梁慧敏,王景全*,侯宜棟,吳軒楠
(1.河北工程大學(xué)理學(xué)院,邯鄲 056038;2.四川大學(xué)物理科學(xué)與技術(shù)學(xué)院,成都 610064)
Au納米粒子增強(qiáng)丙酮受激拉曼散射研究
梁慧敏1,王景全1*,侯宜棟2,吳軒楠2
(1.河北工程大學(xué)理學(xué)院,邯鄲 056038;2.四川大學(xué)物理科學(xué)與技術(shù)學(xué)院,成都 610064)
受激拉曼散射(stimulated Raman scattering,SRS)具有激光的特性,并且容易獲取不同波長的激光,從而成為調(diào)諧激光頻率的重要途徑之一。然而,由于其轉(zhuǎn)化效率低,限制了它的實(shí)際應(yīng)用。金屬納米粒子具有很強(qiáng)的表面增強(qiáng)效應(yīng),曾被廣泛地用于增強(qiáng)拉曼散射而獲得良好的效果。本文提出將金屬納米粒子的這種性質(zhì)用于增強(qiáng)SRS。把Au納米粒子混合于拉曼介質(zhì)丙酮中,以532 nm的納秒脈沖激光作為激發(fā)光,研究了Au納米粒子在丙酮中的濃度對丙酮SRS一階Stokes光強(qiáng)的影響,并通過仿真計(jì)算對實(shí)驗(yàn)結(jié)果進(jìn)行了解釋和分析。
受激拉曼散射;金屬納米粒子;表面增強(qiáng)
受激拉曼散射(stimulated Raman scattering,SRS)調(diào)諧激光具有線寬和脈寬狹窄、裝備簡單、操作簡便、價(jià)格低廉等優(yōu)點(diǎn),是脈沖激光調(diào)諧技術(shù)的重要途徑之一,因而成為國內(nèi)外學(xué)者研究的熱點(diǎn)[1-4]。但是,由于其轉(zhuǎn)化效率較低,在一定程度上限制了它的實(shí)際應(yīng)用。因此,多種提高其轉(zhuǎn)化效率的方法相繼被提出。典型的方法有熒光增強(qiáng)[5-7]、選擇高增益的拉曼介質(zhì)[8-10]、設(shè)計(jì)腔結(jié)構(gòu)[11-14]等,這些方法使SRS Stokes光得到增強(qiáng),轉(zhuǎn)化效率在一定程度上得到了提高。
金屬納米粒子的表面等離子體(surface plasmon polariton,SPP)增強(qiáng)效應(yīng)被廣泛地用于增強(qiáng)拉曼散射[15-18],并獲得非常理想的增強(qiáng)效果,有些情況下可使拉曼散射光增強(qiáng)高達(dá)約106倍甚至更高[16,18]。一般而言,對于具有拉曼活性的物質(zhì),往往有多個(gè)拉曼模式,在其拉曼譜上對應(yīng)多個(gè)譜峰,當(dāng)激發(fā)光強(qiáng)度增加到一定程度時(shí),拉曼增益最高的那個(gè)模式會被激發(fā)產(chǎn)生SRS,其Stokes光具有激光的特性。在本文中,我們將Au納米粒子混合于丙酮中,研究了不同濃度的Au納米粒子對丙酮SRS Stokes 光強(qiáng)的影響,并結(jié)合理論計(jì)算對其物理過程進(jìn)行了深入分析。
實(shí)驗(yàn)中我們采用Nd-YAG 納秒脈沖激光器的倍頻光(波長532 nm,脈沖寬度5 ns)為激發(fā)光,直徑7 cm的燒杯做拉曼池,燒杯內(nèi)放入75 mL的丙酮(分析純)。然后將濃度2×10-7mol/mL 的Au納米粒子(粒徑44±1 nm)膠體溶液滴入燒杯獲取不同濃度的Au納米粒子溶液。研究Au納米粒子在丙酮中的濃度對丙酮SRS一階Stokes光的影響。實(shí)驗(yàn)結(jié)果表明Au納米粒子濃度為1.85×10-9mol/mL時(shí)對丙酮SRS一階Stokes光增強(qiáng)效果最佳。此時(shí)的SRS光譜與沒有Au納米粒子時(shí)丙酮的SRS光譜如圖1所示。實(shí)線為丙酮中Au納米粒子的濃度為1.85×10-9mol/mL時(shí)的譜圖,虛線為丙酮中沒有Au納米粒子時(shí)的譜圖??梢悦黠@看出,丙酮中加入適量的Au納米粒子有助于丙酮SRS一階 Stokes光(波長629 nm)強(qiáng)度的提高。
