亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        溴結(jié)構(gòu)域蛋白4在哮喘上皮-間質(zhì)轉(zhuǎn)化中作用的研究進(jìn)展

        2017-01-15 23:44:50李秋根
        關(guān)鍵詞:重塑表型氣道

        鄭 巖,汪 俊,李秋根

        1南昌大學(xué)醫(yī)學(xué)部,南昌 3300062江西省人民醫(yī)院呼吸內(nèi)科,南昌 330006

        ?

        ·綜 述·

        溴結(jié)構(gòu)域蛋白4在哮喘上皮-間質(zhì)轉(zhuǎn)化中作用的研究進(jìn)展

        鄭 巖1,汪 俊2,李秋根2

        1南昌大學(xué)醫(yī)學(xué)部,南昌 3300062江西省人民醫(yī)院呼吸內(nèi)科,南昌 330006

        氣道炎癥和氣道重塑是支氣管哮喘的重要特征,慢性氣道炎癥可以通過(guò)誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化(EMT)參與支氣管哮喘氣道重塑過(guò)程。溴結(jié)構(gòu)域蛋白4(BRD4)是哺乳動(dòng)物體內(nèi)一種重要轉(zhuǎn)錄調(diào)節(jié)因子,近年越來(lái)越多證據(jù)表明,其可能是通過(guò)核因子-κB/RelA信號(hào)通路調(diào)控哮喘氣道重塑過(guò)程。本文總結(jié)了BRD4調(diào)控哮喘EMT的研究進(jìn)展,旨在進(jìn)一步探討哮喘的分子機(jī)制,為哮喘的防治提供新的策略。

        上皮-間質(zhì)轉(zhuǎn)化;哮喘;氣道重塑;溴結(jié)構(gòu)域蛋白4;核因子-κB/RelA信號(hào)通路

        Research Advances in the Role of Bromodomain-containing Protein 4 inEpithelial-mesenchymal Transition in Asthma

        ActaAcadMedSin,2017,39(3):425-431

        支氣管哮喘是以氣道慢性炎癥和重塑為主要病理特征,以反復(fù)發(fā)作的喘息、氣促、胸悶和/或咳嗽等為主要臨床特征的肺部疾病。目前全球哮喘發(fā)病率為0.17%~3.34%[1],國(guó)內(nèi)發(fā)病率約為1%,兒童可達(dá)3%[2]。哮喘嚴(yán)重影響了患者生活質(zhì)量,而且造成了巨大的個(gè)人和社會(huì)經(jīng)濟(jì)負(fù)擔(dān)。支氣管哮喘的發(fā)病機(jī)制極其復(fù)雜,普遍認(rèn)為是一種多基因遺傳病,具有遺傳異質(zhì)性,同時(shí)也受環(huán)境等外界因素影響,其主要致病因素包括免疫、神經(jīng)、精神、內(nèi)分泌、環(huán)境和遺傳因素。環(huán)境改變(如空氣質(zhì)量下降、粉塵及花粉增多等)會(huì)使呼吸道反復(fù)病毒感染,進(jìn)而提高呼吸道對(duì)環(huán)境污染物(香煙、煙霧)的敏感性,最終導(dǎo)致哮喘發(fā)生[3]。哮喘發(fā)病率跨國(guó)差異較大,約有50%的哮喘患者發(fā)病與遺傳性過(guò)敏有關(guān)[4]。目前針對(duì)哮喘的治療仍依賴于支氣管擴(kuò)張劑和皮質(zhì)類固醇激素,而非針對(duì)疾病的潛在發(fā)病機(jī)制進(jìn)行有效干預(yù)和治療。

        上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)過(guò)程在慢性炎癥疾病、組織修復(fù)中發(fā)揮重要作用?;罨暮艘蜃?κB(nuclear factor-κB,NF-κB)信號(hào)通路可誘導(dǎo)EMT相關(guān)基因表達(dá),抑制上皮細(xì)胞表型相關(guān)基因表達(dá),促進(jìn)間質(zhì)細(xì)胞表型相關(guān)基因表達(dá),參與EMT過(guò)程。溴結(jié)構(gòu)域蛋白4(bromodomain-containing protein 4,BRD4)是溴化結(jié)構(gòu)和超末端結(jié)構(gòu)家族成員,在整個(gè)細(xì)胞周期中通過(guò)溴結(jié)構(gòu)域結(jié)合乙酰化的組蛋白。目前BRD4調(diào)控核因子-κB/RelA(nuclear factor-κB/RelA,NF-κB/RelA)通路的研究范圍較廣,大部分研究主要集中在BRD4促進(jìn)腫瘤發(fā)生和發(fā)展,本文總結(jié)了BRD4調(diào)控NF-κB/RelA 通路控制EMT過(guò)程在支氣管哮喘氣道重塑中的研究進(jìn)展。

