亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        固有免疫在HBV感染發(fā)病和治療中的作用

        2017-01-13 16:11:35屈曉晶張璐李明慧謝堯
        中華實驗和臨床病毒學雜志 2017年1期
        關(guān)鍵詞:小鼠研究

        屈曉晶 張璐 李明慧 謝堯

        100015 北京,首都醫(yī)科大學附屬北京地壇醫(yī)院肝病中心肝病二科,北京市醫(yī)院管理局重點醫(yī)學專業(yè)發(fā)展計劃

        ·綜述·

        固有免疫在HBV感染發(fā)病和治療中的作用

        屈曉晶 張璐 李明慧 謝堯

        100015 北京,首都醫(yī)科大學附屬北京地壇醫(yī)院肝病中心肝病二科,北京市醫(yī)院管理局重點醫(yī)學專業(yè)發(fā)展計劃

        乙型肝炎病毒(HBV)感染的發(fā)病機制是宿主免疫系統(tǒng)和HBV之間復雜的相互作用,宿主免疫系統(tǒng)包括固有免疫和適應性免疫。現(xiàn)在認為,宿主對病毒及其蛋白的免疫反應是決定病毒清除、感染慢性化和肝細胞損傷的主要因素。固有免疫是宿主對抗病毒感染的第一道防線,但許多研究顯示HBV可以逃避固有免疫識別、干擾固有免疫信號通路并介導免疫抑制。對固有免疫在HBV感染過程中的作用和狀態(tài)研究有助于開發(fā)新的治療方法,以達到根除HBV。本文對固有免疫反應的模式識別受體(PRRs)、樹突狀細胞(DCs)、自然殺傷(NK)細胞/自然殺傷T(NKT)細胞、調(diào)節(jié)性T細胞(Tregs)和干擾素(IFNs)的近期研究進展進行了綜述。

        Fund programs: Beijing Science and Technology Commission Major Project (D121100003912001)

        HBV感染是一項全球范圍內(nèi)的公共健康問題,盡管乙肝疫苗已經(jīng)廣泛應用并且針對乙型肝炎具備有效的抗病毒治療,全球仍有2.4億慢性乙型肝炎(Chronic hepatitis B, CHB)患者[1],一般認為HBV不直接對肝臟造成損傷,其發(fā)病機制為宿主免疫系統(tǒng)和病毒之間復雜的相互作用[2,3]。一般認為適應性免疫反應的細胞毒性T淋巴細胞(CTLs)在清除HBV方面起非常重要的作用,但有研究顯示HBV特異性T細胞的功能缺陷可能是病毒不能被清除的主要原因[2]。固有免疫作為宿主對抗病毒感染的第一道防線,近年來越來越多的受到人們重視。固有免疫反應的重要組成成分包括模式識別受體(Pattern-recognition receptors, PRRs)、樹突狀細胞(Dendritic cells, DCs)、自然殺傷(Natural killer, NK)細胞/自然殺傷T(Natural killer T, NKT)細胞、調(diào)節(jié)性T細胞(T regulatory cells, Tregs)和干擾素(Interferons, IFNs)[4,5],在HBV感染發(fā)病和治療中起非常重要的作用。

        HBV可以逃避、破壞和激活宿主免疫系統(tǒng),因此不同HBV感染者的臨床結(jié)局不同。首先,HBV本身可以逃避固有免疫的識別并抑制免疫反應。早期實驗發(fā)現(xiàn),在感染初期,HBV不會被固有免疫識別,更不會激活固有免疫反應,因為研究未發(fā)現(xiàn)干擾素基因的改變[4,6]。其次,HBV除了能逃避免疫系統(tǒng)識別,病毒及其蛋白還可以介導免疫抑制。如HBV表面抗原(Hepatitis B surface antigen,HBsAg)可抑制DCs、NKT等多種免疫細胞[7,9,10]固有免疫反應是對抗HBV感染的重要環(huán)節(jié),但HBV對其各個環(huán)節(jié)的抑制可能是導致HBV感染慢性化的原因。因此,研究固有免疫和HBV之間的相互作用,有助于解析HBV感染的具體發(fā)病機制,從而有助于研發(fā)有效的免疫治療新藥物。

        1 PRRs

        PRRs主要分布于固有免疫細胞表面,可通過識別病原體相關(guān)分子模式(Pathogen-associated molecular patterns, PAMPs)激活固有免疫反應,促進抗病毒和促炎細胞因子分泌,而且有助于啟動適應性免疫[11]。PRRs主要包括toll樣受體(Toll-like receptors, TLRs),比如表達于細胞表面的TLR1/2/4/5/6/11/12及表達于內(nèi)涵體的TLR3/7/9;細胞質(zhì)受體比如核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(Nucleotide-binding oligomerization domain-like receptors, NLRs)及維甲酸誘導基因-I樣受體(Retinoic acid inducible gene-I like receptors, RLRs)和內(nèi)質(zhì)網(wǎng)跨膜蛋白STING[12,13]。HBV轉(zhuǎn)基因小鼠實驗證實,靜脈注射TLR3/4/5/7/9特異性配體可以促進IFN-α/β分泌,有效控制HBV復制[14]。TLR7激動劑GS-9620短期、有限治療可以在CHB土撥鼠模型上介導持久的抗病毒反應[15]。TLR3的激活促進IFN-β產(chǎn)生,而且TLR4和TLR2信號激活肝細胞內(nèi)通路比如MAPK和PI-3 K/Akt也可促進IFN分泌,這些在控制HBV復制方面有重要意義[16]。

