亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        炎性衰老與骨質(zhì)疏松的研究進(jìn)展

        2017-01-10 17:51:20劉繼榮張一娜
        中華老年多器官疾病雜志 2017年11期
        關(guān)鍵詞:骨細(xì)胞成骨細(xì)胞細(xì)胞因子

        劉繼榮,張一娜

        (哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院老年病科,哈爾濱 150000)

        1 炎性衰老的炎癥特征

        炎癥是宿主系統(tǒng)對病原體感染或各種類型組織損傷的反應(yīng),其在炎性衰老過程中不可控[2]。老年人

        體內(nèi)促炎因子與抗炎因子此消彼長,最終表現(xiàn)為炎癥穩(wěn)態(tài)失衡,促炎反應(yīng)過度,導(dǎo)致炎性衰老[7]。健康老年人試驗(yàn)研究結(jié)果表明,衰老與促炎癥反應(yīng)水平增高相關(guān),是促炎癥介質(zhì)包括白細(xì)胞介素-1(interleukin-1,IL-1)、IL-6、腫瘤壞死因子-α(tumor necrosis factor α,TNF-α)和前列腺素E2(prostaglandin E2,PGE2)水平升高所致[8]。Adams等[9]以老年馬為研究對象的研究結(jié)果表明,老年馬外周血中IL-1β、IL-15、IL-18和TNF-α基因表達(dá)水平升高。

        2 炎性衰老與骨質(zhì)疏松

        在炎性衰老過程中,過度的炎癥可加速骨質(zhì)流失,影響骨代謝,進(jìn)而增加患者骨創(chuàng)傷術(shù)后的死亡率。炎性衰老目前的機(jī)制學(xué)說主要有細(xì)胞因子學(xué)說、自噬學(xué)說、應(yīng)激學(xué)說、氧化-炎癥學(xué)說及DAN損傷學(xué)說等[2], 一些前瞻性的國外研究結(jié)果表明細(xì)胞

        因子學(xué)說、自噬學(xué)說與骨質(zhì)疏松關(guān)系密切。

        2.1 細(xì)胞因子學(xué)說與骨質(zhì)疏松

        Salvioli等[10]研究發(fā)現(xiàn),在機(jī)體衰老過程中炎癥細(xì)胞因子發(fā)揮重要的作用。TNF-α、IL-1、IL-6和IL-17等細(xì)胞因子的表達(dá)水平隨年齡增長而升高,它們可作為炎性衰老的血清學(xué)標(biāo)志物。同時(shí),TNF-α、IL-1、IL-6和IL-17水平增高可導(dǎo)致大量破骨細(xì)胞產(chǎn)生并抑制成骨細(xì)胞活性[11]。

        2.1.1 TNF-α與骨質(zhì)疏松 TNF-α可直接或間接促進(jìn)巨噬細(xì)胞集落刺激因子(macrophage-colony stimulating factor,M-CSF)產(chǎn)生。M-CSF是破骨細(xì)胞前體細(xì)胞分化為成熟破骨細(xì)胞過程中一種重要的細(xì)胞因子,M-CSF對破骨細(xì)胞的存活和增殖起重要作用[12]。在任何炎癥過程中,免疫細(xì)胞如T淋巴細(xì)胞、B淋巴細(xì)胞、巨噬細(xì)胞或樹突狀細(xì)胞,都會被激活并產(chǎn)生炎癥細(xì)胞因子,特別是活化的T淋巴細(xì)胞,它主要通過增加骨吸收TNF-α而誘導(dǎo)破骨細(xì)胞生成[13]。D’Amelio等[14]也發(fā)現(xiàn)絕經(jīng)后骨質(zhì)疏松患者T淋巴細(xì)胞和單核細(xì)胞產(chǎn)生TNF-α。TNF-α還可抑制成骨細(xì)胞生成,同時(shí)降低骨基質(zhì)鈣化,最終誘導(dǎo)骨形成和骨吸收失衡。