        EMT參與哮喘氣道重塑

        支氣管哮喘與氣道重塑 支氣管哮喘是由多種細(xì)胞(如嗜酸性粒細(xì)胞、肥大細(xì)胞、淋巴細(xì)胞及氣道上皮細(xì)胞等)和細(xì)胞組分參與的氣道慢性炎癥性疾病。氣道慢性炎癥和重塑為支氣管哮喘主要病理生理特征。哮喘氣道炎癥的形成除炎癥細(xì)胞、活化的T細(xì)胞、肥大細(xì)胞及巨噬細(xì)胞參與外,氣道結(jié)構(gòu)細(xì)胞(如上皮細(xì)胞、成纖維細(xì)胞及平滑肌細(xì)胞)也可通過(guò)釋放炎癥介質(zhì)、細(xì)胞因子、趨化因子及生長(zhǎng)因子等引起慢性持續(xù)性炎癥,這將導(dǎo)致氣道基質(zhì)膠原沉積、上皮下纖維化、平滑肌增生和肥大、肌成纖維細(xì)胞增殖、上皮下網(wǎng)狀層增厚和微血管生成,即氣道重塑[5]。研究發(fā)現(xiàn),哮喘患者EMT相關(guān)轉(zhuǎn)錄基因Snail,基質(zhì)金屬蛋白酶- 2及Ⅰ、Ⅲ型膠原蛋白表達(dá)均明顯增高[6],這表明EMT過(guò)程參與哮喘氣道重塑,并且受眾多體內(nèi)細(xì)胞因子或信號(hào)通路調(diào)控。

        EMT與氣道重塑 EMT是指上皮細(xì)胞通過(guò)特定程序轉(zhuǎn)化為具有間質(zhì)表型細(xì)胞的生物學(xué)過(guò)程,在胚胎發(fā)育、慢性炎癥、組織重建、腫瘤侵襲轉(zhuǎn)移和多種纖維化疾病中發(fā)揮了重要作用,并在與細(xì)胞間連接缺失相關(guān)聯(lián)的組織修復(fù)和重構(gòu)中同樣發(fā)揮關(guān)鍵性作用[7- 8]。EMT分為3種類型:1型與胚胎發(fā)育和器官形成相關(guān);3型主要參與上皮細(xì)胞來(lái)源惡性腫瘤相關(guān)的表型轉(zhuǎn)化及腫瘤轉(zhuǎn)移;2型與損傷修復(fù)、組織再生和器官纖維化相關(guān)。EMT是一種細(xì)胞亞穩(wěn)定狀態(tài),其維持需要Snail、Twist、ZEB等關(guān)鍵調(diào)節(jié)基因的參與,短暫的EMT主要參與組織修復(fù)過(guò)程,持續(xù)的EMT則與慢性氣道炎癥性疾病的氣道重塑有關(guān),并最終引起肺功能進(jìn)行性下降[9- 10]。主要表現(xiàn)為正常上皮完整性喪失和細(xì)胞間黏附因子表達(dá)減少,如E-鈣黏蛋白、緊密連接蛋白;間質(zhì)細(xì)胞表型特征標(biāo)志蛋白表達(dá)增多,如波形蛋白、α-平滑肌動(dòng)蛋白;同時(shí)伴有轉(zhuǎn)錄基因表達(dá)改變,如Snail、Twist、ZEB等[11];使得細(xì)胞骨架及形態(tài)上具有了間充質(zhì)細(xì)胞的特征。而哮喘患者氣道重塑正是由于上皮下纖維化、平滑肌增生和肥大、肌成纖維細(xì)胞增殖等導(dǎo)致氣道狹窄,引起一系列病理生理反應(yīng)。這表明哮喘通過(guò)EMT過(guò)程引起氣道上皮細(xì)胞轉(zhuǎn)化為成纖維細(xì)胞、上皮表型蛋白減少、間質(zhì)表型蛋白增多等導(dǎo)致哮喘氣道重塑。

        EMT的信號(hào)轉(zhuǎn)導(dǎo)調(diào)控

        哮喘氣道炎癥因子誘導(dǎo)EMT過(guò)程 EMT是一個(gè)多因子調(diào)控、多層次進(jìn)行的復(fù)雜過(guò)程,需要一系列細(xì)胞因子和生長(zhǎng)因子共同調(diào)節(jié)完成。在其進(jìn)程中,上游信號(hào)通過(guò)細(xì)胞基質(zhì)的生長(zhǎng)因子引起轉(zhuǎn)錄因子鋅指蛋白E盒、Twist、Snail及Slug等的活化,抑制E-鈣黏蛋白表達(dá),從而破壞細(xì)胞與細(xì)胞間的緊密連接,降低細(xì)胞骨架和連接支架的穩(wěn)定性,促進(jìn)EMT的發(fā)生發(fā)展[12- 13]。哮喘患者氣道炎癥細(xì)胞和結(jié)構(gòu)細(xì)胞均可表達(dá)炎癥因子轉(zhuǎn)錄生長(zhǎng)因子-β(transforming growth fator-β,TGF-β),而TGF-β參與了哮喘氣道炎癥反應(yīng)及重塑過(guò)程[10,14- 15],其參與哮喘EMT過(guò)程機(jī)制主要是通過(guò)Smad依賴通路和非Smad依賴通路完成的[16]。TGF-β/Smad信號(hào)通路的基本過(guò)程為:TGF-β在細(xì)胞外與TGF-βRⅡ結(jié)合,激活TGF-βRⅠ,活化的TGF-βRⅠ使Smad2/3磷酸化后,進(jìn)一步與Smad4形成復(fù)合物,Smad復(fù)合物進(jìn)入細(xì)胞核與EMT相關(guān)基因啟動(dòng)子區(qū)的Smad結(jié)合元件相結(jié)合,抑制EMT過(guò)程中關(guān)鍵因子E-cadherin及其他上皮表型分子的表達(dá),同時(shí)促進(jìn)間質(zhì)表型分子的表達(dá)[17- 19]。TGF-β通過(guò)受體激活Smad信號(hào)通路的同時(shí),還可激活非Smad信號(hào)通路、Erk非-Smad信號(hào)通路、INK/p38非-Smad信號(hào)通路、GTPase非-Smad信號(hào)通路等,并且獨(dú)立于TGF-β/Smad信號(hào)通路而發(fā)揮作用[20]。