當(dāng)然,Au納米粒子在丙酮中的濃度不同對丙酮SRS一階Stokes光強(qiáng)有不同的影響。我們測量了不同Au納米粒子濃度時(shí)丙酮SRS一階Stokes光強(qiáng),其變化關(guān)系如圖2所示。Au納米粒子在丙酮中將產(chǎn)生如下幾個(gè)作用。首先,532 nm的激發(fā)光將在其表面激發(fā)SPP,提高局域光強(qiáng)度,從而提高轉(zhuǎn)化效率。其次,產(chǎn)生的一階Stokes光與后面的Au納米粒子相遇同樣激發(fā)SPP。此外,Au納米粒子會產(chǎn)生吸收和散射損耗。在0~1.85×10-9mol/mL范圍內(nèi),一階Stokes光強(qiáng)先略微降低再顯著升高。其原因是Au納米粒子濃度較低時(shí),SPP增強(qiáng)一階Stokes光效應(yīng)很弱,而吸收和散射產(chǎn)生的能量損耗占主導(dǎo)因素。隨著Au納米粒子濃度的進(jìn)一步增大,SPP增強(qiáng)效應(yīng)逐漸提升,并在1.85×10-9mol/mL附近達(dá)到峰值。當(dāng)濃度大于1.85×10-9mol/mL之后,由于能量被大量散射,造成軸向一階Stokes光能量迅速衰減。由圖2可以看出,相對沒有金屬粒子的一階Stokes光強(qiáng)而言,能夠得到增強(qiáng)效果的濃度范圍約在1.25~2.39×10-9mol/mL之間。
Fig.1 The spectrums of Acetone’s SRS with and without Au nanoparticles
Fig.2 The intensity of the first-order Stokes varying with the concentration of Au nanoparticles in acetone
根據(jù)Au納米粒子原始溶液濃度(2×10-7mol/mL)計(jì)算可知,納米粒子間平均距離約為3.6 mm,遠(yuǎn)大于粒子粒徑44±1 nm,并且滴入丙酮中納米粒子平均距離會進(jìn)一步增大。因此在光場的計(jì)算中可以忽略相鄰粒子之間的相互作用。計(jì)算的光場分布切面如圖3所示。計(jì)算中,粒子為球形,粒徑設(shè)為45 nm,球心坐標(biāo)為(0,0,22.5) nm。光沿著-z方向傳輸,電場偏振方向平行于x軸。波長532 nm和629 nm對應(yīng)的丙酮折射率分別為1.361和1.358,而對應(yīng)的Au的折射率由Lorents-Drude[19]模型算出,分別為0.577+2.193i和0.317+3.112i。根據(jù)SPP激發(fā)特點(diǎn),電場平行于x軸振動,則(x,0,z)切面激發(fā)的SPP強(qiáng)度最大。圖3中(a)和(b)分別是532 nm和629 nm波長對應(yīng)的(x,0,z)切面強(qiáng)度分布。圖3中(c)圖是(a)和(b)兩圖中過球心沿x方向切割得到的強(qiáng)度分布曲線。由圖(c)明顯可以看出,對于粒徑45 nm的Au納米球,532 nm光入射時(shí)球的兩側(cè)存在較強(qiáng)的SPP局域光場,這有助于提高SRS一階Stokes光的轉(zhuǎn)化效率。然而,629 nm光入射時(shí),球的兩側(cè)也存在SPP局域光場,雖然相對較弱,但是其將消耗629 nm激光的能量。因此,如同前面分析,能否實(shí)現(xiàn)一階Stokes光強(qiáng)的提高,關(guān)鍵看SPP增強(qiáng)效應(yīng)能否占主導(dǎo)因素。
Fig.3 Optical field distribution in (x,0,z) sections.(a)and (b) are the light fields in acetone excited by 532 nm and 629 nm (Stokes),respectively.(c) is the cutting lines intensity distribution of (a) and (b) along thexdirection
我們又對不同粒徑的Au納米球激發(fā)的SPP進(jìn)行了計(jì)算,得到如圖4所示的變化規(guī)律。橫坐標(biāo)為Au納米球粒徑(φ),縱坐標(biāo)為Au納米球激發(fā)的SPP最大強(qiáng)度(Imax)。在20~80 nm變化范圍內(nèi),隨著納米球粒徑的增大,532 nm波長對應(yīng)的強(qiáng)度從35.2(φ=20 nm)變化至最大值38.7(φ=40 nm),之后降至28.5(φ=80 nm)。而629 nm波長對應(yīng)的強(qiáng)度從23.9(φ=20 nm)持續(xù)提升至50.4(φ=80 nm)。曲線在φ=60 nm位置相遇。由于532 nm激發(fā)SPP會增強(qiáng)SRS一階Stokes光,而629 nm激發(fā)SPP將損耗SRS一階Stokes光的能量,因此在粒徑選擇時(shí)應(yīng)讓532 nm和629 nm激發(fā)的SPP強(qiáng)度差值最大化。從圖中可以看出,最佳粒徑尺寸約為25 nm。