        宿主對抗HBV感染離不開PRRs,但許多研究顯示HBV及其蛋白如HBsAg、HBeAg抑制PRRs的表達,減弱其介導的抗病毒作用。HepaRG細胞系研究表明,HBV通過TLR3和維甲酸誘導基因-I(Retinoic acid inducible gene-I, RIG-I)/黑色素瘤變異相關(guān)基因5(Melanoma differentiation-associated gene 5, MDA5)信號通路抑制早期固有免疫,導致一些抗病毒和促炎細胞因子基因表達下調(diào)[17]。針對HBV感染者的研究指出,HBsAg抑制TLR9介導的漿細胞樣樹突狀細胞(Plasmacytoid DC, pDC)的激活和分泌IFN-α能力[9]。HBeAg能抑制Toll/白介素(Interleukin, IL)-1受體(TIR)和IL-1β介導的炎性轉(zhuǎn)錄因子例如核因子(Nuclear factor, NF)-κB的激活,并抑制NF-κB和IFN-β啟動子活性[18]。HBV及其蛋白對PRRs的抑制,可能導致固有免疫不能被及時激活,導致HBV感染長期存在。

        2 DCs

        DCs是重要的抗原提呈細胞(Antigen presenting cells, APC),對啟動適應性免疫反應起著關(guān)鍵性作用,根據(jù)其來源不同可分為:髓樣DC(Myeloid dendritic cells,mDC)主要分泌IL-12/IL-15和漿細胞樣DC(Plasmacytoid dendritic cells, pDC),主要大量分泌Ⅰ型IFN[19]。早期研究發(fā)現(xiàn),CHB患者DCs共刺激分子表達下調(diào),細胞因子分泌能力受損。機制可能為:HBV和HBsAg廢除胞嘧啶-磷酸鹽-鳥嘌呤(cytosine-phosphate-guanine, CpG)-A/TLR9介導的IFN-α基因轉(zhuǎn)錄;病毒樣顆粒(Virus-like Particles, VLPs),比如 HBV外膜小S蛋白(HBsAgS)損害pDC分泌IFN-α能力;DC表型耐受基因的產(chǎn)生[20-22]。但最近研究發(fā)現(xiàn),無論體內(nèi)觀察還是體外刺激,HBV攜帶者循環(huán)總DCs、mDC和pDC的頻數(shù)和功能都未改變[23]。然而,與非活動HBsAg攜帶者相比,免疫耐受期患者pDC上CD80/CD86表達顯著下調(diào)[24]。另一項研究得出類似結(jié)果,在慢性HBV感染,mDC和pDC的頻數(shù)和功能沒有改變,但pDC分泌的IFN-α減少[25]。產(chǎn)生不同結(jié)果的原因可能與宿主免疫狀態(tài)、抗病毒治療等有關(guān),但更大的可能為DCs的狀態(tài)決定著宿主對HBV的免疫反應。另外,自體HBsAg激活的DC和細胞因子介導的殺傷(Cytokine-induced killer, CIK)細胞回輸CHB患者,可以有效降低病毒載量[26],這可作為CHB治療的新策略??傊?,HBV與DCs在宿主的相互作用還需進一步探討。

        3 NK/NKT細胞

        NK細胞是固有免疫的主要效應細胞,在清除病原體和異常細胞方面有重要的作用,根據(jù)其表面CD56的密度不同可分為CD56bright和CD56dim群。CD56dim群主要表達穿孔素,發(fā)揮直接細胞毒作用;CD56bright群主要通過分泌免疫調(diào)節(jié)細胞因子如IFN-γ、腫瘤壞死因子α(Tumor necrosis factor-α, TNF-α)、轉(zhuǎn)化生長因子β(Transforming growth factor, TGF-β)、粒細胞-巨噬細胞集落刺激因子(Granulocyte-macrophage colony-stimulating factor, GM-CSF)和IL-10發(fā)揮作用[27]。

        NK細胞雖然是固有免疫的主要效應細胞,但在清除HBV的同時,也會造成肝細胞損傷,對臨床結(jié)局起決定性作用。研究顯示,免疫清除期患者NK細胞CD69和CD107表達上調(diào),分泌IFN-γ和TNF-α增加,而且NK細胞活性的增強與肝臟損傷呈正相關(guān)[28]。HBsAg轉(zhuǎn)基因小鼠實驗也證明,NK細胞和其分泌IFN-γ引起肝臟損傷[29]。