        NF-κB轉(zhuǎn)錄因子調(diào)控EMT的作用機(jī)制 EMT的發(fā)生不僅可以通過(guò)炎癥因子誘導(dǎo)調(diào)控,還涉及多種信號(hào)轉(zhuǎn)導(dǎo)通路的協(xié)同作用,如Wnt/β-連環(huán)蛋白(β-catenin)通路、PI3K/AKT通路、Notch通路、IL- 6/STAT3通路及NF-κB通路等[21]。細(xì)胞外信號(hào)與細(xì)胞表面的特異性受體結(jié)合,通過(guò)相應(yīng)的胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路,活化核內(nèi)的轉(zhuǎn)錄因子,調(diào)控基因表達(dá),最終誘發(fā)EMT。不同信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)控EMT過(guò)程,使得EMT呈現(xiàn)不同的生理病理效應(yīng),其中活化NF-κB信號(hào)通路通過(guò)誘導(dǎo)EMT相關(guān)基因的表達(dá),使Snail、Twist、ZEB轉(zhuǎn)錄因子表達(dá)增高,抑制上皮細(xì)胞表型相關(guān)基因(E-cadherin,γ-catenin 等)表達(dá),誘導(dǎo)間質(zhì)細(xì)胞表型相關(guān)基因(vimentin)參與EMT過(guò)程。

        NF-κB是具有特殊DNA結(jié)合序列的轉(zhuǎn)錄因子蛋白家族,參與調(diào)節(jié)細(xì)胞分化、增殖過(guò)程,也是EMT過(guò)程中關(guān)鍵的調(diào)節(jié)因子[22- 23]。NF-κB 轉(zhuǎn)錄因子蛋白家族包括 c-Rel、RelA、RelB、p50(NF-κB1)、p52(NF-κB2) 5個(gè)亞單位[24- 27],亞單位之間可形成不同的同源或異源二聚體,其中最典型的是p65與p50組成的異源二聚體[28]。在靜息細(xì)胞中,NF-κB/RelA和IκB形成復(fù)合體,以無(wú)活性形式存在于胞漿中,并且IκB蛋白掩蓋NF-κB上的核定位基序,阻止NF-κB向細(xì)胞核內(nèi)轉(zhuǎn)移[29]。當(dāng)細(xì)胞外信號(hào)分子與特異性受體結(jié)合,導(dǎo)致NF-κB/RelAⅠκB 激酶復(fù)合體(IκB kinase,IKK)活化?;罨腎KK促進(jìn)IκB的DSGXXS基序上的Ser 32和Ser 36磷酸化,IκB構(gòu)象改變,被SCFβ-trcpE3連接酶所識(shí)別,進(jìn)而泛素化降解[30]。IκB降解使NF-κB/RelA核定位基序暴露,并迅速移位到細(xì)胞核,NF-κB/RelA第276 位特異性絲氨酸磷酸化。磷酸化的第276 位絲氨酸對(duì)于進(jìn)一步誘導(dǎo)炎癥轉(zhuǎn)錄延伸基因的活化具有重要意義[31]。活化NF-κB 信號(hào)通路通過(guò)誘導(dǎo)EMT過(guò)程目的基因的表達(dá),使Snail、Twist、ZEB轉(zhuǎn)錄因子表達(dá)增高,上皮細(xì)胞表型相關(guān)基因表達(dá)抑制及間質(zhì)細(xì)胞表型相關(guān)基因表達(dá)增多[32- 34]。

        特異性抑制NF-κB通路可顯著逆轉(zhuǎn)EMT過(guò)程目的基因mRNA轉(zhuǎn)錄水平的改變趨勢(shì),同樣,通過(guò)使用IkBα激酶特異性拮抗劑或Ikkα基因敲除技術(shù)對(duì)NF-κB 通路進(jìn)行抑制后,發(fā)現(xiàn)小鼠Twist、ZEB、Snail表達(dá)均受到明顯抑制[35]。這表明NF-κB 信號(hào)通路在調(diào)控EMT過(guò)程中,對(duì)于上皮表型及間質(zhì)表型基因、蛋白表達(dá)作用極其顯著。在研究NF-κB通路調(diào)控支氣管哮喘EMT過(guò)程發(fā)現(xiàn),NF-κB信號(hào)通路受BRD4的調(diào)控,而出現(xiàn)目的基因的轉(zhuǎn)錄起始、轉(zhuǎn)錄延伸和蛋白翻譯過(guò)程。

