代兵,包玉娥
(內(nèi)蒙古民族大學(xué)數(shù)學(xué)學(xué)院,內(nèi)蒙古 通遼 028043)
區(qū)間數(shù)的絕對(duì)值與區(qū)間值函數(shù)的極限
代兵,包玉娥
(內(nèi)蒙古民族大學(xué)數(shù)學(xué)學(xué)院,內(nèi)蒙古 通遼 028043)
研究了區(qū)間數(shù)的絕對(duì)值和區(qū)間值函數(shù)的極限問題.首先,討論了區(qū)間數(shù)的H-差的性質(zhì),得到了H-差的兩個(gè)運(yùn)算法則;然后,給出了區(qū)間數(shù)的絕對(duì)值概念,并討論了區(qū)間數(shù)絕對(duì)值的性質(zhì);最后,借助區(qū)間數(shù)的H-差和絕對(duì)值的概念,建立了區(qū)間值函數(shù)極限概念的一種新的表達(dá)方式,給出了極限存在的充分必要條件,證明了極限值的唯一性及對(duì)加法運(yùn)算和數(shù)乘運(yùn)算的封閉性.
區(qū)間數(shù);H-差;絕對(duì)值;區(qū)間值函數(shù);極限
區(qū)間數(shù)理論的基本思想是應(yīng)用區(qū)間數(shù)變量代替點(diǎn)變量進(jìn)行計(jì)算.早在1931年Young[1]就開始了區(qū)間數(shù)理論的研究.之后,由Moore[2]為代表的眾多學(xué)者的共同努力下,區(qū)間數(shù)的理論及應(yīng)用有很大的發(fā)展.特別是,為了建立區(qū)間值微分方程理論[3],區(qū)間值最優(yōu)化理論[4]以及模糊值函數(shù)的微分理論[5]等,利用不同的方式引進(jìn)了各種不同的微分概念及相關(guān)性質(zhì).文獻(xiàn)[3-6]引進(jìn)了區(qū)間值函數(shù)的微分概念及相關(guān)性質(zhì).在這些研究工作中,區(qū)間數(shù)差的概念及區(qū)間值函數(shù)的極限概念起了重要作用.其中,文獻(xiàn)[4]利用區(qū)間數(shù)的Hausdorff距離討論了區(qū)間值函數(shù)的極限問題,給出了相關(guān)的性質(zhì).文獻(xiàn)[7]通過引進(jìn)區(qū)間數(shù)模的概念,給出了區(qū)間值函數(shù)的極限概念及其相關(guān)性質(zhì).本文在文獻(xiàn)[8-9]的基礎(chǔ)上,研究了模糊值函數(shù)的次可微性及相關(guān)問題,得到了一些有意義的結(jié)論.
本文嘗試借助區(qū)間數(shù)的H-差和絕對(duì)值的概念,利用實(shí)分析的方法建立區(qū)間值函數(shù)的極限概念及相關(guān)性質(zhì).希望對(duì)研究區(qū)間值函數(shù)及模糊值函數(shù)的微分理論及其應(yīng)用問題提供一種新的思想方法.
本節(jié)介紹區(qū)間數(shù)的相關(guān)概念,并討論H-差(Hukuhara差)的一些性質(zhì).
下面首先介紹區(qū)間數(shù)的加法運(yùn)算、數(shù)乘運(yùn)算及大小關(guān)系.內(nèi)容來自文獻(xiàn)[10].
定義2.1[4]對(duì)于a,b∈[R],如果存在c∈[R],使得a=b+c,則稱c為a與b的H-差,記為c=a-Hb.
注2.1對(duì)于a,b∈[R],若a-Hb存在,則
定理2.1設(shè)a,b,c,d∈[R],若a-Hc,b-Hd都存在,則H-差(a+b)-H(c+d)也存在且有
定理2.2設(shè)a,b∈[R]且k>0,若H-差a-Hb存在,則H-差ka-Hkb存在且
本節(jié)給出區(qū)間數(shù)絕對(duì)值的概念,并討論它的一些性質(zhì).
定義3.1設(shè)則區(qū)間數(shù)a的絕對(duì)值定義為
注 3.1由定義2.1,我們易推出下面的結(jié)論:
(1)|a|=|-a|;
(2)當(dāng)a∈[R+]時(shí),|a|=a;當(dāng)a∈[R-]時(shí),|a|=-a;
(3)當(dāng)k≥0時(shí),|ka|=k|a|;當(dāng)k<0時(shí),|ka|=-k|a|.
定理3.1設(shè)a,b∈[R+]或a,b∈[R-],則有
(1)|a+b|≤|a|+|b|;
(2)當(dāng)H-差a-Hb存在時(shí),|a-Hb|≤|a|+|b|;
(3)當(dāng)H-差a-Hb和|a|-H|b|都存在時(shí),|a-Hb|≥|a|-H|b|;
(4)當(dāng)|a|-H|b|存在時(shí),|a|-H|b|≤|a+b|.