        一項急性HBV感染研究顯示,CD56+CD3-NK和CD56+CD3+NKT細胞在HBV感染早期階段能快速發(fā)揮抗病毒作用,并及時地觸發(fā)適應性免疫[30]。然而CHB患者NK細胞似乎受到抑制,導致病毒不能被清除。無論HBV感染的小鼠還是患者,NK細胞上抑制性受體NKG2A表達均上調(diào),這可能與肝內(nèi)調(diào)節(jié)性CD4+CD25+T細胞分泌的IL-10增加有關(guān)。而且,小鼠體內(nèi)阻斷NKG2A表達可以激活NK細胞,有助于HBV清除[31]。研究顯示,在慢性HBV感染患者,外周血NK細胞的數(shù)量和細胞毒活性不改變,但其分泌細胞因子(如IFN-γ和TNF-α)能力受損[32,33].。然而,HBV相關(guān)慢加急性肝衰竭(HBV-ACLF)患者NK細胞上激活受體NKG2D、NKp30、NKp44和NKp46表達上調(diào),CD56brightCD16-群頻數(shù)增加,但細胞毒性CD56dimCD16bright群頻數(shù)和功能均降低[34],這可能是CD56dimCD16brightNK細胞的耗竭所致,也可能是受到自體的保護性抑制。在HBV感染發(fā)病過程中,似乎是激活的NK細胞損傷肝細胞,而肝細胞損傷又誘導抑制性細胞因子產(chǎn)生,反過來抑制NK細胞的活性,從而減輕肝臟損傷,但這種抑制也使NK細胞的清除病毒能力減弱。NK細胞的這些改變是HBV直接作用還是HBV介導的細胞因子間接作用,亦或是NK細胞的耗竭所致仍需進一步探討。

        NKT細胞是T淋巴細胞里較特殊的一群,既表達NK細胞標記物CD56又表達T細胞受體CD3,識別主要組織相容性復合體Ⅰ類分子(MHC class I-like molecule)提成的脂類抗原。NKT細胞可分為Ⅰ型和Ⅱ型NKT 細胞。Ⅰ型NKT細胞又叫經(jīng)典NKT或恒定NKT(Invariant NKT, iNKT)細胞表達恒定的T細胞受體α(TCR-α),占肝臟總NKT細胞的95%;Ⅱ型NKT細胞表達多種TCR,占肝臟總NKT 細胞的5%[35]。激活的iNKT細胞可以分泌大量的細胞因子如IFN-γ、TNF-α、IL-4、IL-13、IL-17等和細胞毒性介質(zhì)如穿孔素。NKT細胞和NK細胞一樣,在HBV感染早期被激活,在控制病毒復制和觸發(fā)適應性免疫反應有重要作用[26]。

        實驗證明,非經(jīng)典NKT細胞上NKG2D和其配體介導HBV轉(zhuǎn)基因小鼠的急性肝損傷,阻斷NKG2D和其配體結(jié)合,可以阻止非經(jīng)典NKT細胞介導的急性肝炎和肝損傷[36]。在小鼠研究,iNKT細胞可以優(yōu)先增強CD8α+DC群分泌Ⅰ型IFN的能力[37]。

        NKT細胞和NK細胞在抗HBV感染方面的作用基本一致,但NKT細胞似乎表現(xiàn)出不一樣的抑制肝臟再生和促纖維化作用。小鼠研究表明受損的肝臟再生能力可因為NKT細胞而不是NK細胞的耗竭而明顯改善,阻斷CD1d-NKT細胞作用可以有效提升肝細胞再生能力,顯示NKT細胞抑制肝臟再生能力。NKT細胞分泌IL-4、IL-13、hedgehog配體和骨橋蛋白,促進肝纖維化,而NK細胞卻能早期選擇性的殺傷或加快肝星形細胞(Hepatic stellate cell, HSCs)衰老,并分泌IFNγ,從而抑制肝纖維化[38]。NK和NKT細胞在乙肝疫苗接種方面也起著重要作用。[39]。