        2.1.2 IL-1與骨質(zhì)疏松 IL-1是骨微環(huán)境中重要的細(xì)胞因子,可影響骨代謝和骨重建活動[15]。IL-1對骨吸收具有較強(qiáng)刺激作用,可直接或間接影響破骨細(xì)胞生成,增強(qiáng)骨吸收能力。Eghbali-fatourechi等[16]也證明絕經(jīng)后骨質(zhì)疏松患者因雌激素缺乏可導(dǎo)致單核細(xì)胞產(chǎn)生的IL-1水平升高。

        2.1.3 IL-6與骨質(zhì)疏松 研究表明,痛風(fēng)性關(guān)節(jié)炎、類風(fēng)濕性關(guān)節(jié)炎、銀屑病性關(guān)節(jié)炎患者炎性細(xì)胞因子IL-6水平升高[17]。類風(fēng)濕性關(guān)節(jié)炎患者的骨質(zhì)疏松和炎癥存在明顯關(guān)系,即炎癥細(xì)胞因子可造成骨質(zhì)流失和骨轉(zhuǎn)換標(biāo)志物水平升高[18]。IL-6水平升高也可能導(dǎo)致TNF-α和IL-1水平升高,這些細(xì)胞因子可增強(qiáng)破骨細(xì)胞活化、分化與存活,增強(qiáng)核因子-κB受體活化因子配體(receptor activator for nuclear factor-κB ligand,RANKL)表達(dá)和抑制成骨細(xì)胞存活,從而促進(jìn)骨吸收[19]。

        2.1.4 IL-17與骨質(zhì)疏松 IL-17是CD4+T淋巴細(xì)胞亞群Th17分泌的細(xì)胞因子。IL-17可加速骨質(zhì)流失,有利于破骨細(xì)胞產(chǎn)生和抑制成骨細(xì)胞分化[20]。IL-17可致RANKL表達(dá)上調(diào),進(jìn)而促進(jìn)骨吸收增加。IL-17對于類風(fēng)濕性關(guān)節(jié)炎患者的骨破壞也至關(guān)重要[21]。IL-17還可刺激滑膜巨噬細(xì)胞,進(jìn)一步產(chǎn)生大量炎癥因子如 TNF-α、IL-1和IL-6等,這些炎癥因子可作用于破骨細(xì)胞前體,使其分化為破骨細(xì)胞,增加骨吸收,最終導(dǎo)致骨質(zhì)疏松發(fā)生[22]。

        無論是炎癥因子還是炎癥細(xì)胞對骨代謝的影響主要是通過核因子-κB受體活化因子(receptor activator for nuclear factor-κB,RANK)/RANKL/護(hù)骨素(osteoprotegerin,OPG)途徑發(fā)揮作用[23]。

        2.2 自噬學(xué)說與骨質(zhì)疏松

        自噬(autophagy)是利用自身細(xì)胞器來源的膜結(jié)構(gòu)進(jìn)行組裝而吞噬胞質(zhì)內(nèi)的底物,如錯(cuò)誤折疊或衰老蛋白以及受損的細(xì)胞器、再與溶酶體結(jié)合將吞噬物降解并循環(huán)再利用的過程[24]。自噬是細(xì)胞的自我保護(hù)機(jī)制,對細(xì)胞穩(wěn)態(tài)的維持、細(xì)胞分化和增殖以及應(yīng)激發(fā)揮重要的作用[25]。Chen等[26]的研究表明,隨著人體衰老,骨細(xì)胞的自噬水平逐漸下降,使IL-1β等促炎因子分泌增加,加速骨丟失和影響骨代謝,進(jìn)而導(dǎo)致骨質(zhì)疏松[27]。Almeida等[28]證明在骨細(xì)胞中,自噬可防止骨質(zhì)流失,并減少隨著年齡增長骨細(xì)胞發(fā)生的凋亡。

