田錄林,王清妮
(西安理工大學(xué)電力工程系,陜西西安 710048)
基于斜率均值比識(shí)別變壓器勵(lì)磁涌流
田錄林,王清妮
(西安理工大學(xué)電力工程系,陜西西安 710048)
提出一種基于差動(dòng)電流波形斜率均值比的方法來(lái)識(shí)別故障電流和勵(lì)磁涌流。根據(jù)故障電流和勵(lì)磁涌流在波形下降和上升時(shí)斜率大小的不同,通過(guò)計(jì)算波形下降時(shí)的斜率均值和波形上升時(shí)的斜率均值的比值來(lái)鑒別故障電流和勵(lì)磁涌流。本文在PSCAD上搭建了變壓器模型,仿真空載合閘和外部故障時(shí)的電流波形,將所得波形數(shù)據(jù)導(dǎo)入本文方法所編寫的MATLAB算法中來(lái)計(jì)算和判別勵(lì)磁涌流和故障電流。結(jié)果表明:該方法簡(jiǎn)單易行,能正確識(shí)別故障電流和勵(lì)磁涌流。
變壓器;斜率均值比;勵(lì)磁涌流;故障電流
電力變壓器的重要保護(hù)是差動(dòng)保護(hù),而影響變壓器差動(dòng)保護(hù)正確動(dòng)作率的最主要因素就是勵(lì)磁涌流與故障電流的正確識(shí)別。為實(shí)現(xiàn)保護(hù)裝置不誤動(dòng),故障切除后能快速恢復(fù)供電,減少對(duì)電網(wǎng)電力設(shè)備的過(guò)電流沖擊等目的,充分認(rèn)識(shí)勵(lì)磁涌流的相關(guān)機(jī)理,實(shí)現(xiàn)快速、準(zhǔn)確的甄別故障電流和勵(lì)磁涌流就顯得很有意義和價(jià)值。
如何正確將勵(lì)磁涌流與故障電流區(qū)別開(kāi)來(lái),國(guó)內(nèi)外相關(guān)方面的研究人員和學(xué)者提出了不少新方法,如基于能量信息判別法[1]、數(shù)學(xué)形態(tài)學(xué)與人工神經(jīng)網(wǎng)絡(luò)結(jié)合法[2]、改進(jìn)主成分分析法[3]、勵(lì)磁電感參數(shù)識(shí)別法[4]和小波神經(jīng)網(wǎng)絡(luò)法[5]等等。應(yīng)用于工程的二次諧波制動(dòng)原理[6]和間斷角原理[7],分別存在著因波形畸變和間斷角變形等因素可能引起變壓器差動(dòng)保護(hù)誤動(dòng)的問(wèn)題?;诓ㄐ翁卣髯R(shí)別勵(lì)磁涌流的方法考慮了電流的波形、大小和相位等因素,是綜合性較好的判據(jù)。近年來(lái),國(guó)內(nèi)外學(xué)者提出了許多基于波形特征鑒別勵(lì)磁涌流的新方法,如改進(jìn)型波形相關(guān)法[8]、波形非正弦度分形估計(jì)值法[9]、波形時(shí)域分布特征識(shí)別法[10]、利用波形曲率識(shí)別法[11]等等。文獻(xiàn)[12]利用零序電流分量合成了用于勵(lì)磁涌流識(shí)別的虛擬差流,根據(jù)勵(lì)磁涌流波形諧波、間斷、勵(lì)磁涌流的尖頂波和波形上升、下降處邊沿斜率大的特征,通過(guò)綜合波形間斷角原理和二次諧波判據(jù)實(shí)現(xiàn)按相制動(dòng),以此為機(jī)理設(shè)計(jì)了識(shí)別勵(lì)磁涌流元件。文獻(xiàn)[13]提出借助直流分量加強(qiáng)二次諧波作用的新判據(jù),可保證變壓器差動(dòng)保護(hù)的正確動(dòng)作,提出的另一判據(jù)是用定增斜率制動(dòng)特性取代原用的雙斜率制動(dòng)特性,該方法能很好地和電流互感器的誤差特性相配合,可用于電力設(shè)備的差動(dòng)保護(hù)。文獻(xiàn)[14]計(jì)算一個(gè)周期內(nèi)差動(dòng)電流波形斜率的標(biāo)準(zhǔn)差,與預(yù)設(shè)的高低閾值進(jìn)行比較,并輔以二次諧波制動(dòng)原理判據(jù),判斷差動(dòng)電流為故障電流還是空載合閘產(chǎn)生的勵(lì)磁涌流。本文在對(duì)變壓器勵(lì)磁涌流和故障電流波形綜合分析的基礎(chǔ)上,根據(jù)勵(lì)磁涌流和故障電流波形下降、上升時(shí)斜率的差異及其對(duì)稱程度的不同,提出了利用差動(dòng)電流斜率均值比的方法識(shí)別勵(lì)磁涌流和故障電流。該方法原理簡(jiǎn)單明晰、便于實(shí)現(xiàn),數(shù)字仿真結(jié)果表明:該方法能夠可靠地區(qū)分勵(lì)磁涌流和故障電流。
1.1 故障電流的波形特征
變壓器故障電流的波形變化特征由變壓器繞組端電壓、瞬時(shí)等效電感及短路時(shí)刻決定。短路故障電流波形基本保持正弦特性,如圖1所示。