        4 Tregs

        CD4+CD25+Tregs分泌抑制性細胞因子如IL-10和TGF-β,保持對自身和外部抗原的免疫耐受,許多研究證實CD4+CD25+Tregs與HBV感染的免疫耐受密切相關(guān)[40]。但也有報道,與健康對照和痊愈的HBV感染者相比,CHB患者CD4+CD25+Tregs數(shù)量顯著升高,且這種升高與病毒載量一致[41,42],在HBV相關(guān)肝衰竭患者也發(fā)現(xiàn)Tregs顯著升高[43],小鼠實驗也得出類似結(jié)果,CD4+Foxp3+Tregs通過增加TGF-β分泌和增強枯否細胞分泌IL-10對抗polyI:C/d-GalN介導的爆發(fā)性肝炎[44]。Tregs上膜結(jié)合TGF-β(mTGF-β)和OX40的表達上調(diào)可以抑制NK細胞介導的肝細胞損傷[45]。Tregs在抑制免疫介導的肝損傷的同時,同樣會抑制免疫細胞的抗病毒作用,導致HBV不能被清除。比如Tregs抑制HBV抗原介導的單核細胞增殖和分泌IFN-γ能力[46]。CD4+CD25+Tregs分泌的IL-10抑制NK細胞和CD8+ T細胞的抗病毒作用[47]。轉(zhuǎn)基因鼠實驗指出,熱休克蛋白gp96可以一定程度上減少Tregs數(shù)量,提升抗病毒免疫[48],間接證明Tregs對免疫細胞的抑制作用。Tregs在HCV感染的研究卻得到不同結(jié)果,Tregs上PD-1的表達水平與適應性免疫造成的損傷程度相關(guān)[49],CD4+FoxP3+Treg的大量激活可以使感染局部化,而且可能限制肝纖維化進展[50]。所以,Tregs在HBV感染中作用還需進一步研究。

        5 IFNs

        IFNs主要分為I型IFN(IFN-α和IFN-β)、Ⅱ型IFN(IFN-γ)和Ⅲ型(IFN-λ1、2和3),發(fā)揮著抗病毒、調(diào)節(jié)免疫、抑制增殖和抗腫瘤等作用。IFN-α主要由pDC產(chǎn)生,mDC也可產(chǎn)生IFN-α。大多數(shù)細胞在接觸病原體后會產(chǎn)生IFN-β。I型IFN可以影響dsRNA依賴蛋白酶R(dsRNA-dependent protein kinase R, PKR)、2'5'腺苷酸合成酶(2'5'adenylatesynthetase, 2'5'OAS))系統(tǒng)和Mx蛋白等,在病毒生命周期的各個階段發(fā)揮抗病毒作用[9]。I型IFN可以提升NK細胞的活性,上調(diào)MHC表達,影響T細胞和B細胞的發(fā)育并調(diào)控DC功能。IFN-γ主要由T細胞產(chǎn)生,也可以由NK和NKT細胞產(chǎn)生,發(fā)揮免疫調(diào)節(jié)的作用。IFN-λ由細胞毒性T淋巴細胞(Cytotoxic T-lymphocytes, CTLs)產(chǎn)生,可抑制HBV復制,其作用的分子機制與IFN-α類似[51]。

        研究發(fā)現(xiàn),HCV感染的黑猩猩大量干擾素調(diào)節(jié)基因(IFN regulated genes,IRG)被快速喚起,然而急性HBV感染的黑猩猩并沒有發(fā)現(xiàn)固有免疫相關(guān)基因的改變[52,53],作者認為HBV不觸發(fā)固有免疫反應可能是因為HBV在感染初期表現(xiàn)為隱形病毒角色。敲除IFN-λ和IFN-α/β受體的小鼠,HBV復制水平明顯比正常小鼠高[54],證實了這些細胞因子在控制HBV復制的重要作用。但許多研究發(fā)現(xiàn)HBV感染過程IFN反應受到抑制。TLR刺激實驗證明,CHB患者NK細胞產(chǎn)生IFN-γ能力受損。在HBV轉(zhuǎn)基因小鼠NKT細胞的頻數(shù)降低,產(chǎn)生IFN-γ能力也受損[55,56]。出現(xiàn)這些現(xiàn)象的原因可能為HBV及其蛋白介導的免疫抑制。HBeAg可能通過IL-18抑制NK細胞產(chǎn)生IFN-γ的能力[57]。HBV可能通過IL-8啟動子的表觀遺傳調(diào)控激活IL-8基因表達,IL-8反過來降低HBV對IFN-α的敏感性[58]。

        IFN-α可以通過表觀遺傳調(diào)控(如激活IRG),還可以加強固有免疫和適應性免疫發(fā)揮抗病毒作用,因此被廣泛用于抗HBV治療。一項研究顯示,Peg-IFNα治療可以早期激活DCs,使CD56brightNK細胞大量擴增,增強CD56dimNK細胞活性和功能,而且使輔助性T細胞Th1和Th1定向的HBV特異性CD4/CD8T細胞頻數(shù)增加[59]。有研究發(fā)現(xiàn),替諾福韋(Tenofovirdisoproxilfumarate, TDF)早期使HBV復制的降低可以增強Peg-IFNα對固有免疫的激活[60],強調(diào)了對基線HBV載量高患者聯(lián)合治療的必要性。研究顯示,NK細胞的激活限制CD8+T細胞免疫反應,增加免疫損傷,使感染慢性化,但I型IFN的治療可以保護NK細胞對CD8+T細胞的這種限制[61,62]。

