hormone gene with growth traits in Sirohi and Barbari breeds of goat〔J〕.Vet World,2015;8(3):382-7.

        20 Suzuki H,Yamamoto T.Localization of amylin-like immunoreactivity in melanocyte stimulating hormone containing cells of the pars intermedia but not those of the pars distalis in the axolotl (Ambystoma mexicanum) pituitary 〔J〕.Acta Histochem,2016;118(3):213-8.

        21 Boursiquot R,Krol D,Hanif S,etal.Syndrome of inappropriate antidiuretic hormone in a patient with leptomeningeal carcinomatosis〔J〕.J Med Case Rep,2016;10(1):73.

        22 Senft RA,Meddle SL,Baugh AT.Distribution and abundance of glucocorticoid and mineralocorticoid receptors throughout the brain of the great tit (Parus major) 〔J〕.PLoS One,2016;11(2):e0148516.

        23 Cacioppo JA,Koo Y,Lin PC,etal.Generation of an estrogen receptor beta-iCre knock-in mouse〔J〕.Genesis,2016;54(1):38-52.

        24 Davis SR,Worsley R,Miller KK,etal.Androgens and female sexual function and dysfunction-findings from the fourth international consultation of sexual medicine〔J〕.J Sex Med,2016;13(2):168-78.

        25 Hardig BM,G?tberg M,Rundgren M,etal.Physiologic effect of repeated adrenaline (epinephrine) doses during cardiopulmonary resuscitation in the cath lab setting:a randomised porcine study〔J〕.Resuscitation,2016;101:77-83.

        26 Wiley JW,Higgins GA,Athey BD.Stress and glucocorticoid receptor transcriptional programming in time and space:implications for the brain-gut axis〔J〕.Neurogastroenterol Motil,2016;28(1):12-25.

        27 Bockmuhl Y,Patchev AV,Madejska A,etal.Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress〔J〕.Epigenetics,2015;10(3):247-57.

        28 Geng LY,Ye DQ,Shi YY,etal.Influence of genetic polymorphisms involved in the hypothalamic pituitary adrenal axis and their interactions with environmental factors on antidepressant response〔J〕.CNS Neurosci Ther,2014;20(3):237-43.

        29 Chang HS,Won E,Lee HY,etal.Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants〔J〕.Behav Brain Res,2015;292:116-24.

        30 Yokoyama K,Yamada T,Mitani H,etal.Relationship between hypothalamic pituitary adrenal axis dysregulation and insulin resistance in elderly patients with depression〔J〕.Psychiatry Res,2015;226(2-3):494-8.

        31 Gelman PL,F(xiàn)lores-Ramos M,Lopez-Martinez M,etal.Hypothalamic-pituitary-adrenal axis function during perinatal depression〔J〕.Neurosci Bull,2015;31(3):338-50.

        32 Glynn LM,Davis EP,Sandman CA.New insights into the role of perinatal HPA-axis dysregulation in postpartum depression〔J〕.Neuropeptides,2013;47(6):363-70.

        33 Woody ML,Kudinova AY,McGeary JE,etal.Influence of maternal depression on childrens brooding rumination:moderation by CRHR1 TAT haplotype〔J〕.Cogn Emot,2016;30(2):302-14.

        34 Schatzberg AF.Anna-Monika Award Lecture,DGPPN Kongress,2013:the role of the hypothalamic pituitary adrenal (HPA) axis in the pathogenesis of psychotic major depression〔J〕.World J Biol Psychiatry,2015;16(1):2-11.

        35 Sarubin N,Nothdurfter C,Schüle C,etal.The influence of Hatha yoga as an add-on treatment in major depression on hypothalamic-pituitary-adrenal-axis activity:a randomized trial〔J〕.J Psychiatr Res,2014;53:76-83.

        36 Nothdurfter C,Schmotz C,Sarubin N,etal.Effects of escitalopram/quetiapine combination therapy versus escitalopram monotherapy on hypothalamic-pituitary-adrenal-axis activity in relation to antidepressant effectiveness〔J〕.J Psychiatr Res,2014;52:15-20.

        37 Hori H,Teraishi T,Ota M,etal.Psychological coping in depressed outpatients:association with cortisol response to the combined dexamethasone/CRH test〔J〕.J Affect Disord,2014;152-154:441-7.

        38 Hohne N,Poidinger M,Merz F,etal.Increased HPA axis response to psychosocial stress in remitted depression:the influence of coping style〔J〕.Biol Psychol,2014;103:267-75.

        39 Sher L,Oquendo MA,Burke AK,etal.Combined dexamethasone suppression corticotrophin releasing hormone stimulation test in medication-freemajor depression and healthy volunteers〔J〕.J Affect Disord,2013;151(3):1108-12.

