亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高階非線性代數(shù)微分方程組的亞純?cè)试S解

        2016-12-29 03:49:03
        關(guān)鍵詞:亞純凌云畢節(jié)

        金 瑾

        (1.貴州工程應(yīng)用技術(shù)學(xué)院數(shù)學(xué)系,貴州 畢節(jié) 551700;2.畢節(jié)循環(huán)經(jīng)濟(jì)研究院,貴州 畢節(jié) 551700)

        高階非線性代數(shù)微分方程組的亞純?cè)试S解

        金 瑾1,2

        (1.貴州工程應(yīng)用技術(shù)學(xué)院數(shù)學(xué)系,貴州 畢節(jié) 551700;2.畢節(jié)循環(huán)經(jīng)濟(jì)研究院,貴州 畢節(jié) 551700)

        利用亞純函數(shù)的Nevanlinna值分布理論,研究了高階非線性代數(shù)微分方程組亞純?cè)试S解的存在性問題,獲得了微分方程組的亞純解或同為允許的,或同為非允許的,進(jìn)而得到了更一般的結(jié)果.

        代數(shù)微分方程組;亞純函數(shù);允許解;Nevanlinna理論;值分布理論

        1 預(yù)備知識(shí)

        這里假設(shè)讀者熟悉亞純函數(shù)的Nevanlinna值分布理論的基本知識(shí)和通常記號(hào).[1-20]關(guān)于微分方程組的允許解問題,有很多作者做了大量工作并得到一大批很好的結(jié)果.[1-10]

        對(duì)下面的高階非線性代數(shù)微分方程組

        (1)

        其中:

        T(r,a(i1))=o(T(r,w1)),T(r,b(i2))=o(T(r,w2)),T(r,ai)=o(T(r,w1)),

        T(r,bj)=o(T(r,w1)),T(r,ci)=o(T(r,w2)),T(r,dj)=o(T(r,w2)).

        a11,a12,a21,a22為常數(shù),則可知λtj≤utj≤Δtj.

        定義1 設(shè)(w1,w2)是微分方程組(1)的亞純解,S(r)為微分方程組(1)的所有系數(shù)的特征函數(shù)之和,即

        S(r)=∑T(r,ai1)+∑T(r,bi2)+∑T(r,ai)+∑T(r,bj)+∑T(r,ci)+∑T(r,dj).

        若(w1,w2)滿足

        S1(r)=o(T(r,w1)),S2(r)=o(T(r,w2)),r?I1,

        則稱(w1,w2)為方程組(1)的亞純?cè)试S解,其中I1是一個(gè)對(duì)數(shù)測(cè)度為有窮的例外值集.

        定義2 設(shè)(w1,w2)是微分方程組(1)的亞純解.若(w1,w2)中的分量w1,w2滿足

        則稱分量w1,w2為微分方程組(1)允許分量,其中I2是一個(gè)對(duì)數(shù)測(cè)度為有窮的例外值集.

        引理3 設(shè)aik(i=1,2;k=1,2)為非零常數(shù),且

        證明 因?yàn)?/p>

        由文獻(xiàn)[13]引理2得

        (2)

        情形Ⅰ 若z0為Ω1(z,w1,w2)系數(shù)的極點(diǎn),則

        情形Ⅱ 若z0為wk的極點(diǎn),則

        由此可得

        情形Ⅲ 若z0為wk-a1k的零點(diǎn),但不是wk的極點(diǎn),則

        由上述三種情形得

        (3)

        根據(jù)(2)—(3)式以及引理2得

        同理可得

        證明

        其中I1和I2都是對(duì)數(shù)測(cè)度為有限的例外值集,故引理4成立.

        2 主要結(jié)論

        本文利用Nevanlinna值分布理論,對(duì)高階非線性代數(shù)微分方程組(1)的亞純?cè)试S解的存在性問題進(jìn)行了研究.根據(jù)以上定義以及眾多研究者研究結(jié)果的基礎(chǔ)上,得到以下改進(jìn)和推廣的結(jié)論.

        定理1 設(shè)(w1,w2)是非線性微分方程組(1)的有限級(jí)亞純?cè)试S解,且

        max{p1,q1}>λ11+u11,max{p2,q2}>λ22+u22.

        證明 由引理1可得

        T(r,R1(z,w1))=max{p1,q1}T(r,w1)+S(r),

        (4)

        T(r,R2(z,w2))=max{p2,q2}T(r,w2)+S(r).

        (5)

        由已知和引理3有

        (6)

        (7)

        故由(4)—(7)式以及微分方程組(1)可得

        max{p1,q1}T(r,w1)≤(λ11+u11)T(r,w1)+(λ12+u12)T(r,w2)+S(r),

        (8)

        max{p2,q2}T(r,w2)≤(λ21+u21)T(r,w1)+(λ22+u22)T(r,w2)+S(r).