        對于IFN-λ的研究相對較少,但因其與IFN-α類似的抗病毒機制,受到越來越多的關(guān)注。早期研究提示,IFN-λ用于治療兩個HBV感染的人類肝細胞衍生細胞系,雖然兩個細胞系IFN-λ受體的表達和IFN-λ介導的抗病毒蛋白水平相似,但只有一個細胞系的HBV受抑制,所以認為IFN-λ在人體抗HBV作用可能有限[63]。最近一項臨床研究顯示,IFN-λ治療HBeAg(+)CHB患者早期HBV DNA和HBsAg的下降程度比IFN-α治療組更明顯,兩組的48周HBeAg血清學轉(zhuǎn)換率相似,但治療后續(xù)的HBeAg血清學轉(zhuǎn)換率不如IFN-α高,而且與IFN-α相比,IFN-λ的副反應相對更大[64]。

        6 小結(jié)

        雖然許多固有免疫成分有強有力的抗病毒作用,但HBV本身或者通過干擾信號通路和介導抑制性細胞因子產(chǎn)生等策略抑制固有免疫成分,造成固有免疫反應不能被激活,適應性免疫不能及時觸發(fā),HBV感染持續(xù)存在。而消除這些抑制可部分重塑固有免疫反應,有助于HBV的清除。總之,宿主和HBV之間的免疫反應是一個復雜的過程,了解其具體機制有助于未來免疫治療新策略的研發(fā)。

        [1] Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity[J]. Vaccine, 2012,30(12): 2212-2219. doi:10.1016/j.vaccine.2011.12.116.

        [2] Bauer T, Sprinzl M, Protzer U. Immune control of hepatitis B virus[J]. Dig Dis, 2011, 29(4): 423-433. doi: 10.1159/000329809.

        [3] Pollicino T,Koumbi L. Role natural killer group 2D-ligand interactions in hepatitis B infection[J]. World J Hepatol, 2015, 7(6): 819-824. doi: 10.4254/wjh.v7.i6.819.

        [4] Zou, Wang L, Wang K, et al. Innate immune targets of hepatitis B virus infection[J]. World J Hepatol, 2016, 8(17): 716-725. doi: 10.4254/wjh.v8.i17.716.

        [5] Busca A, Kumar A. Innate immune responses in hepatitis B virus (HBV) infection[J]. Virol J, 2014,11: 22. doi: 10.1186/1743-422X-11-22.

        [6] Chang KM, Liu M. Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics[J]. Curr Opin Pharmacol, 2016, 30: 93-105. doi:10.1016/j.coph.2016.07.013.

        [7] Kondo Y, Ninomiya M, Kakazu E, et al. Hepatitis B surface antigen could contribute to the immunopathogenesis of hepatitis B virus infection[J]. ISRN Gastroenterol, 2013, 2013: 935295. doi. 10.1155/2013/935295.

        [8] Yang Y, Han Q, Zhang C, et al. Hepatitis B virus antigens impair NK cell function[J]. Int Immunopharmacol, 2016, 38: 291-297. doi: 10.1016/j.intim2016. 06.015.

        [9] Xu Y, Hu Y, Shi B, et al. HBsAg inhibits TLR9-mediated activation and IFN-alpha production in plasmacytoid dendritic cells[J]. Mol Immunol, 2009, 46(13): 2640-2646. doi: 10.1016/j. molimm.2009.04.031.

        [10] Boni C, Laccabue D, Lampertico P, et al. Restored function of HBV-specific T cells after long-term effective therapy with nucleos(t)ide analogues[J]. Gastroenterology, 2012, 143(4):963-973. doi:10.1053/j.gastro.2012.07.014.

        [11] Ma Z, Zhang E, Yang D, et al. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immuneresponses[J]. Cell Mol Immunol, 2015, 12(3): 273-282. doi: 10.1038/cmi.2014.112.

        [12] Takeuchi O, Akira S. Pattern recognition re ceptors and inflammation[J]. Cell, 2010, 140(6): 805-820. doi: 10.1016/j.cell.2010.01.022.

        [13] Guo F, Han Y, Zhao X, et al. STING agonists induce an innate antiviral immune response against hepatitis B virus[J]. Antimicrob Agents Chemother, 2015, 59(2):1273-1281.

        [14] Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo[J]. J Virol, 2005, 79(11):7269-7272.

        [15] Menne S, Tumas DB, Liu KH, et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B[J]. J Hepatol, 2015, 62(6): 1237-1245. doi: 10.1016/j.jhep.2014.12.026.

        [16] Zhang E, Lu M. Toll-like receptor (TLR)-mediated innate immune responses in the control of hepatitis B virus (HBV) infection[J]. Med MicrobiolImmunol, 2015, 204(1): 11-20. doi: 10.1007/s00430-014-0370-1.

        [17] Luangsay S, Gruffaz M, Isorce N, et al. Early inhibition of hepatocyte innate responses by hepatitis B virus[J]. J Hepatol, 2015, 63(6): 1314-1322. doi: 10.1016/j.jhep.2015.07.014.

        [18] Wilson R, Warner N, Ryan K, et al. The hepatitis B e antigen suppresses IL-1β-mediated NF-κB activation in hepatocytes[J]. J Viral Hepat, 2011, 18(10): 499-507. doi: 10.1111/j.1365-2893. 2011.01484.x.