Fig.4 Relationship between SPP intensity of the surface of the Au nanoparticles in the acetone excited by 532 nm and 629 nm laser and the particle size
本文研究了不同濃度的Au納米粒子對丙酮SRS Stokes 光強(qiáng)度的影響,實(shí)驗(yàn)結(jié)果表明合適濃度的Au納米粒子能夠提高SRS Stokes光強(qiáng)度。理論計(jì)算和分析表明實(shí)驗(yàn)中采用的粒徑44 nm左右的Au粒子,對629 nm的一階Stokes光也會激發(fā)較強(qiáng)的SPP,從而增大了629 nm能量損耗。優(yōu)化濃度可以改善629 nm的轉(zhuǎn)換效率,但是由于Au粒子并非最佳粒徑,從實(shí)驗(yàn)結(jié)果可以看出其對Stokes光強(qiáng)度的提高幅度有限。進(jìn)一步計(jì)算表明對于球狀A(yù)u納米粒子,粒徑為25 nm左右,532 nm和629 nm激發(fā)的SPP強(qiáng)度差值最大,有利于提高一階Stokes輸出光強(qiáng)。因此,在金屬納米粒子增強(qiáng)SRS的實(shí)驗(yàn)中,選擇合適的納米金屬粒子參數(shù)和濃度,保證其增強(qiáng)Stokes光效果的同時(shí),控制損耗Stokes光的因素是非常重要的。
[1] Mildren R,Convey M,Pask H,etal.Efficient all-solid-state,Raman laser in the yellow,orange and red[J].Opt Express,2004,12( 5):785-790.
[2] Mariano Troccoli,Alexey Belyanin,Federico Capasso,etal.Raman injection laser[J].Nature,2005,433:845-848.
[3] Ren Jun,Cheng Weifeng,Li Shuanglei,etal.A new method for generating ultraintense and ultrashort laser pulses[J].Nature Phys,2007,3:732-736.
[4] Qiu Yi,Xu Y Q,Kenneth K Y,etal.Enhanced super continuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering[J].Opt Commun,2014,325:28-34.
[5] 左浩毅,高潔,楊經(jīng)國.混合染料熒光選擇性增強(qiáng)受激拉曼散射Stokes波[J].光譜學(xué)與光譜分析,2007,27(3):552-555.(Zuo Haoyi,Gao Jie,Yang Jingguo.Selected enhancement of different order stokes lines of SRS by using fluorescence of mixed dye solution[J].Spectrosc Spect Anal,2007,27(3):552-555.)
[6] 門志偉,房文匯,孫成林等.羅丹明B熒光增強(qiáng)苯受激拉曼散射研究[J].光散射學(xué)報(bào),2010,Vol.,22 (2):115-119.(Men Zhiwei,Fang Wenhui,Sun Chenglin,etal.Study of Rhodamine B fluorescence enhancement benzene of stimulated Raman scattering[J].J Light Scatt,2010,22 (2):115-119.)
[7] 解道宏,馬宏磊,楊睿.外部熒光種子植入法增強(qiáng)液芯光纖中CS2的受激拉曼散射研究[J],光散射學(xué)報(bào).2012,23(3):321-324.(Xie Daohong,Ma Honglei,Yang Rui.Study on enhancement of stimulated Raman scattering of CS2in liquid-core optical fibers by external fluorescence seeding[J].J Light Scatt,2012,23 (3):321-324.)
[8] Xu Yang,Chen Meng,Chen Liyuan,etal.Stimulated Raman scattering of picosecond pulses in YVO4crystal[J].Optik,2014,125( 1):545-547.