定理 3.2設(shè)a,b∈[R],對(duì)任意ε=[ε,ε]∈[R+],若H-差a-Hb存在且|a-Hb|≤ε,則a=b.
定理3.3設(shè)a,b∈[R],若H-差a-Hb存在且|a-Hb|=[0,0],則a=b.
定理3.4設(shè)a,b∈[R],若H-差a-Hb和b-Ha都存在,則
定理 3.5設(shè)a,b,c∈[R],若H-差a-Hc和c-Hb都存在,則H-差a-Hb存在,且a-Hc和c-Hb都為正區(qū)間數(shù)或負(fù)區(qū)間數(shù)時(shí),有
本節(jié)討論正區(qū)間值函數(shù)的極限問題.在本節(jié)中設(shè)U0(x0)為x0的某空心鄰域,定義在U0(x0)上的區(qū)間值函數(shù)f:U0(x0)→[R]為
定義4.1 設(shè)f:U0(x0)→[R+]為區(qū)間值函數(shù),且A∈[R].如果對(duì)任意ε=[ε,ε]∈[R+],存在δ>0,當(dāng)0<|x-x0|<δ時(shí),H-差f(x)-HA和A-Hf(x)都存在,且
則稱f(x)在點(diǎn)x0處極限存在且極限值為A,并記為
定理 4.1設(shè)f(x)為定義在U0(x0)內(nèi)的區(qū)間值函數(shù)且A∈[R],則的充要條件是
且存在δ>0,當(dāng)0<|x-x0|<δ時(shí),H-差f(x)-HA和A-Hf(x)都存在.
定理4.2若區(qū)間值函數(shù)f(x)在點(diǎn)x0處極限存在,則它有唯一的極限.
定理4.4設(shè)f(x),g(x),h(x)為定義在U0(x0)內(nèi)的三個(gè)區(qū)間值函數(shù)且
如果存在δ>0,當(dāng)0<|x-x0|<δ時(shí),有f(x)≤g(x)≤h(x)且H-差g(x)-HA和A-Hg(x)都存在,則又因?yàn)榇嬖讦模?,當(dāng)0<|x-x0|<δ時(shí),有f(x)≤g(x)≤h(x).
又因?yàn)楫?dāng)0<|x-x0|<δ時(shí),H-差g(x)-HA和A-Hg(x)都存在.
[1]Yang R C.The algebra of many-valued quantities[J].Annals of Mathematics,1931,31:260-290.
[2]Moor R E.Interval Analysis[M].New Jersey:Prentice Hall,1966.
[3]Luciano Stefanini,Barnabas Bede.Generalized Hukuhara differentiability of interval-valued functions and interval differetial equations[J].Noninear Analysis,2009,71:1311-1328.
[4]Wu Hsien chung.The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions[J].European Journal of Operational Research,2009,196:49-60.
[5]Barnabas Bede,Luciano Stefanini.Generalized differentiability of fuzzy-valued functions[J].Fuzzy Sets and Systems,2013,230:119-141.
[6]Chalco-Cano Y,Rufian-Lizana A,Ronman-Flores H,et al.Calculs for interval-valued functions using generalized Hukuhara derivative and applications[J].Fuzzy Sets and Systems,2013,219:49-67.
[7]Vasile Lupulescu.Fractional calculus for interval-valued functions[J].Fuzzy Sets and Systems,2015,265:63-85.
[8]關(guān)世霞,包玉娥,趙慧冬.模糊值函數(shù)的凸性與次微分性[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2012,28(5):676-686.
[9]包玉娥,趙博,彭曉芹.關(guān)于模糊值凸函數(shù)的共軛問題的研究[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2013,29(4):331-337.
[10]胡啟洲,張衛(wèi)華.區(qū)間數(shù)理論的研究及其應(yīng)用[M].北京:科學(xué)出版社,2010.
The absolute value of interval numbers and the limit of the interval value function.
Dai Bing,Bao Yu′e
(College of Mathematics,Inner Mongolia University for the Nationalities,Tongliao 028043,China)
In this paper,we study the absolute value of interval numbers and the limit of the interval value function.First of all,we discuss the properties of H-difference of interval numbers,achieve two rules of algorithm of H-difference.Then,we propose the concept of the absolute value of interval numbers,and discuss the properties of the absolute value of interval numbers.In the end,we set up a new expression the concept of the limit of interval value function with the help of the concept of H-difference and absolute value of interval number,conclude the sufficient condition of the existence of limit,and proves the uniqueness of limit value and the sealing ability of addition and multiplication operation.
interval numbers,H-difference,absolute value,interval value function,limit
0159.2
A
1008-5513(2016)06-0583-08
10.3969/j.issn.1008-5513.2016.06.004
2016-07-10.
國(guó)家自然科學(xué)基金(11461052);內(nèi)蒙古自然科學(xué)基金(2014MS0107).
代兵(1991-),碩士生,研究方向:不確定數(shù)學(xué)理論及其應(yīng)用.
包玉娥(1962-),博士,教授,研究方向:不確定數(shù)學(xué)理論及其應(yīng)用.
2010 MSC:03E72