        2.2.1 自噬基因與骨質(zhì)疏松 有研究表明,敲除果蠅的自噬基因Atg7后,細(xì)胞內(nèi)有毒蛋白和細(xì)胞器聚集,最終引起細(xì)胞衰老和凋亡[2]。缺乏自噬基因Atg7的小鼠骨量低,易發(fā)生骨折,與破骨細(xì)胞和成骨細(xì)胞數(shù)量減少相關(guān)。自噬在維持細(xì)胞功能和穩(wěn)態(tài)過程中,也需要使細(xì)胞形態(tài)發(fā)生改變,這種改變包括長的細(xì)胞突起以及內(nèi)質(zhì)網(wǎng)和線粒體減少,抑制自噬可減少骨細(xì)胞突起的數(shù)量,導(dǎo)致骨細(xì)胞中線粒體和內(nèi)質(zhì)網(wǎng)滯留。成骨細(xì)胞自噬也有助于骨骼平衡以及骨形成相關(guān)的形態(tài)學(xué)變化[29]。自噬基因BECN-1沉默可致成骨細(xì)胞增殖和分化受抑制,細(xì)胞更易受氧化應(yīng)激損害,增加細(xì)胞凋亡,而過量表達(dá)則增強(qiáng)成骨細(xì)胞抗氧化能力,減少細(xì)胞凋亡[30]。

        2.2.2 自噬相關(guān)性氧化應(yīng)激與骨質(zhì)疏松 隨著年齡增長,自噬被抑制,使得線粒體受損,進(jìn)而增加活性氧(reactive oxygen species,ROS)產(chǎn)生,進(jìn)一步導(dǎo)致氧化應(yīng)激[31],反過來,氧化應(yīng)激又減少細(xì)胞自噬,這可能是骨質(zhì)疏松發(fā)生過程中骨質(zhì)流失的另一種解釋[32]。同時(shí),衰老過程中細(xì)胞通過自噬而完成清除的能力逐漸下降,線粒體因功能失調(diào)致蛋白質(zhì)積聚,導(dǎo)致氧化應(yīng)激反應(yīng)和ROS增多,進(jìn)而引發(fā)炎癥反應(yīng),刺激IL-1β和IL-18分泌,結(jié)果導(dǎo)致炎癥反應(yīng)增強(qiáng)和衰老加快[33]。

        2.2.3 自噬相關(guān)藥物與骨質(zhì)疏松 雷帕霉素是一種自噬激活劑,可通過誘導(dǎo)細(xì)胞自噬保持細(xì)胞活力[34],也可抑制破骨細(xì)胞的骨吸收活性[35],從而調(diào)節(jié)骨重塑。雷帕霉素也拮抗二甲雙胍,可激活腺苷酸活化的蛋白激酶(AMP-activated protein kinase,AMPK),AMPK是真核細(xì)胞能量調(diào)節(jié)器。肝激酶B1(liver kinase B1,LKB1)又名絲氨酸-蘇氨酸激酶(serine threonine kinase 1,STK1),是一種功能性腫瘤抑制因子,LKB1可作用于AMPK的上游,抑癌基因TSC2、p53及p27作為LKB1-AMPK能量感應(yīng)通路的下游底物來調(diào)控自噬,還可通過直接磷酸化自噬相關(guān)基因(autophagy-related gene 1, Atg1)在哺乳動物細(xì)胞中的同源蛋白UNC-51樣激酶(UNC-51 like autophagy activating kinase 1,ULK1)引發(fā)自噬[36],促進(jìn)成骨細(xì)胞礦化并抑制破骨細(xì)胞分化和成熟[37]。