        BRD4調(diào)控NF-κB/RelA信號(hào)通路參與哮喘氣道重塑

        BRD4是最近在哺乳動(dòng)物中發(fā)現(xiàn)的一種轉(zhuǎn)錄調(diào)節(jié)因子,屬于溴化結(jié)構(gòu)和超末端結(jié)構(gòu)(bromodomains and extraterminal,BET)族,由110個(gè)氨基酸組成高度緊密序列,形成4個(gè)反向平行的α-螺旋結(jié)構(gòu),其結(jié)構(gòu)包含2個(gè)溴化結(jié)構(gòu)域,可優(yōu)勢(shì)結(jié)合乙?;旧|(zhì),通過(guò)對(duì)轉(zhuǎn)錄因子等非組蛋白的乙酰化修飾,刺激細(xì)胞周期依賴性激酶9(cyclin-dependent protein kinase 9,CDK9)活化、募集;并與磷酸化的RNA聚合酶Ⅱ羧基末端結(jié)構(gòu)域進(jìn)行交互,廣泛參與細(xì)胞周期調(diào)控、細(xì)胞分化、信號(hào)轉(zhuǎn)導(dǎo)等過(guò)程[36]。

        BRD4在哮喘中的作用 BRD4研究范圍較廣,早期研究發(fā)現(xiàn)BRD4與原癌基因(c-Myc)一起調(diào)控細(xì)胞增殖,促進(jìn)腫瘤細(xì)胞的增殖、分化、浸潤(rùn)及轉(zhuǎn)移發(fā)展;BRD4抑制劑可一定程度抑制腫瘤細(xì)胞增殖和促進(jìn)其凋亡[37- 39]。而根據(jù)對(duì)BRD4在細(xì)胞增殖、炎癥反應(yīng)中的深入研究后發(fā)現(xiàn),BRD4通過(guò)識(shí)別乙酰化組蛋白標(biāo)志物,調(diào)控單核、巨噬細(xì)胞中NF-κB誘導(dǎo)的炎癥基因表達(dá),參與肺纖維化、血管內(nèi)皮間質(zhì)轉(zhuǎn)化過(guò)程及慢性炎癥性疾病病理生理過(guò)程,并在不同濃度BRD4抑制劑均表現(xiàn)出對(duì)疾病進(jìn)展的抑制作用[40- 41]。

        上皮下纖維化、成纖維細(xì)胞畸形生長(zhǎng)及平滑肌細(xì)胞肥大引起的氣道結(jié)構(gòu)變化,導(dǎo)致支氣管哮喘患者氣道重塑;且在哮喘慢性氣道炎癥反應(yīng)中,由于細(xì)胞因子、生長(zhǎng)因子以及蛋白酶的表達(dá)增多,從而誘導(dǎo)氣道上皮細(xì)胞表型變化[42]。Perry等[43]通過(guò)對(duì)比哮喘患者與健康者氣道上皮(airway epithelial,AE)細(xì)胞及使用BRD4抑制劑干預(yù)后AE細(xì)胞增殖和炎癥因子IL- 6、IL- 8水平發(fā)現(xiàn),哮喘患者AE細(xì)胞增殖及炎癥因子表達(dá)IL- 6、IL- 8明顯高于正常AE細(xì)胞,且BRD4抑制劑可明顯抑制上述現(xiàn)象。他們認(rèn)為BRD4是通過(guò)募集活化的NF-κB異二聚體,形成RNA聚合酶Ⅱ、NF-κB、C/EBP β復(fù)合物結(jié)合到IL- 6、IL- 8基因的κB增強(qiáng)子位點(diǎn)上,促進(jìn)炎癥因子在活化巨噬細(xì)胞中的表達(dá)增多,導(dǎo)致AE細(xì)胞增殖及氣道慢性炎癥,BRD4特異性抑制劑阻斷復(fù)合物與啟動(dòng)子區(qū)結(jié)合發(fā)揮抑制其分泌作用,最終抑制氣道異常結(jié)構(gòu)變化。Clifford等[44]發(fā)現(xiàn)哮喘患者AE細(xì)胞內(nèi)IL- 6、IL- 8組蛋白H3乙?;^健康者增多,特別是組蛋白H3K18乙?;6鳮han等[45]同樣在IL- 1β刺激的AE細(xì)胞內(nèi)發(fā)現(xiàn)IL- 6和IL- 8啟動(dòng)子區(qū)組蛋白H3乙?;龆?,并與NF-κB/p65和BRD4蛋白的募集有關(guān)。