圖1 故障電流波形圖Fig.1 Fault current waveform
1.2 勵(lì)磁涌流的波形特征
電力變壓器在空載投入或者切除外部故障時(shí),很容易產(chǎn)生勵(lì)磁涌流。勵(lì)磁涌流有非對(duì)稱涌流和對(duì)稱涌流,非對(duì)稱偏向于時(shí)間軸的一側(cè),勵(lì)磁涌流都具有明顯尖頂波和間斷角的特征,如圖2所示。
1.3 基于波形斜率均值比識(shí)別變壓器勵(lì)磁涌流的原理
故障電流差動(dòng)電流波形的上升段和下降段電流隨時(shí)間的變化都比較平緩,上下波形斜率變化不大;勵(lì)磁涌流波形上升段和下降段電流隨時(shí)間變化快,波形斜率大,上下波形斜率變化較大。本文在對(duì)變壓器勵(lì)磁涌流和故障電流波形綜合分析的基礎(chǔ)上,根據(jù)勵(lì)磁涌流和故障電流波形下降、上升時(shí)斜率的差異及其對(duì)稱程度的不同,提出了利用差動(dòng)電流斜率均值比的方法識(shí)別勵(lì)磁涌流和故障電流。圖3為基于差動(dòng)電流斜率均值比識(shí)別勵(lì)磁涌流和故障電流的原理示意圖。其原理如下:
圖2 勵(lì)磁涌流波形圖Fig.2 Magnetizing inrush current waveform
圖3 基于差動(dòng)電流斜率均值比識(shí)別勵(lì)磁涌流示意圖Fig.3 Schematic diagram of the identification of magnetizing inrush current based on the waveform slope mean ratio
對(duì)變壓器空載合閘或外部故障切除后電壓恢復(fù)時(shí)的前幾個(gè)周期內(nèi)的波形數(shù)據(jù)進(jìn)行分析,首先尋找差動(dòng)電流的極大值點(diǎn)和極小值點(diǎn),分別存儲(chǔ)它們的電流值和時(shí)間編號(hào)。變壓器勵(lì)磁涌流有對(duì)稱涌流和偏向時(shí)間軸一側(cè)2種,偏向時(shí)間軸一側(cè)的涌流又分為偏向時(shí)間軸上側(cè)和下側(cè)兩種。在計(jì)算前要比較第一個(gè)極大值和第一個(gè)極小值的時(shí)間編號(hào),如果極大值的編號(hào)小于極小值的編號(hào),則按“極大值-極小值-極大值”的順序,走“凹”字形的路線,先算波形下降段斜率的均值k1,再算波形上升段斜率的均值k2;反之,則按“極小值-極大值-極小值”的順序,走“凸”字形的路線,先算差分電流波形上升段斜率的均值k1,再算波形下降段斜率的均值k2。
可以表示如下:
式中:nmax為極大值的時(shí)間編號(hào);nmin為極小值的時(shí)間編號(hào);數(shù)字1,2為極大值或極小值的序號(hào)。
定義k3=k1/k2,表示前半波和后半波的平均斜率的絕對(duì)值的比值。
對(duì)于勵(lì)磁涌流,由于尖頂波、間斷角的影響,差動(dòng)電流上升段和下降段的曲線斜率有很大的差異,k3的值為一個(gè)大于1或者小于1的值;對(duì)于故障電流,上升段和下降段近似為軸對(duì)稱圖形,曲線斜率非常接近,k3的值也就接近于1。
為了更好地區(qū)分變壓器勵(lì)磁涌流和故障電流,讓
對(duì)于勵(lì)磁涌流,Δ的值大于零,在差動(dòng)電流上下段斜率變化比較大的情況下,Δ甚至大于1;對(duì)于故障電流,Δ的值非常接近于零,甚至?xí)扔诹悖ㄟ^(guò)數(shù)值比較就可以很方便的將勵(lì)磁涌流和故障電流區(qū)分開(kāi)來(lái)。通過(guò)下面判據(jù)識(shí)別勵(lì)磁涌流和故障電流。
本文將ε設(shè)置為0.05,ε=0.05時(shí),裕度范圍較寬,可以保證判別的靈敏度,多次實(shí)驗(yàn)證明可以正確區(qū)別勵(lì)磁涌流和故障電流。
基于波形斜率均值比識(shí)別變壓器勵(lì)磁涌流的算法流程如圖4所示。
圖4 基于波形斜率均值比識(shí)別變壓器勵(lì)磁涌流的算法流程Fig.4 Algorithm flow of identifying transformer inrush current based on the waveform slope mean ratio
電磁暫態(tài)計(jì)算軟件PSCAD可以在仿真時(shí)任意設(shè)置與運(yùn)行工況有關(guān)的參數(shù)。通過(guò)空載合閘角時(shí)電流波形以及發(fā)生不同類型故障時(shí)的電流波形進(jìn)行分析研究。利用所得波形數(shù)據(jù)對(duì)該文提出的基于波形斜率均值比識(shí)別勵(lì)磁涌流的方法進(jìn)行仿真測(cè)試。