        川芎嗪是一種被認(rèn)可的中藥提取物,具有抗凋亡特性。研究結(jié)果表明,它通過促進(jìn)AMPK和哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路激活而引發(fā)自噬,防止骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMMSCs)凋亡[38]。BMMSCs是位于骨髓腔內(nèi)的具有多向分化和自我更新能力的一類中胚層來源的成體干細(xì)胞,在成人骨骼中主要分化為成骨細(xì)胞和脂肪細(xì)胞。隨著年齡增長,ROS水平升高,BMMSCs也表現(xiàn)一系列變化,如增殖能力下降、細(xì)胞凋亡水平升高、成骨能力下降[39]。激活自噬能降低BMMSCs的ROS水平,衰老BMMSCs的自噬水平較年輕細(xì)胞明顯降低,調(diào)節(jié)自噬可影響細(xì)胞周期和細(xì)胞凋亡[24]。

        3 小結(jié)

        綜上所述,在衰老過程中,自噬水平下降、ROS增多等多種機(jī)制介導(dǎo)促炎因子產(chǎn)生,進(jìn)而使骨質(zhì)疏松發(fā)生率升高。目前通過對RANKL/RANK/OPG途徑的研究,靶向RANKL的單克隆抗體狄諾塞麥已被開發(fā),它是被批準(zhǔn)用于骨質(zhì)疏松癥患者的第一個(gè)單克隆抗體。狄諾塞麥可抑制破骨細(xì)胞生成,減少骨吸收和增加骨密度,同時(shí)顯著降低脊椎、非脊椎和髖部骨折風(fēng)險(xiǎn)。TNF-α抗體也已被證明能抑制過度的骨吸收[11]。自噬調(diào)節(jié)骨代謝是骨質(zhì)疏松研究的另一個(gè)里程碑,自噬抑制劑如氯喹(CQ)已在臨床被使用[40]。BECN-1可能是骨質(zhì)疏松抗氧化治療的有效靶點(diǎn)。但炎性衰老與骨質(zhì)疏松的相關(guān)機(jī)制研究目前仍較少,相信以后會有更多研究探索骨平衡的分子機(jī)制,對骨質(zhì)疏松提出新的治療方法。

        【參考文獻(xiàn)】

        [1] Franceschi C, Bonafè M, Valensin S,etal. Inflammaging: an evolutionary perspective on immunosenescence[J]. Ann N Y Acad Sci, 2000, 908(1): 244-254.

        [2] 夏世金.前言——重視炎性衰老的研究[J]. 實(shí)用老年醫(yī)學(xué), 2014, 28(2): 91-92. DOI: 10.3969/j.issn.1003-9198.2014.02.011.

        Xia SJ. Preface — attention to the study of inflamm-aging[J]. Pract Geriatr, 2014, 28(2): 91-92. DOI: 10.3969/j.issn.1003-9198.2014.02.011.

        [3] Mishto M, Santoro A, Bellavista E,etal. Immunoproteasomes and immunosenescence[J]. Ageing Res Rev, 2003, 2(4): 419-432.

        [4] Giunta B, Fernandez F, Nikolic WV,etal. Inflammaging as a prodrome to Alzheimer’s disease[J]. J Neuroinflammation, 2008, 5(1): 51. DOI: 10.1186/1742-2094-5-51.

        [5] Franceschi C, Valensin S, Lescai F,etal. Neuroinflammation and the genetics of Alzheimer’s disease: the search for a pro-inflammatory phenotype[J]. Aging (Milano), 2001, 13(3): 163-170.

        [6] Lencel P, Magne D. Inflammaging: the driving force in osteo-porosis?[J]. Med Hypotheses, 2011, 76(3): 317-321. DOI: 10.1016/j.mehy.2010.09.023.

        [7] Lio D, Scola L, Crivello A,etal. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-alpha-308 promoter SNP[J]. J Med Genet, 2003, 40(4): 296-299.

        [8] Cesari M, Penninx BW, Pahor M,etal. Inflammatory markers and physical performance in older persons: the InCHIANTI study[J]. J Gerontol A Biol Sci Med Sci, 2004, 59(3): 242-248.