        [19] Lambotin M, Raghuraman S, Stoll-Keller F, et al. A look behind closed doors: interaction of persistent viruses with dendritic cells[J]. Nat Rev Microbiol, 2010, 8(5): 350-360.

        [20] van der Molen RG, Sprengers D, Binda RS, et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B[J]. Hepatology, 2004, 40(3):738-746

        [21] Woltman AM, Op Den Brouw ML, Biesta PJ, et al. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function[J]. PLoS One, 2011, 6(1): e15324. doi: 10.1371/journal.pone.0015324.

        [22] Moffat JM, Cheong WS, Villadangos JA, et al. Hepatitis B virus-like particles access major histocompatibility class I and II antigen presentation pathways in primary dendritic cells[J]. Vaccine, 2013, 31(18): 2310-2316. doi: 10.1016/j.vaccine.2013.02.042.

        [23] Tavakoli S, Mederacke I, Herzog-Hauff S, et al. Peripheral blood dendritic cells are phenoltypically and functionally intact in chronic hepatitis B virus (HBV) infection[J]. Clin Exp Immunol, 2008, 151(1):61-70. doi: 10.1111/j.1365-2249.2007.03547.x.

        [24] Lin C, Zou H, Wang S. Hepatitis B e antigen seroconversion is related with the function of dendritic cells in chronic hepatitis B virus infection[J]. Gastroenterol Res Pract, 2014, 2014: 413952. doi: 10.1155/2014/413952.

        [25] Gehring AJ, Ann D’Angelo J. Dissecting the dendritic cell controversy in chronic hepatitis B virus infection[J]. Cell MolImmunol, 2015, 12(3): 283-291. doi: 10.1038/cmi.2014.95.

        [26] Ma YJ, He M, Han JA, et al. A clinical study of HBsAg-activated dendritic cells and cytokine-induced killer cells during the treatment for chronic hepatitis B[J]. Scand J Immunol, 2013, 78(4): 387-393. doi: 10.1111/sji.12097.

        [27] Ratnam DT, Sievert W, Visvanathan K. Natural killer cells display impaired responses to toll like receptor 9 that support viral persistence in chronic hepatitis B[J]. Cell Immunol, 2012, 279(1): 109-115. doi: 10.1016/j.cellimm.2012.09.005.

        [28] Zheng Q, Zhu YY, Chen J, et al. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection[J]. Clin Exp Immunol, 2015, 180(3): 499-508. doi: 10.1111/cei.12597.

        [29] Chen Y, Sun R, Jiang W, et al. Liver-specific HBsAg transgenic mice are over-sensitive to Poly(I:C)-induced liver injury in NK cell-and IFN-gamma-dependent manner[J]. J Hepatol, 2007, 47(2): 183-190. doi: 10.1016/j.jhep.2007.02. 020.

        [30] Fisicaro P, Valdatta C, Boni C, et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection[J]. Gut, 2009, 58(7): 974-982. doi: 10.1136/gut.2008.163600.

        [31] Li F, Wei H, Wei H, et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice[J]. Gastroenterology, 2013, 144(2): 392-401. doi: 10.1053/j.gastro.2012.10.039.

        [32] Yang Y, Han Q, Hou Z, et al. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction[J]. Cell Mol Immunol, 2016, 13: 1-11. doi: 10.1038/cmi.2016.24.

        [33] Tjwa ET, van Oord G W, Hegmans JP, et al. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B[J]. J Hepatol, 2011, 54(2): 209-218. doi: 10.1016/j.jhep.2010.07.009.

        [34] Liu F, Duan X, Wan Z, et al. Lower number and decreased function of natural killer cells in hepatitis B virus related acute-on-chronic liver failure[J]. Clin Res Hepatol Gastroenterol, 2016, 40(5): 605-613. doi: 10.1016/j.clinre.2016.01.004.

        [35] Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis[J]. Biochimica Et Biophysica Acta, 2013: 1061-1069. doi.org/10.1016/j.bbadis.2012.09.008.

        [36] Vilarinho S, Ogasawara K, Nishimura S, et al. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus[J]. Proc Natl Acad Sci USA, 2007, 104(46): 18187-18192. doi: 10.1073/pnas.0708968104.

        [37] Joyee AG, Uzonna J,Yang X. Uzonna and X. Yang, Invariant NKT cells preferentially modulate the function of CD8 alpha+ dendritic cell subset in inducing type 1 immunity against infection[J]. J Immunol, 2010, 184(4): 2095-2106. doi: 10.4049/jimmunol.0901348.

        [38] Dong Z, Zhang J, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice[J]. Hepatology, 2007, 45(6): 1400-1412. doi: 10.1002/hep.21597.

        [39] Albarran B, Goncalves L, Salmen S, et al. Profiles of NK, NKT cell activation and cytokine production following vaccination against hepatitis B[J]. APMIS, 2005, 113(7-8):526-535.