2.1 數(shù)字仿真實(shí)驗(yàn)?zāi)P?/p>
表1 變壓器仿真模型參數(shù)Tab.1 Parameters of the transformer simulation model
模擬某配電系統(tǒng)[15]變壓器參數(shù)如表1所示。本文選擇變壓器統(tǒng)一磁路(UMEC)模型進(jìn)行研究分析,它與傳統(tǒng)的變壓器模型有所不同,除了考慮不同相的繞組間的電磁耦合關(guān)系之外,還考慮到同一相不同繞組的電磁耦合關(guān)系,更能準(zhǔn)確真實(shí)的反映變壓器勵(lì)磁涌流的情況。
配電網(wǎng)中的線路為短線路,本模型采用集中參數(shù)PI模型。本文的故障控制信號(hào)通過(guò)時(shí)控故障邏輯(Timed Fault Logic)和定序器(Sequencer)模塊實(shí)現(xiàn)。
在PSCAD仿真平臺(tái)上,搭建配電網(wǎng)勵(lì)磁涌流仿真接線圖如圖5所示。
圖5 配電網(wǎng)勵(lì)磁涌流仿真模型圖Fig.5 Simulation model of excitation inrush current in distribution network
2.2 變壓器空載合閘時(shí)的仿真
設(shè)置變壓器剩磁不變,系統(tǒng)中無(wú)故障,空載合閘時(shí)變壓器勵(lì)磁涌流的仿真結(jié)果如圖6所示(圖中藍(lán)線、綠線、紅線分別代表A、B、C相變壓器勵(lì)磁涌流波形圖)。
圖6 空載合閘時(shí)勵(lì)磁涌流波形圖Fig.6 No-load switching inrush current waveform
將在PSCAD所得到的變壓器勵(lì)磁涌流仿真波形數(shù)據(jù)導(dǎo)入本文基于斜率均值比判別變壓器勵(lì)磁涌流的Matlab算法中進(jìn)行計(jì)算甄別,結(jié)果如表2所示。
2.3 變壓器外部故障時(shí)仿真
保持變壓器合閘角和其他條件不變,在t=0.3 s合閘,在t=0.35 s跳閘(即切除故障)。圖7所示為切除單相接地故障的變壓器仿真故障電流波形圖。
從圖7可以看出:故障切除后,故障電流幅值逐漸減小,并且出現(xiàn)不同程度的間斷角。本文分別模擬單相接地故障、兩相接地故障、兩相相間故障、三相故障,將仿真所得波形數(shù)據(jù)導(dǎo)入本文所提的基于波形斜率均值比判別變壓器勵(lì)磁涌流的Matlab算法中進(jìn)行計(jì)算甄別,結(jié)果如表3所示。
表2 變壓器空載合閘時(shí)的仿真測(cè)試結(jié)果Tab.2 Simulation results of transformer no-load switching
圖7 切除單相接地故障時(shí)的電流波形Fig.7 The current waveform of a single phase-to-ground fault
表3 變壓器外部故障時(shí)的仿真測(cè)試結(jié)果Tab.3 Simulation test results of the external fault of transformer
2.4 仿真結(jié)果分析
在Matlab 2012環(huán)境下用本文提出的基于斜率均值比識(shí)別算法分析前幾個(gè)周期內(nèi)的波形數(shù)據(jù)并判斷是否為勵(lì)磁涌流。由表2可知,在空載合閘條件下,該算法得到的數(shù)據(jù)都遠(yuǎn)大于0.05,判定為勵(lì)磁涌流;表3中,至少有一相數(shù)據(jù)有明顯的故障特征,接近于0且小于0.05,所以判斷變壓器發(fā)生了故障。兩組數(shù)據(jù)對(duì)比可知,空載合閘勵(lì)磁涌流比恢復(fù)性涌流的的前后半波的斜率均值比要大的多。驗(yàn)證結(jié)果說(shuō)明本文所提出的差動(dòng)電流斜率均值比判別法能正確識(shí)別變壓器勵(lì)磁涌流。
本文提出一種基于差動(dòng)電流斜率均值比來(lái)識(shí)別變壓器勵(lì)磁涌流和故障電流的方法。經(jīng)過(guò)變壓器空載合閘和重合于變壓器外部故障兩種情況下的仿真,結(jié)果表明:該方法方便簡(jiǎn)單,易于實(shí)現(xiàn),可正確區(qū)分故障電流與勵(lì)磁涌流。