        [9] Adams AA, Breathnach CC, Katepalli MP,etal. Advanced age in horses affects divisional history of T cells and inflammatory cytokine production[J]. Mech Ageing Dev, 2008, 129(11): 656-664. DOI: 10.1016/j.mad.2008.09.004.

        [10] Salvioli S, Capri M, Valensin S,etal. Inflammaging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology[J]. Curr Pharm Des, 2006, 12(24): 3161-3171.

        [11] Pietschmann P, Mechtcheriakova D, Meshcheryakova A,etal. Immunology of osteoporosis: a mini-review[J]. Gerontology, 2016, 62(2): 128-137. DOI: 10.1159/000431091.

        [12] 徐亦文, 曹陽, 安蒂, 等. 自噬在破骨細(xì)胞分化過程中的調(diào)控作用[J]. 現(xiàn)代免疫學(xué), 2016, 36(5): 400-404.

        Xu YW, Cao Y, An D,etal. Autophagy regulates the differentiation of osteoclasts[J]. Curr Immunol, 2016, 36 (5): 400-404.

        [13] Rauner M, Sipos W, Pietschmann P. Osteoimmunology[J]. Int Arch Allergy Immunol, 2007, 143(1): 31-48. DOI: 10.1159/000098223.

        [14] D’Amelio P, Grimaldi A, Bella S,etal. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis[J]. Bone, 2008, 43(1): 92-100. DOI: 10.1016/j.bone.2008.02.017.

        [15] 馮歆, 李生強(qiáng), 賴玉璉, 等. 絕經(jīng)后婦女膝關(guān)節(jié)骨性關(guān)節(jié)炎與骨質(zhì)疏松癥的相關(guān)性研究[J]. 中國骨質(zhì)疏松雜志, 2014, 20(4): 357 -359.

        Feng X, Li SQ, Lai YL,etal. Correlational study between knee osteoarthritis and osteoporosis in postmenopausal women[J]. Chin J Osteoporos, 2014, 20(4): 357-359.

        [16] Eghbali-fatourechi G, Khosla S, Sanyal A,etal. Role of RANK ligand in mediating increased bone resorption in early postmeno-pausal women[J]. J Clin Invest, 2003, 111(8): 1221-1230.

        [17] Zhuang L, Jung JY, Wang EW,etal. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathwayinvitroandinvivo[J]. Laryngoscope, 2007, 117(5): 841-847.

        [18] Ganesan K, Teklehaimanot S, Tran TH,etal. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females[J]. J Natl Med Assoc, 2005, 97(3): 329-333.

        [19] Aldaghri NM, Aziz I, Yakout S,etal.Inflammation as a contribut-ing factor among postmenopausal Saudi women with osteopo-rosis[J]. Medicine (Baltimore), 2017, 96(4): e5780. DOI: 10.1097/MD.0000000000005780.

        [20] 李文艷. 免疫調(diào)節(jié)在骨質(zhì)疏松癥中的研究進(jìn)展[J]. 醫(yī)學(xué)綜述, 2015, 21(2): 213-216. DOI: 10.3969/j.issn.1006-2084.2015.02.008.

        Li WY. The research progress of immunomodulatory in osteo-porosis[J]. Med Recapitulate, 2015, 21(2): 213-216. DOI: 10.3969/j.issn.1006-2084.2015.02.008.

        [21] Kojiro S, Ayako S, Kazuo O,etal. Th17 functions as an osteo-clastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006, 203(12): 2673-2682.

        [22] 常志芳, 馮成龍, 史曉霞, 等. 免疫與骨質(zhì)疏松的研究進(jìn)展[J]. 中國骨質(zhì)疏松雜志, 2015, 21(4): 508- 513. DOI: 10.3969/j.issn.1006-7108.2015.04.026.

        Chang ZF, Feng CL, Shi XX,etal. Research progress in immunology and osteoporosis[J].Chin J Osteoporos, 2015, 21(4): 508-513. DOI: 10.3969/j.issn.1006-7108.2015.04.026.