        哮喘患者氣道組織中BRD4過(guò)度表達(dá)可引起IL- 8分泌增多,導(dǎo)致激素抵抗型氣道炎癥及氣道上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)化[46];而且引起NF-κB活化增多、表達(dá)增高,NF-κB被認(rèn)為是AE細(xì)胞表型變化的關(guān)鍵因子,最終也可導(dǎo)致氣道上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)化[47]。這都表明BRD4不僅能維持哮喘患者氣道處于持續(xù)炎癥狀態(tài),還能抑制上游調(diào)控因子表達(dá)使得自身表達(dá)增多,促進(jìn)下游NF-κB活化,導(dǎo)致氣道結(jié)構(gòu)重塑[48]。有研究觀察到,AE細(xì)胞在TGF-β誘導(dǎo)下NF-κB/RelA通路相關(guān)基因、蛋白表達(dá)增多,且BRD4抑制劑具有抑制作用,上述結(jié)果提示BRD4作為NF-κB的激活劑,在炎癥因子刺激信號(hào)作用下,第276位磷酸化絲氨酸的NF-κB/RelA誘導(dǎo)BRD4從染色質(zhì)分離并募集活化的CDK9或者細(xì)胞周期蛋白T1(cyclinT1),構(gòu)成1個(gè)正性轉(zhuǎn)錄延伸因子-b(positive transcription elongation factor,P-TEFb)。BRD4與P-TEFb復(fù)合體相互作用,促進(jìn)活化后P-TEFb復(fù)合體結(jié)合到啟動(dòng)子區(qū),引起RNA PolⅡ羧基端第2位絲氨酸磷酸化,RNA PolⅡ拼接,促進(jìn)EMT相關(guān)基因的轉(zhuǎn)錄起始、轉(zhuǎn)錄延伸和蛋白翻譯過(guò)程,對(duì)EMT進(jìn)行調(diào)控,促進(jìn)哮喘氣道重塑[49- 53]。并且氣道組織BRD4的表達(dá)增多除引起IL- 8分泌增多維持氣道慢性炎癥外,也會(huì)導(dǎo)致RNA聚合酶Ⅱ的C末端結(jié)構(gòu)域上P-TEFb依賴性磷酸化增多,并刺激EMT相關(guān)基因啟動(dòng)子的轉(zhuǎn)錄[54- 55];但BRD4表達(dá)降低并不影響RelA mRNA水平,表明BRD4是在蛋白水平調(diào)控RelA而非mRNA水平[56]。

        氣道重塑是復(fù)雜的細(xì)胞形態(tài)變化和細(xì)胞間相互作用的共同產(chǎn)物,且上皮細(xì)胞損傷是主要誘發(fā)因素。氣道炎癥導(dǎo)致的急性氧化損傷可使上皮屏障功能下降,激發(fā)氣道重塑相關(guān)的生長(zhǎng)因子和細(xì)胞因子釋放,導(dǎo)致氣道重塑。呼吸道合胞病毒(respiratory syncytial virus,RSV)感染是小兒哮喘發(fā)病的主要病因之一,Brasier等[57]通過(guò)對(duì)RSV誘導(dǎo)的上皮轉(zhuǎn)化過(guò)程炎癥基因表達(dá)發(fā)現(xiàn),RelA 276絲氨酸磷酸化與310賴氨酸乙?;纱貾-TEFb復(fù)合物激活和NF-κB通路下游基因表達(dá),且細(xì)胞內(nèi)BRD4和CDK9明顯增加。Tian等[58]同樣在RSV刺激的氣道上皮細(xì)胞內(nèi)發(fā)現(xiàn)CDK9水平增多,并且可以誘導(dǎo)RNA聚合酶Ⅱ第2絲氨酸磷酸化增多,促進(jìn)EMT過(guò)程相關(guān)基因Snail、Twist、ZEB- 1等表達(dá)。關(guān)于BRD4調(diào)控NF-κB依賴的EMT過(guò)程和肺纖維化研究顯示,TGF-β刺激支氣管上皮細(xì)胞細(xì)胞可激活NF-κB/RelA信號(hào)通路相關(guān)的調(diào)控炎癥基因,在細(xì)胞處于間充質(zhì)狀態(tài)下,276位絲氨酸磷酸化的NF-κB/RelA結(jié)合至BRD4轉(zhuǎn)錄延長(zhǎng)復(fù)合物上,激活休眠的RNA聚合酶Ⅱ,促進(jìn)哮喘氣道重塑;而且BRD4抑制劑可恢復(fù)TGF-β刺激的支氣管上皮細(xì)胞種E-鈣黏蛋白并減少間質(zhì)細(xì)胞表型蛋白(vimentin)水平,這證實(shí)BRD4通過(guò)調(diào)控NF-κB信號(hào)通路中分子表達(dá)或修飾參與哮喘氣道重塑過(guò)程[59]。

        綜上,氣道慢性炎癥和氣道重塑是支氣管哮喘最重要的病理生理特征。BRD4是溴結(jié)構(gòu)域蛋白家族中較為重要的與癌癥細(xì)胞增殖、炎癥有關(guān)的轉(zhuǎn)錄調(diào)節(jié)因子,而B(niǎo)RD4在哮喘發(fā)病過(guò)程中,不僅可以通過(guò)與炎癥因子啟動(dòng)子結(jié)合促進(jìn)炎癥因子釋放,維持氣道長(zhǎng)期炎癥狀態(tài);而且作為NF-κB/RelA信號(hào)通路的激活劑,可以通過(guò)募集活化的CDK9或cyclinT1并形成P-TEFb復(fù)合體,結(jié)合至DNA啟動(dòng)子區(qū),啟動(dòng)Snail、Twist等相關(guān)基因的轉(zhuǎn)錄起始、延伸和蛋白翻譯;抑制氣道上皮細(xì)胞表型基因表達(dá)的同時(shí),誘導(dǎo)間質(zhì)細(xì)胞表型基因表達(dá),最終發(fā)生氣道EMT而參與氣道重塑過(guò)程。BRD4特異性抑制劑在抑制哮喘患者AE細(xì)胞或TGFβ刺激的AE細(xì)胞炎癥因子基因表達(dá)、NF-κB/RelA通路相關(guān)基因表達(dá)以及EMT過(guò)程基因、蛋白表達(dá)方面發(fā)揮相當(dāng)重要作用,使其能夠作為哮喘治療的新方向。但目前對(duì)于BRD4在哮喘發(fā)病過(guò)程中作用的具體分子機(jī)制研究尚不完全明確,仍需更多的基礎(chǔ)實(shí)驗(yàn)研究證實(shí)BRD4是否可以通過(guò)調(diào)控其他信號(hào)通路促進(jìn)哮喘氣道炎癥和重塑過(guò)程,繼續(xù)發(fā)掘BRD4特異性拮抗劑以應(yīng)用于哮喘的治療,提高哮喘患者的治愈率。