[1]黃少鋒,申洪明,劉欣,等.基于能量信息的變壓器勵(lì)磁涌流識(shí)別方法[J].電力系統(tǒng)自動(dòng)化,2014(18):110-113.HUANG Shaofeng,SHEN Hongming,LIU Xin,et al.A novel identification criterion for inrush current based on energy information[J].Automation of Electric Power Systems,2014(18):110-113(in Chinese).
[2]SHI D Y,BUSE J,WU Q H,et al.Fast identification of power transformer magnetizing inrush currents based on mathematical morphology and ANN[J].IEEE Power and Energy Society General Meeting,2011,978:1-6.
[3]王增平,王雪.基于改進(jìn)主成分分析的變壓器勵(lì)磁涌流識(shí)別方法[J].電力系統(tǒng)保護(hù)與控制,2011,39(22):1-4.WANG Zengping,WANG Xue.Method of transformer magnetizing inrush current identification based on improved principal component analysis[J].Power System Protection and Control,2011,39(22):1-4(in Chinese).
[4]焦在濱,馬濤,屈亞軍,等.基于勵(lì)磁電感參數(shù)識(shí)別的快速變壓器保護(hù)[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,34(10):1658-1666.JIAO Zaibin,MA Tao,QU Yajun,et al.A novel excitation inductance-based power transformer protection scheme[J].Proceedings of the CSEE,2014,34(10):1658-1666(in Chinese).
[5]GONG M,ZHANG X,GONG Z,et al.Study on a new method to identify inrush current of transformer based on wavelet neural network[C]//Electrical and Control Engineering(ICECE),2011 International Conference on.IEEE,2011:848-852.
[6]李貞,張明珠,倪傳坤,等.變壓器勵(lì)磁涌流的自適應(yīng)二次諧波分相制動(dòng)方案[J].電力系統(tǒng)自動(dòng)化,2013(6): 121-124.LI Zhen,ZHANG Mingzhu,NI Chuankun,et al.An adaptive secondary harmonic split-phase restrained scheme for magnetizing inrush current in transformers[J].Automation of Electric Power Systems,2013(6):121-124(in Chinese).
[7]盧雪峰,王增平,徐巖,等.基于波形間斷角原理識(shí)別變壓器勵(lì)磁涌流的新方法[J].電力系統(tǒng)保護(hù)與控制,2007,35(1):1-4.LU Xuefeng,WANG Zengping,XU Yan,et al.The new method of identifying inrush current of transformer based on the principle of wave discontinuity angle[J].Power System Protection and Control,2007,35(1):1-4(in Chinese).
[8]林湘寧,劉沛,楊春明,等.利用改進(jìn)型波形相關(guān)法鑒別勵(lì)磁涌流的研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2011,21(5):56-60.LIN Xiangning,LIU Pei,YANG Chunming,et al.Research on the identification of inrush current by using improved waveform correlation method[J].Proceedings of the CSEE,2011,21(5):56-60(in Chinese).