[9] Zhang Huanian,Chen Xiaohan,Wang Qingpu,etal.Efficient diode-pumped actively Q-switched Nd:YAG/SrWO4Raman laser operating at 1252.4 nm[J].Opt Commun,2015,335:28-31.
[10] Basiev T T,Orlovskii Yu V,Polyachenkova M V,etal.Continuously tunable cw lasing near 2.75m in diode-pumped Er3+:SrF2and Er3+:CaF2crystals[J].Quantum Electronics,2006,36(7):591-594.
[11] Pask H M,Myers S,Piper J A,etal.High average power all-solid-state external resonator Raman laser[J].Opt Lett,2003,28(6):435-437.
[12] Dua Chenlin,Guo Yayin,Yu Yongqin,etal.High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559 nm[J].Opt Laser Technol,2013,47:43-46.
[13] Wang Cong,Cong Zhenhua,Qin Zengguang,etal.LD-side-pumped Nd:YAG/BaWO4intracavity Raman laser for anti-Stokes generation[J].Opt Commun,2014,322:44-47.
[14] Fang W,Li Z,Qu G,etal.Enhanced stimulated Raman scattering by intermolecular Fermi resonance[J].Appl Phys B,2012,107(1):145-149.
[15] Liu G Q,Liu Z Q,Chen Y H,etal.Surface-enhanced Raman scattering effect of gold nanoparticle arrays:The influence of annealing temperature,excitation power and array thickness[J].Optik,2013,124(21):5124-5126.
[16] 劉志遠(yuǎn),杜晶晶,楊英歌等.金納米粒子的制備及其表面增強(qiáng)拉曼散射效應(yīng)的研究[J].光散射學(xué)報(bào),2013,25(2):134-137.(Liu Zhiyuan,Du Jingjing,Yang Yingge,etal.Preparation of Au naoparticles and the study of their property as the surface enhanced Raman scattering substrates[J].J Light Scatt,2013,25(2):134-137)
[17] Gordana Siljanovska Petreska,Jadranka Blazevska-Gilev,Radek Fajgаr,etal.Surface-enhanced Raman scattering activity of Ag/graphene/polymer nanocomposite films synthesized by laser ablation[J].Thin Solid Films,2014,564:115-120.
[18] 曹錕,鄭改革,吳義根等.銀納米棒雙體結(jié)構(gòu)的表面等離子體共振光學(xué)特性研究[J].光散射學(xué)報(bào),2015,27(2):174-178.(Cao Kun,Zheng Gaige,Wu Yigen,etal.The study of surface plasmon resonance in silver nanorod dimer structures[J].J Light Scatt,2015,27(2):174-178).
[19] Rakic A D,Djurisic A B,Elazar J M,etal.Optical properties of metallic films for vertical-cavity optoelectronic devices[J].App Opt,1998,37:5271-5283.
Study on Enhancement of Stimulated Raman Scattering in Acetone by Au Nanoparticles
LIANG Hui-min1,WANG Jing-quan1*,HOU Yi-dong2,WU Xuan-nan2
(1.CollegeofScience,HebeiUniversityofEngineering,Handan056038,China;2.CollegeofPhysicalScienceandTechniol.,SichuanUniversity,Chengdu610064,China)
Stimulated Raman scattering (SRS) has been an important method in the tunable laser frequency since it has the characteristics of the laser beams and easily acquires different wavelengths.However,the practical application of SRS is limited because of its low conversion efficiency.Metal nanoparticles have been widely used in the surface-enhanced Raman scattering (SERS) as they have very strong surface enhancement effect.In this article,metal nanoparticles are employed to improve the conversion efficiency of SRS.Au nanoparticles are mixed in the Raman medium acetone,and the nanosecond pulse laser of 532 nm is used as the pump source of the SRS.The first Stokes intensity of the SRS evolving with the concentration of Au nanoparticles in acetone is studied,and the experimental results are explained and analyzed by simulated calculations.
stimulated Raman scattering; metal nanoparticles; surface enhancement
1004-5929(2016)04-0308-04
2015-12-08; 修改稿日期:2015-12-18
河北省自然科學(xué)基金(A2013402081,A2013402069)
梁慧敏,(1979-),女,河南商丘人,講師,主要研究方向:拉曼激光技術(shù).E-mail:lianghmok@163.com
王景全,(1979-),男,山東臨沂人,講師,主要研究方向:表面等離子體及其應(yīng)用.E-mail:jingquanwang1212@163.com
O437.3
A
10.13883/j.issn1004-5929.201604002