        [1]Malinovschi A,Janson C,Borres M,et al. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity[J]. J Allergy Clin Immunol,2016,138(5):1301- 1308.

        [2]戚青青,楊小利.支氣管哮喘病人的護(hù)理[J].世界最新醫(yī)學(xué)信息文摘,2016,16:(7):246.

        [3]Fedoseev GB,Trofimov VI,Rovkina EI,et al.The role of respiratory infection in the onset and development of chronic obstructive pulmonary disease and bronchial asthma[J]. Ter Arkh,2009,81(3):89- 94.

        [4]Yasukawa A,Hosoki K,Toda M,et al. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells[J]. PLoS One,2013,8(5):e64281.doi:10.1371/journal. pone.0064281.

        [5]Kaltenborn E,Kern S,F(xiàn)rixel S,et al. Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation[J]. Hum Mol Genet,2012,21(12):2793- 2806.

        [6]Valcourt U,Carthy J,Okita Y,et al. Analysis of epithelial-mesenchymal transition induced by transforming growth factor β[J]. Methods Mol Biol,2016,1344:147- 181.doi:10. 1007/978- 1- 4939- 2966- 5_9.

        [7]Hackett TL. Epithelial-mesenchymal transition in the pathophysiology of airway remodelling in asthma[J]. Curr Opin Allergy Clin Immunol,2012,12(1):53- 59.

        [8]Kalita M,Tian B,Gao B,et al. Systems approaches to modeling chronic mucosal inflammation[J]. Biomed Res Int,2013,(5):135- 142.

        [9]Ijaz T,Pazdrak K,Kalita M,et al. Systems biology approaches to understanding epithelial mesenchymal transition (EMT) in mucosal remodeling and signaling in asthma[J]. World Allergy Organ J,2014,7(1):1- 14.

        [10]Lamouille S,Xu J,Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol,2014,15(3):178- 196.

        [11]Friedl P,Alexander S. Cancer invasion and the microenvironment:plasticity and reciprocity[J]. Cell,2011,147(5):992- 1009.

        [12]Sánchez-Tilló E,Lázaro A,Torrent R,et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1[J]. Oncogene,2010,29(24):3490- 3500.

        [13]Matsuzaki S,Darcha C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis[J]. PLoS One,2013,8(8):e76808.doi:10.1371/journal.pone.0076808.

        [14]Katsuno Y,Lamouille S,Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression[J]. Curr Opin Oncol,2013,25(1):76- 84.

        [15]Wilson MS,Wynn TA. Pulmonary fibrosis:pathogenesis,etiology and regulation[J]. Mucosal Immunol,2009,2(2):103- 121.

        [16]Heijink IH,Postma DS,Noordhoek JA,et al. House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium[J]. Am J Respir Cell Mol Biol,2010,42(1):69- 79.

        [17]Heijink IH,Van OA,Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction[J]. Eur Respir J,2010,36(5):1016- 1026.

        [18]Nalluri SM,O’Connor JW,Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial-mesenchymal transition[J]. Cytoskeleton (Hoboken),2015,72(11):557- 569.

        [19]Derynck R,Muthusamy BP,Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition[J]. Curr Opin Cell Biol,2014,31(31):56- 66.

        [20]Chen XF,Zhang H,Wang HB,et al. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways[J]. Mol Biol Rep,2012,39(4):3549- 3556.

        [21]Zhu QC,Gao RY,Wu W,et al. Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer[J]. Asian Pac J Cancer Prev,2013,14(5):2689- 2698.

        [22]Minchevatasheva S,Soler RM. NF-κB signaling pathways:role in nervous system physiology and pathology[J]. Neuroscientist,2013,19(2):175- 194.

        [23]Silverman N,Maniatis T. NF-κB signaling pathways in mammalian and insect innate immunity[J]. Genes Dev,2001,15(18):2321- 2342.

        [24]Jie Z,Shuai W,Wang K,et al. Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF-α-induced NF-κB activation by interacting with p65/RelA and p50/NF-κB1[J]. Med Microbiol Immunol,2013,202(4):313- 325.

        [25]Shishodia S,Amin HM,Lai R,et al. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation,induces G1/S arrest,suppresses proliferation,and induces apoptosis in mantle cell lymphoma[J]. Biochem Pharmacol,2005,70(5):700- 713.

        [26]Thair S,Russell JA. Noncanonical nuclear factor kappa B (NF-κB) signaling and potential for therapeutics in sepsis[J]. Curr Infect Dis Rep,2013,15(5):364- 371.