[9]文超,黃純,胡鵬,等.利用波形非正弦度分形估計(jì)值識(shí)別勵(lì)磁涌流[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2012,24(4):71-76.WEN Chao,HUANG Chun,HU Peng,et al.Identifica-tion of transformer inrush current by using of fractal evaluation of waveform non-sinusoidal level[J].Proceedings of the CSU-EPSA,2012,22(4):71-76(in Chinese).
[10]王雪,王增平.基于波形時(shí)域分布特征的變壓器勵(lì)磁涌流識(shí)別[J].電工技術(shù)學(xué)報(bào),2012,27(1):148-154.WANG Xue,WANG Zengping.Identification of inrush current of transformer based on time-domain distribution characteristics of the transformer[J].Transactions of China Electrotechnical Society,2012,27(1):148-154(in Chinese).
[11]李波,江亞群,侯立峰,等.利用波形曲率識(shí)別變壓器勵(lì)磁涌流的新方法[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2010,22(6):93-98.LI Bo,JIANG Yaqun,HOU Lifeng,et al.Novel method to identify transformer inrush current based on the curvature characteristics of waveform[J].Proceedings of the CSU-EPSA,2010,22(6):93-98(in Chinese).
[12]潘書燕,鄭玉平,吳崇昊,等.變壓器新型勵(lì)磁涌流識(shí)別元件[J].電力系統(tǒng)自動(dòng)化,2011,35(19):63-67.PAN Shuyan,ZHENG Yuping,WU Chonghao,et al.A new identification component for inrush current of power transformer[J].Automation of Electric Power Systems,2011,35(19):63-67(in Chinese).
[13]林楊,張國(guó)榮,姚長(zhǎng)龍,等.一種新型變壓器勵(lì)磁涌流消除方法及裝置[J].中國(guó)科技信息,2014(8):224-227.LIN Yang,ZHANG Guorong,YAO Changlong,et al.A new kind elimination method and installation of transformer inrush current[J].China Science and Technology Information,2014(8):224-227(in Chinese).
[14]韓笑,洪晨,朱凱,等.基于差動(dòng)電流斜率標(biāo)準(zhǔn)差的變壓器勵(lì)磁涌流鑒別方法[J].電網(wǎng)與清潔能源,2015,31(9):72-77.HAN Xiao,HONG Chen,ZHU Kai,et al.A method to identify inrush currents in transformers based on standard deviation of the differential current gradient[J].Power System and Clean Energy,2015,31(9):72-77(in Chinese).
[15]閆富平,段建東,李笑,等.利用動(dòng)態(tài)四邊形分析的配電網(wǎng)勵(lì)磁涌流識(shí)別方法[J].電網(wǎng)技術(shù),2015,39(7): 2017-2022.YAN Fuping,DUAN Jiandong,LI Xiao,et al.Identification method of inrush current in distribution network based on analysis of dynamic quadrilateral[J].Power System Technology,2015,39(7):2017-2022(in Chinese).
(編輯 李沈)
Identification of Transformer Inrush Current Based on Slope Mean Ratio
TIAN Lulin,WANG Qingni
(Department of Electrical Engineer,Xi’an University of Technology,Xi’an 710048,Shaanxi,China)
This paper presents a method to identify fault current and inrush current based on the slope mean ratio.As the slope ratios of the fault current and the inrush current are different in the descending and ascending slopes,so by calculating the ratio of the average slope when the current waveform is in both descending and ascending slopes,we can identify the fault current and inrush current.The transformer model is established in PSCAD in the paper to simulate the current waveform with no-load closing and with an external fault,and then the obtained waveform data is introduced into the compiled MATLAB algorithm to identify and calculate the inrush current and fault current.The results show that the method is simple and feasible,and can identify the fault current and inrush current correctly.
transformer;slope mean ratio;magnetizing inrush current;fault current
2015-11-12。
田錄林(1959—),男,博士,教授,研究方向?yàn)榇鸥≥S承動(dòng)力學(xué)、機(jī)電故障檢測(cè);
王清妮(1988—),女,通訊作者,碩士生研究生,研究方向?yàn)樽儔浩鞴收显\斷。
1674-3814(2016)11-0074-06
TM41
A
國(guó)家自然基金資助項(xiàng)目(51279161;E090604);陜西省科學(xué)技術(shù)研究計(jì)劃資助項(xiàng)目(010K733).
Project Supported by National Natural Foundation of China(51279161;E090604);Science and Technology Research Program of Shaanxi Province(010K733).