        [23] 陳玉鳳, 郭獻(xiàn)山, 趙建林, 等. 老年2型糖尿病中性粒細(xì)胞/淋巴細(xì)胞比率與骨質(zhì)疏松癥的關(guān)系[J]. 中國骨質(zhì)疏松雜志, 2015, 21(7): 824-826. DOI: 10.3969/j.issn.1006-7108.2015.07.014.

        Cheng YF, Guo XS, Zhao JL,etal. The relationship between the blood neutrophil lymphocyte ratio and osteoporosis in elderly patients with type 2 diabetes mellitus[J]. Chin J Osteoporos, 2015, 21(7): 824-826. DOI: 10.3969/j.issn.1006-7108.2015.07.014.

        [24] 戚朦. 自噬在雌激素缺乏骨質(zhì)疏松小鼠骨髓間充質(zhì)干細(xì)胞分化平衡中的作用研究[D]. 第四軍醫(yī)大學(xué), 2015.

        Qi M. Effects of autophagy on differentiation abilities of bone marrow mesenchymal stem cells in estrogen deficiency-induced osteoporosis mice[D]. Fourth Mil Med Univer, 2015.

        [25] Choi AM, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(19): 1845-1846. DOI: 10.1056/NEJMc1303158.

        [26] Chen K, Yang YH, Jiang SD,etal. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014,142(3): 285-295. DOI: 10.1007/s00418-014-1194-1.

        [27] Pierrefite-Carle V, Santucci-Darmanin S, Breuil V,etal. Auto-phagy in bone: self-eating to stay in balance[J]. Ageing Res Rev, 2015, 24(Pt B): 206-217. DOI: 10.1016/j.arr.2015.08.004.

        [28] Almeida M, Han L, Martin-millan M,etal. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids[J]. J Biol Chem, 2007, 282(37): 27285-27297. DOI: 10.1074/jbc.M702810200.

        [29] Piemontese M, Onal M, Xiong J,etal. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage[J]. Sci Rep, 2016, 6: 24262. DOI: 10.1038/srep 24262.

        [30] 楊越華. 自噬在成骨細(xì)胞氧化應(yīng)激中的作用及其與骨質(zhì)疏松的關(guān)系研究[D]. 上海交通大學(xué), 2015.

        Yang YH.The role of autophagy in oxidative damage to osteoblasts and its contribution to osteoporosis[D].Shanghai Jiao Tong Univ, 2015.

        [31] Mortensen M, Ferguson DJ, Edelmann M,etal. Loss of auto-phagy in erythroid cells leads to defective removal of mitochondria and severe anemiainvivo[J]. Proc Natl Acad Sci USA, 2010, 107(2): 832- 837. DOI: 10.1073/pnas.0913170107.

        [32] Ke C, Yang YH, Jiang SD,etal. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014, 142(3): 285-295. DOI: 10.1007/s00418-014-1194-1.

        [33] Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes[J]. Aging (Albany NY), 2012, 4(3): 166-175. DOI: 10.18632/aging.100444.

        [34] Luo D, Ren H, Li T,etal. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy[J].Osteoporos Int, 2016, 27(3): 1093-1101. DOI: 10.100 7/s001 98-015-3325-5.

        [35] Kneissel M, Luong-nguyen NH, Baptist M,etal. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts[J]. Bone, 2004, 35(5):1144-1156. DOI: 10.1016/j.bone.2004.07.013.

        [36] 齊觀云, 李文林, 石小玉. 磷酸腺苷依賴的蛋白激酶在自噬通路中作用的研究進(jìn)展[J]. 南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2014(2): 78-82. DOI: CNKI: SUN: JXYB.0.2014-02-023.

        Qi GY, Li WL,Shi XY. Research progress in role of AMPK pathway in autophagy[J]. J Nanchang Univ (Med Sci), 2014(2): 78-82.