        40 Tajima-Pozo K,Montes-Montero A,Güemes I,etal.Contributions of cortisol suppression tests to understanding of psychiatric disorders:a narrative review of literature〔J〕.Endocrinol Nutr,2013;60(7):396-403.

        41 Stetler C,Miller GE.Depression and hypothalamic-pituitary-adrenal activation:a quantitative summary of four decades of research〔J〕.Psychosom Med,2011;73(2):114-26.

        42 Quines CB,Rosa SG,Da Rocha JT,etal.Monosodium glutamate,a food additive,induces depressive like and anxiogenic like behaviors in young rats〔J〕.Life Sci,2014;107(1-2):27-31.

        43 Kudwa AE,McGivern RF,Handa RJ.Estrogen receptor β and oxytocin interact to modulate anxiety like behavior and neuroendocrine stress reactivity in adult male and female rats〔J〕.Physiol Behav,2014;129:287-96.

        44 Holsen LM,Lancaster K,Klibanski A,etal.HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression〔J〕.Neuroscience,2013;250:733-42.

        45 Serova LI,Tillinger A,Alaluf LG,etal.Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats〔J〕.Neuroscience,2013;236:298-312.

        46 Ferguson B,Hunter JE,Luty J,etal.Genetic load is associated with hypothalamic pituitary adrenal axis dysregulation in macaques〔J〕.Genes Brain Behav,2012;11(8):949-57.

        47 Pintor L,Torres X,Bailles E,etal.CRF test in melancholic depressive patients with partial versus complete relapses:a 2-year follow-up study〔J〕.Nord J Psychiatry,2013;67(3):177-84.

        48 Tokita K,F(xiàn)ujita Y,Yamaji T,etal.Depressive-like behavior in adrenocorticotropic hormone treated rats blocked by memantine〔J〕.Pharmacol Biochem Behav,2012;102(2):329-34.

        49 Lee RS,Sawa A.Environmental stressors and epigenetic control of the hypothalamic pituitary adrenal axis〔J〕.Neuroendocrinology,2014;100(4):278-87.

        50 Liu CS,Carvalho AF,McIntyre RS.Towards a metabolic subtype of major depressive disorder:shared pathophysiological mechanisms may contribute to cognitive dysfunction〔J〕.CNS Neurol Disord Drug Targets,2014;13(10):1693-707.

        51 Juruena MF,Pariante CM,Papadopoulos AS,etal.The role of mineralocorticoid receptor function in treatment-resistant depression〔J〕.J Psychopharmacol,2013;27(12):1169-79.

        52 Schiller CE,Meltzer-Brody S,Rubinow DR.The role of reproductive hormones in postpartum depression〔J〕.CNS Spect,2015;20(1):48-59.

        53 Uchihara Y,Tanaka K,Asano T,etal.Superoxide dismutase overexpression protects against glucocorticoid induced depressive-like behavioral phenotypes in mice〔J〕.Biochem Biophys Res Commun,2016;469(4):873-7.

        54 Papadopoulou A,Siamatras T,Delgado-Morales R,etal.Acute and chronic stress differentially regulate cyclin dependent kinase 5 in mouse brain:implications to glucocorticoid actions and major depression〔J〕.Transl Psychiatry,2015;9(5):e578.

        55 Workman JL,Brummelte S,Galea LA.Postpartum corticosterone administration reduces dendritic complexity and increases the density of mushroom spines of hippocampal CA3 arbours in dams〔J〕.J Neuroendocrinol,2013;25(2):119-30.

        56 Li M,Zhou J,Qian J,etal.Target genes involved in corticosterone-induced PC12 cell viability and neurite disorders:a potential molecular mechanism of major depressive disorder〔J〕.Psychiatry Res,2016;235:206-8.

        57 Malviya SA,Kelly SD,Greenlee MM,etal.Estradiol stimulates an anti-translocation expression pattern of glucocorticoid co-regulators in a hippocampal cell model〔J〕.Physiol Behav,2013;122:187-92.

        58 Kirilly E,Gonda X,Bagdy G.Antidepressants,stressors and the serotonin 1A receptor〔J〕.Neuropsycho Pharmacol Hung,2015;17(2):81-9.

        59 Maric NP,Adzic M.Pharmacological modulation of HPA axis in depression new avenues for potential therapeutic benefits〔J〕.Psychiatr Danub,2013;25(3):299-305.

        60 Wingenfeld K,Wolf OT.Effects of cortisol on cognition in major depressive disorder,posttraumatic stress disorder and borderline personality disorder 2014 Curt Richter Award Winner〔J〕.Psychoneuro Endocrinol,2015;51:282-95.

        61 Fischer A,Grundmann J,Gold SM,etal.Steroid regulation of T cell function appears unaltered in borderline personality disorder〔J〕.J Pers Disord,2015;29(2):241-7.

        62 Beauchaine TP,Crowell SE,Hsiao RC.Post-dexamethasone cortisol,self-inflicted injury,and suicidal ideation among depressed adolescent girls〔J〕.J Abnorm Child Psychol,2015;43(4):619-32.