        [27]Ogbozor UD,Michael O,Renteria LS,et al. Mechanism by which nuclear factor-kappa beta (NF-kB) regulates ovine fetal pulmonary vascular smooth muscle cell proliferation[J]. Mol Genet Metab Rep,2015,4:11- 18.doi:10.1016/j.ymgmr.2015.05.003.

        [28]Mitchell S,Vargas J,Hoffmann A. Signaling via the NF kappa B system[J]. Wiley Interdiscip Rev Syst Biol Med,2016,8(3):227- 241.

        [29]Perkins ND.Integrating cell-signalling pathways with NF-κB and IKK function[J]. Nat Rev Mol Cell Biol,2007,8(1):49- 62.

        [30]Li F,Zhang J,Arfuso F,et al. NF-κB in cancer therapy[J]. Arch Toxicol,2015,89(5):711- 731.

        [31]Fang L,Choudhary S,Zhao Y,et al. ATM regulates NF-κB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment[J]. Nucleic Acids Res,2014,42(13):8416- 8432.

        [32]Chua HL,Bhat-Nakshatri P,Clare SE,et al. NF-B represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB- 1 and ZEB- 2[J]. Oncogene,2007,26(5):711- 724.

        [33]Kim HJ,Litzenburger BC,Cui X,et al. Constitutively active type Ⅰ insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-κB and snail[J]. Mol Cell Biol,2007,27(8):3165- 3175.

        [34]Shan L,Kendall SE,Raices R,et al. TWIST1 associates with NF-κB subunit RELA via carboxyl-terminal WR domain to promote cell autonomous invasion through IL8 production[J]. BMC Biol,2012,10(1):1- 16.

        [35]Chen L,Peng Z,Meng Q,et al. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop[J]. Protein Cell,2016,7(5):338- 350.

        [36]Kumar K,Raza SS,Knab LM,et al. GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1[J]. Sci Rep,2015,5:9489.doi:10.1038/srep09489.

        [37]Shimamura T,Chen Z,Soucheray M,et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer[J]. Clin Cancer Res,2013,19(22):6183- 6192.

        [38]Lenhart R,Kirov S,Desilva H,et al. Sensitivity of small cell lung cancer to BET inhibition is mediated by regulation of ASCL1 gene expression[J]. Mol Cancer Ther,2015,14(10):2167- 2174.

        [39]Ucar D,Lin DI. Amplification of the bromodomain-containing protein 4 gene in ovarian high-grade serous carcinoma is associated with worse prognosis and survival[J]. Mol Clin Oncol,2015,3(6):1291- 1294.

        [40]Liao YF,Wu YB,Xiang L,et al. High level of BRD4 promotes non-small cell lung cancer progression[J]. Oncotarget,2011,7(8):9491- 9500.

        [41]Tang X,Peng R,Phillips JE,et al. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts andinvivo,models of lung fibrosis[J]. Am J Pathol,2013,183(2):470- 479.

        [42]Yang M,Du Y,Xu Z,et al. Functional effects of WNT1-inducible signaling pathway protein- 1 on bronchial smooth muscle cell migration and proliferation in OVA-induced airway remodeling[J]. Inflammation,2016,39(1):1- 14.

        [43]Perry MM,Durham AL,Austin PJ,et al. BET bromodomains regulate transforming growth factor-β-induced proliferation and cytokine release in asthmatic airway smooth muscle[J]. J Biol Chem,2015,290(14):9111- 9121.

        [44]Clifford RL,Patel JK,John AE,et al. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma:regulation by BET[J]. Am J Physiol Lung Cell Mol Physiol,2015,308(9):962- 972.

        [45]Khan YM,Kirkham P,Barnes PJ,et al. Brd4 is essential for IL- 1β-induced inflammation in human airway epithelial cells[J]. PLoS One,2014,9(4):e95051.doi:10.1371/journal.pone.0095051.

        [46]Zou Z,Huang B,Wu X,et al. Brd4 maintains constitutively active NF-κB in cancer cells by binding to acetylated RelA[J]. Oncogene,2013,33(18):2395- 2404.

        [47]Qiu C,Zhang J,Su M,et al.Nuclear factor-κB mediates the phenotype switching of airway smooth muscle cells in a murine asthma model[J]. Int J Clin Exp Pathol,2015,8(10):12115- 12128.

        [48]Perry MM,Durham AL,Austin PJ,et al. BET bromodomains regulate transforming growth factor-β-induced proliferation and cytokine release in asthmatic airway smooth muscle[J]. J Biol Chem,2015,290(14):9111- 9121.

        [49]Xiao Y,Liang L,Huang M,et al. Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes[J]. Rheumatology (Oxford),2016,55(1):173- 184.

        [50]Belkina AC,Nikolajczyk BS,Denis GV. BET protein function is required for inflammation:Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses[J]. J Immunol,2013,190(7):3670- 3678.

        [51]Meloche J,Pflieger A,Vaillancourt M,et al. Role for DNA damage signaling in pulmonary arterial hypertension[J]. Circulation,2014,129(7):786- 797.

        [52]Hewings DS,Rooney TPC,Jennings LE,et al. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions[J]. J Med Chem,2012,55(22):9393- 9413.