        [40] Li HJ, Zhai NC, Song HX, et al. The role of immune cells in chronic HBV infection[J]. J Clin Transl Hepatol, 2015 3(4): 277-283. doi: 10.14218/JCTH.2015.00026.

        [41] Kondo Y, Shimosegawa T. Significant roles of regulatory T cells and myeloidderived suppressor cells in hepatitis B virus persistent infection and hepatitis B virus-related HCCs[J]. Int J Mol Sci, 2015, 16(2):3307-3322. doi: 10.3390/ijms 16023307.

        [42] Xu D, Fu J, Jin L, et al. Circulating and liver resident CD4 + CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B[J]. J Immunol, 2006, 177(1):739-747.

        [43] Dong X, Gong Y, Zeng H, et al. Imbalance between circulating CD4(+) regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure[J].Liver Int, 2013, 33(10):1517-1526.doi:10.1111/liv.12248.

        [44] Hou X, Song J, Su J, et al. CD4(+)Foxp3(+) Tregs protect against innate immune cell-mediated fulminant hepatitis in mice[J]. Mol Immunol, 2015, 63(2): 420-427. doi: 10.1016/j.molimm.2014.09.015.

        [45] Chen Y, Song J, Su J, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell hepatocytotoxicity of hepatitis B virus transgenic mice via membrane-bound TGF-beta and OX40[J]. J Innate Immun, 2016, 8(1): 30-42. doi: 10.1016/j. molimm.2014.09.015.

        [46] Peng G, Li S, Wu W, et al. Circulating CD4+ CD25+ regulatory T cells correlate with chronic hepatitis B infection[J]. Immunology, 2008, 123(1):57-65.

        [47] Kondo Y, Ueno Y, Ninomiya M, et al. Sequential immunological analysis of HBV/HCV co-infected patients during Peg-IFN/RBV therapy[J]. J Gastroenterol, 2012, 47(12):1323-1335. doi: 10.1007/s00535-012-0596-x.

        [48] Wang S, Qiu L,Liu G, et al. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice[J]. Vaccine, 2011, 29(37): 6342-6351. doi: 10.1016/j.vaccine.2011.05.008.

        [49] Shen T, Zheng J, Liang H, et al. Characteristics and PD-1 expression of peripheral CD4+CD127loCD25hiFoxP3+ Treg cells in chronic HCV infected-patients[J]. Virol J, 2011, 8: 279. doi: 10.1186/1743-422X-8-279.

        [50] Claassen MA, de Knegt RJ, Tilanus HW, et al. Abundant numbers of regulatory T cells localize to the liver of chronic hepatitis C infected patients and limit the extent of fibrosis[J]. J Hepatol, 2010, 52(3): 315-21. doi: 10.1016/j.jhep.2009.12.013.

        [51] Nicole E, Pagliaccetti Esther N, Chu Christopher R, et al. Lambda and alpha interferons inhibit hepatitis B virus replication through a common molecular mechanism but with different in vivo activities[J]. Virology, 2010, 401(2): 197-206. doi:10.1016/j.virol.2010.02.022.

        [52] Su AI, Pezacki JP, Wodicka L, et al. Genomic analysis of the host response to hepatitis C virus infection[J]. Proc Natl Acad Sci USA, 2002, 99(24):15669-15674.

        [53] Wieland S, Thimme R, Purcell RH, et al. Genomic analysis of the host response to hepatitis B virus infection[J]. Proc Natl Acad Sci USA, 2004, 101(17):6669-6674.

        [54] M Jegaskanda S, Ahn SH, Skinner N, et al. Downregulation of interleukin-18-mediated cell signaling and interferon gamma expression by the hepatitis B virus e antigen[J]. J Virol, 2014, 88(18): 10412-10420. doi:10.1128/JVI.00111-14.

        [55] Ratnam DT, Sievert W, Visvanathan K. Natural killer cells display impaired responses to toll like receptor 9 that support viral persistence in chronic hepatitis B[J]. Cell Immunol, 2012, 279(1):109-115. doi:10.1016/j.cellimm.2012.09.005.

        [56] Wang XF, Lei Y, Chen M, et al. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication[J]. J Viral Hepat, 2013, 20 Suppl 1: 27-39. doi: 10.1111/jvh.12061.

        [57] McClary H, Koch R, Chisari FV, et al. Relative sensitivity of hepatitis B virus and other hepatotropic viruses to the antiviral effects of cytokines[J]. J Virol, 2000, 74(5):2255-2264.

        [58] Pollicino T, Bellinghieri L,Restuccia A, et al. Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha[J]. Virology, 2013, 444(1-2): 317-28. doi: 10.1016/j.virol.2013.06.028.

        [59] Bruder Costa J,Dufeu-Duchesne T,Leroy V, et al. Pegylated Interferon alpha-2a Triggers NK-Cell Functionality and Specific T-Cell Responses in Patients with Chronic HBV Infection without HBs Ag Seroconversion[J]. PLoS One, 2016, 11(6): e0158297. doi: 10.1371/journal.pone. 0158297.