        63 Goldstein JM,Handa RJ,Tobet SA.Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease〔J〕.Front Neuroendocrinol,2014;35(1):140-58.

        64 Spitzer C,Wibisono D,Terfehr K,etal.C-reactive protein,pre-and postdexamethasone cortisol levels in post-traumatic stress disorder〔J〕.Nord J Psychiatry,2014;68(5):296-9.

        65 Mocking RJ,Ruhe HG,Assies J,etal.Relationship between the hypothalamic pituitary adrenal-axis and fatty acid metabolism in recurrent depression〔J〕.Psychoneuroendocrinology,2013;38(9):1607-17.

        66 Vreeburg SA,Hoogendijk WJ,DeRijk RH,etal.Salivary cortisol levels and the 2-year course of depressive and anxiety disorders〔J〕.Psychoneuroendocrinology,2013;38(9):1494-502.

        67 Horowitz MA,Zunszain PA,Anacker C,etal.Glucocorticoids and inflammation:a double-headed sword in depression.How do neuroendocrine and inflammatory pathways interact during stress to contribute to the pathogenesis of depression〔J〕.Mod Trends Pharmacopsychiatri,2013;28:127-43.

        68 Hori H,Teraishi T,Sasayama D,etal.Relationship of temperament and character with cortisol reactivity to the combined dexamethasone/CRH test in depressed outpatients〔J〕.J Affect Disord,2013;147(1-3):128-36.

        69 Kunugi H,Hori H,Numakawa T,etal.The hypothalamic-pituitary-adrenal axis and depressive disorder:recent progress〔J〕.Nihon Shinkei Seishin Yakurigaku Zasshi,2012;32(4):203-9.

        70 Douglas KM,Porter RJ.Associations between hypothalamic-pituitary-adrenal axis function and facial emotion processing in depressed and control participants〔J〕.Psychiatry Clin Neurosci,2012;66(5):442-50.

        〔2016-12-10修回〕

        (編輯 曲 莉)

        國家自然科學基金 (81173576,81373777,81173599);黑龍江省自然基金 (H201354);黑龍江省教育廳 (12521624,12531790,11521323)

        張曉杰(1965-),女,博士,教授,博士生導(dǎo)師,主要從事抑郁、阿爾茨海默病、腫瘤、痛風、肝纖維化研究。

        R749

        A

        1005-9202(2017)11-2839-05;

        10.3969/j.issn.1005-9202.2017.11.106

        猜你喜歡
        血清水平
        張水平作品
        血清免疫球蛋白測定的臨床意義
        中老年保健(2021年3期)2021-08-22 06:50:04
        慢性腎臟病患者血清HIF-1α的表達及臨床意義
        慢性鼻-鼻竇炎患者血清IgE、IL-5及HMGB1的表達及其臨床意義
        血清IL-6、APC、CRP在膿毒癥患者中的表達及臨床意義
        血清HBV前基因組RNA的研究進展
        作家葛水平
        火花(2019年12期)2019-12-26 01:00:28
        加強上下聯(lián)動 提升人大履職水平
        老虎獻臀
        血清β32-MG,Cys-C及U-mALB在高血壓腎損傷中的應(yīng)用
        久久久午夜精品福利内容| 国产毛片精品av一区二区| 亚洲国产中文字幕无线乱码| 天天躁夜夜躁狠狠躁2021a2| 精品国产av 无码一区二区三区 | 国产在线欧美日韩精品一区二区| 色se在线中文字幕视频| 偷拍夫妻视频一区二区| 成人国产精品一区二区视频| 国产精品麻豆综合在线| 国产网友自拍亚洲av| 成人免费av高清在线| 国产七十六+老熟妇| 国产精品区一区第一页| 亚洲av永久青草无码精品| 少妇激情高潮视频网站| 亚洲熟女www一区二区三区| 最新亚洲人成无码网www电影| 精品黄色av一区二区三区| 日本第一影院一区二区| 一本色道久久综合无码人妻| 国产精品密播放国产免费看| 日韩精品人妻少妇一区二区| 免费av网站大全亚洲一区| 天天夜碰日日摸日日澡| 国产精品无码久久久一区蜜臀| 一区二区亚洲精美视频| 亚洲精品国产精品乱码视色| 1000部夫妻午夜免费| 欧美日韩高清一本大道免费| 国产一区二区三区亚洲| 国产欧美日韩一区二区三区| 欧洲亚洲综合| 色婷婷一区二区三区77| 精人妻无码一区二区三区| 国产成人av 综合 亚洲| 国产亚洲AV片a区二区| 亚洲美女毛多水多免费视频| 国产精品亚洲欧美大片在线看| 亚洲人妻无缓冲av不卡| 亚洲乱码中文字幕第一页|