        [53]Hay D,F(xiàn)edorov O,F(xiàn)ilippakopoulos P,et al. The design and synthesis of 5-and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains[J]. Medchemcomm,2013,4(1):140- 144.

        [54]Ishinaga H,Jono H,Lim JH,et al. TGF-beta induces p65 acetylation to enhance bacteria-induced NF-kappaB activation[J]. EMBO J,2007,26(4):1150- 1162.

        [55]Zou Z,Huang B,Wu X,et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA[J]. Oncogene,2014,33(18):2395- 2404.

        [56]Chang H,Liu Y,Xue M,et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition[J]. Nucleic Acids Res,2016,44(6):2514- 2527.

        [57]Brasier AR,Tian B,Jamaluddin M,et al. RelA Ser276 phosphorylation-coupled Lys310 acetylation controls transcriptional elongation of inflammatory cytokines in respiratory syncytial virus infection[J]. J Virol,2011,85(22):11752- 11769.

        [58]Tian B,Zhao Y,Kalita M,et al. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells[J]. J Virol,2013,87(12):7075- 7092.

        [59]Tian B,Zhao Y,Sun H,et al. BRD4 Mediates NFκB-dependent epithelial-mesenchymal transition and pulmonary fibrosis via transcriptional elongation [J]. Am J Physiol Lung Cell Mol Physiol,2016,311(6):1183- 1201.

        ZHENG Yan1,WANG Jun2,LI Qiugen2

        1Medical Department of Nanchang University,Nanchang 330006,China

        2Department of Respiratory Medicine,Jiangxi Province People’s Hospital,Nanchang 330006,ChinaCorresponding author:LI Qiugen Tel:0791- 86895508,E-mail:liqiugen6787@126.com

        Asthma is a chronic airway disease characterized by airway inflammation and airway remodeling. Chronic airway inflammation can be involved in airway remodeling in asthmatic patients by incuding epithelial-mesenchymal transition (EMT).Bromodomain-containing protein 4 (BRD4) is a key transcriptional regulator in mammals,and many evidences have shown that BRD4 plays a pivotal role in airway remodeling via nuclear factor-κB/RelA signaling pathway. This review summarizes the recent advances in the role of BRD4 in regulating EMT,with an attempt to elucidate the molecular mechanisms of asthma and inform the prevention and control of asthma.

        epithelial-mesenchymal transition;asthma;airway remodeling;bromodomain-containing protein 4;nuclear factor-κB/RelA signal pathway

        國(guó)家自然科學(xué)基金(30960143)和江西省科技廳重大項(xiàng)目(20151BBB70267)Supported by the National Natural Sciences Foundation of China (30960143) and the Major Projects of Jiangxi Provincial Science and Technology Department (20151BBB70267)

        李秋根 電話:0791- 86895508,電子郵件:liqiugen6787@126.com

        R562.2+5

        A

        1000- 503X(2017)03- 0425- 07

        10.3881/j.issn.1000- 503X.2017.03.022

        2016- 10- 18)

        猜你喜歡
        重塑表型氣道
        重塑未來(lái)
        《急診氣道管理》已出版
        自動(dòng)化正悄然無(wú)聲地重塑服務(wù)業(yè)
        《急診氣道管理》已出版
        《急診氣道管理》已出版
        《急診氣道管理》已出版
        李滄:再造與重塑
        商周刊(2018年11期)2018-06-13 03:41:54
        建蘭、寒蘭花表型分析
        GABABR2基因遺傳變異與肥胖及代謝相關(guān)表型的關(guān)系
        慢性乙型肝炎患者HBV基因表型與血清學(xué)測(cè)定的臨床意義
        成人大片在线观看视频| 老熟女多次高潮露脸视频| 欧美综合区| 亚洲大片一区二区三区四区| 亚洲av免费不卡在线观看| 国产性生交xxxxx无码| 亚洲一区二区三区在线网站| 成年女人18毛片毛片免费| 久久精品国产亚洲av成人文字| 中文字幕在线日亚洲9| 国内精品久久久久久久久久影院| 亚洲中文字幕无线乱码va| 日本一本一道久久香蕉男人的天堂| 国产又粗又猛又黄又爽无遮挡| 国产精品一区二区久久精品| 人妻少妇精品一区二区三区| 日本成人精品在线播放| 亚洲熟妇少妇任你躁在线观看无码 | 日本不卡视频免费的| 日本二区三区视频免费观看| 男女边摸边吃奶边做视频韩国| 国产三级精品三级在线观看| jlzzjlzz全部女高潮| 免费在线观看草逼视频| 国产a∨天天免费观看美女 | 欧美丰满熟妇bbb久久久 | 天堂新版在线资源| av中文字幕不卡无码| 久久狠狠髙潮曰十八女人| 无码精品一区二区三区在线| 乱人伦视频中文字幕| 国产丝袜精品丝袜一区二区| 日韩中文在线视频| 国产精品午夜福利亚洲综合网| 日韩内射美女片在线观看网站| 亚洲有码转帖| 中文字幕五月久久婷热| 变态另类手机版av天堂看网| 色八区人妻在线视频免费| 99久久精品一区二区三区蜜臀| 少妇被粗大猛进进出出男女片|