        [37] Mai QG, Zhang ZM, Xu S,etal. Metformin stimulates osteo-protegerin and reduces RANKL expression in osteoblasts and ovariectomized rats[J]. J Cell Biochem, 2011,112(10): 2902-2909. DOI: 10.1002/jcb.23206.

        [38] Wang L, Zhang HY, Gao B,etal. Tetramethylpyrazine protects against glucocorticoid-induced apoptosis by promoting autophagy in mesenchymal stem cells and improves bone mass in glucocorticoid-induced osteoporosis rats[J]. Stem Cells Dev, 2017, 26(6): 419-430. DOI: 10.1089/scd.2016.0233.

        [39] 羅展鵬, 馬遠(yuǎn)征. 骨質(zhì)疏松與間充質(zhì)干細(xì)胞[J]. 中華老年多器官疾病雜志, 2011, 10(5): 388-392.

        Luo ZP, Ma YZ. Osteoporosis and mesenchymal stem cell[J].Chin J Mult Organ Dis Elderly, 2011, 10(5): 388-392.

        [40] Lin NY, Chen CW, Kagwiria R,etal. Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss[J]. Ann Rheum Dis, 2016, 75(6): 1203-1210. DOI: 10.1136/annrheumdis-2015-207240.

        猜你喜歡
        骨細(xì)胞成骨細(xì)胞細(xì)胞因子
        機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
        調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號分子的研究進(jìn)展
        抗GD2抗體聯(lián)合細(xì)胞因子在高危NB治療中的研究進(jìn)展
        骨細(xì)胞在正畸牙移動骨重塑中作用的研究進(jìn)展
        淫羊藿次苷Ⅱ通過p38MAPK調(diào)控成骨細(xì)胞護(hù)骨素表達(dá)的體外研究
        土家傳統(tǒng)藥刺老苞總皂苷對2O2誘導(dǎo)的MC3T3-E1成骨細(xì)胞損傷改善
        急性心肌梗死病人細(xì)胞因子表達(dá)及臨床意義
        細(xì)胞因子在慢性腎缺血與腎小管-間質(zhì)纖維化過程中的作用
        Bim在激素誘導(dǎo)成骨細(xì)胞凋亡中的表達(dá)及意義
        細(xì)胞因子在抗病毒免疫中作用的研究進(jìn)展
        国产天堂av在线一二三四| 青青草视频华人绿色在线| 激情视频在线观看国产中文| 国产三级精品av在线| 中文字幕日韩三级片| 精品无码专区久久久水蜜桃| 欧美亚洲另类自拍偷在线拍 | 有码视频一区二区三区| 国产精品国产三级国产av剧情 | 亚洲av中文无码字幕色本草| 国产精品美女久久久久| 91精品国产91| 视频一区精品中文字幕| 国产精品二区一区二区aⅴ污介绍| 国产精品欧美成人| 国内精品久久久久久久亚洲| 日本免费一区二区久久久| 在线观看免费无码专区| 亚洲狠狠婷婷综合久久| 成年女人片免费视频播放A | 激情在线一区二区三区视频| 午夜毛片不卡免费观看视频| 在线欧美不卡| 国产激情免费观看视频| 成人欧美一区二区三区黑人| 丰满人妻被黑人中出849| 精品久久久久88久久久| 人妻少妇av中文字幕乱码| 丰满少妇呻吟高潮经历| 欧美日韩精品乱国产| 最新国内视频免费自拍一区| 国产成人精品无码片区在线观看| 99久久久无码国产精品试看| 亚洲第一区无码专区| 手机在线播放av网址| 日韩欧美人妻一区二区三区| 丝袜美女污污免费观看的网站| 中文字幕日韩精品中文字幕| 国产果冻豆传媒麻婆精东| 成年男女免费视频网站| 亚洲视频一区二区蜜桃|