        [60] Tan AT, Hoang LT, Chin D, et al. Reduction of HBV replication prolongs the early immunological response to IFNalphatherapy[J]. J Hepatol, 2014, 60(1): 54-61. doi: 10.1016/j. jhep.2013.08.020.

        [61] Lang PA, Lang KS, Xu HC, et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity[J]. Proc Natl Acad Sci USA, 2012, 109(4): 1210-5. doi:10.1073/pnas.1118834109.

        [62] Xu HC, Grusdat M, Pandyra AA, et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity[J]. Immunity, 2014, 40(6): 949-960. doi:10.1016/j.immuni.2014.05.004.

        [63] Hong SH, Cho O, KimaK, et al. Effect of interferon-lambda on replication of hepatitisB virus in human hepatoma cells[J]. Virus Res, 2007, 126(1-2): 245-249. doi:10.1016/j.virusres. 2007.03.006.

        [64] Chan HL, Ahn SH, Chang TT, et al.Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B: A randomized phase 2b study (LIRA-B)[J]. J Hepatology, 2016, 64(5):1011-1019. doi.10.1016/j.jhep.2015.12. 018.

        The roll of innate immunity in the pathogenesis and treatment of HBV infectionQu

        Xiaojing,ZhangLu,LiMinghui,XieYao

        SecondDivisionofLiverDiseasesCenter,BeijingDitanHospital,CapitalMedicalUniversity,BeijingMunicipalAdministrationofHospitalsClinicalMedicineDevelopmentofSpecialFunding,Beijing100015,ChinaCorrespondingauthor:XieYao,Email:xieyao00120184@sina.com

        Objective The pathogenesis of HBV infection is the result of a complex interactions between the host immune system and the virus, the host immune system involves innate immune and adaptive immune. Now, it is thought that host immune responses to viral particles and proteins are important factors that determine whether HBV is cleared or persists and hepatocytes injured. Innate immune system is the first defending line of host against viral infection. However, many studies have shown that HBV can develop tactics to escape innate immune recognition and interfere with innate immune signaling pathways and induce immunosuppression. It is necessary to analysis the functions and status of host innate immunity in HBV infection which may contribute to find novel approaches to eliminate HBV. This review will present the current understanding of innate immune components including pattern-recognition receptors(PRRs)、dendritic cells(DCs)、natural killer(NK)/natural killer T(NKT)cells、T regulatory cells(Tregs) and interferons(IFNs).

        Hepatitis B virus; Host; Innate immunity; Immunosuppression

        北京市科學技術(shù)委員會重大項目(D121100003912001)

        謝堯,Email:xieyao00120184@sina.com

        10.3760/cma.j.issn.1003-9279.2017.01.018

        肝炎病毒,乙型;宿主;固有免疫;免疫抑制

        2016-11-08)

        猜你喜歡
        小鼠研究
        FMS與YBT相關(guān)性的實證研究
        2020年國內(nèi)翻譯研究述評
        遼代千人邑研究述論
        小鼠大腦中的“冬眠開關(guān)”
        視錯覺在平面設計中的應用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        米小鼠和它的伙伴們
        新版C-NCAP側(cè)面碰撞假人損傷研究
        Avp-iCre轉(zhuǎn)基因小鼠的鑒定
        加味四逆湯對Con A肝損傷小鼠細胞凋亡的保護作用
        最新日本女优中文字幕视频| 99精品视频在线观看免费| 国产成人午夜精品免费视频| 一本色道久久综合狠狠躁中文| 日韩av水蜜桃一区二区三区| 人成午夜大片免费视频77777 | 国产嫩草av一区二区三区| 国产青榴视频在线观看| 日本丶国产丶欧美色综合| 国产美女三级视频网站| 日韩av一区二区不卡| 又色又爽又高潮免费视频观看| 亚洲色欲在线播放一区| 国产精品人人爱一区二区白浆 | 伊人久久精品无码二区麻豆| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交 | 中国人在线观看免费的视频播放| 挺进朋友人妻雪白的身体韩国电影| 国产精品无码无片在线观看| 成人黄网站免费永久在线观看| 国产精品高潮呻吟av久久黄| 性高湖久久久久久久久| 欧美a级在线现免费观看| 中文亚洲第一av一区二区| 亚洲av福利院在线观看| 99久久久无码国产精品试看| 精品国产AⅤ一区二区三区V免费 | 亚洲av片无码久久五月| 熟妇高潮一区二区三区| 欧美精品久久久久久三级| 人妻少妇偷人精品一区二区| 人人人妻人人澡人人爽欧美一区| 免费无码肉片在线观看| 亚洲中文字幕黄色小视频| 中文字幕成人乱码熟女精品国50 | 日韩国产有码在线观看视频| 成人爽a毛片在线播放| 国产成人精品午夜二三区波多野 | 娇妻在交换中哭喊着高潮| 亚洲一区二区综合色精品| 女女同性av一区二区三区|