        (9)

        根據(jù)(8)—(9)式,

        {max{p1,q1}-λ11-u11+o(1)}T(r,w1)≤(λ12+u12+0(1))T(r,w2),

        (10)

        {max{p2,q2}-λ22-u22+o(1)}T(r,w2)≤(λ21+u21+o(1))T(r,w1),

        (11)

        進(jìn)而由(10)—(11)式即有

        {max{p1,q1}-λ11-u11}{max{p2,q2}-λ22-u22}≤(λ12+u12)(λ21+u21).

        定理2 設(shè)(w1,w2)是微分方程組(1)的有限級(jí)亞純解,且max{p1,q1}>λ11+u11或 max{p2,q2}>λ22+u22.則(w1,w2)中的兩個(gè)分量w1和w2或同為允許的,或同為非允許的.

        證明 利用已知條件以及引理1與引理3結(jié)論可得

        (12)

        (13)

        若分量w1為允許的,w2為非允許的,則(8)式變?yōu)?/p>

        由引理4可知當(dāng)r→∞時(shí),除去一個(gè)對(duì)數(shù)測(cè)度為有限的例外值集外都有

        max{p1,q1}≤λ11+u11.

        這與定理2的已知條件矛盾.

        若分量w2為允許的,w1為非允許的,則(9)式變?yōu)?/p>

        由引理4可知當(dāng)r→∞時(shí),除去一個(gè)對(duì)數(shù)測(cè)度為有限的例外值集外都有

        max{p2,q2}≤λ22+u22.

        這與定理2的已知矛盾.

        綜上,(w1,w2)中的兩個(gè)分量w1和w2或同為允許的,或同為非允許的.

        [2] 高凌云.復(fù)微分方程組m分量-可允許解[J].數(shù)學(xué)年刊,1997,18(2):149-154.

        [3] 高凌云.關(guān)于兩類復(fù)微分方程組的允許解[J].數(shù)學(xué)學(xué)報(bào),2000,43(1):149-156.

        [4] 高凌云.具有允許解的代數(shù)微分方程組的形式[J].系統(tǒng)科學(xué)與數(shù)學(xué),2004,24(1):96-101.

        [5] 高凌云.代數(shù)微分方程組允許解的值分布[J].系統(tǒng)科學(xué)與數(shù)學(xué),2007,27(4):629-632.

        [6] 高凌云.Malmquist型復(fù)差分方程組[J].數(shù)學(xué)學(xué)報(bào),2012,55(2):293-300.

        [7] 王鑰,高凌云.關(guān)于兩類復(fù)非線性微分方程的代數(shù)體函數(shù)解[J].系統(tǒng)科學(xué)與數(shù)學(xué),2013,33(2):246-254.

        [8] 高凌云.高階差分方程解[J].數(shù)學(xué)學(xué)報(bào),2013,56(4):451-458.

        [9] 吳桂榮.復(fù)域內(nèi)代數(shù)微分方程組的允許解[J].福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版),1992,8(1):16-20.

        [10] 宋述剛.代數(shù)微分方程組的可允許解[J].數(shù)學(xué)雜志,2008,28(6):685-688.

        [11] LAINE I.Nevanlinna theory and complex differential equation [M].Berlin:Walter de Gruyter,1993:18-49.

        [12] KORHONEN R.A new clunie type theorem for difference polynomials[J].Difference Equ Appl,2011,17(3):387-400.

        [13] 丁勇.一類微分方程組的非可允許分量[J].暨南大學(xué)學(xué)報(bào),2013,34(1):25-18.

        [14] HILLE E.Ordinary differential equations in the complex domain[M].New York:Wiley,1976:1021-1028.

        [15] 金瑾.關(guān)于一類高階齊次線性微分方程解的增長(zhǎng)性[J].中山大學(xué)學(xué)報(bào),2013,52(1):51-55.

        [16] 金瑾.一類高階齊次線性微分方程解的增長(zhǎng)性[J].華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,47(1):4-7.

        [17] 金瑾.關(guān)于高階線性微分方程解與其小函數(shù)的增長(zhǎng)性[J].上海交通大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,47(7):1155-1159.

        [18] 金瑾.單位圓內(nèi)高階齊次線性微分方程解與小函數(shù)的關(guān)系[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2014,37(4):254-264.

        [19] 金瑾,武玲玲,樊藝.高階非線性微分方程組的亞純?cè)试S解[J].東北師大學(xué)報(bào)(自然科學(xué)版),2015,47(1):22-25.

        [20] 金瑾.一類差分方程組的亞純?cè)试S解[J].東北師大學(xué)報(bào)(自然科學(xué)版),2016,48(2):27-30.

        (責(zé)任編輯:李亞軍)

        Meromorphic admissible solution of systems governed by higher order non-linear algebraic differential equations

        JIN Jin1,2

        (1.Department of Mathematics,Guizhou University of Engineering Science,Bijie 551700,China;

        2.Research Institute of Circular Economy of Bijie,Bijie 551700,China)

        Using Nevanlinna theory of the value distribution of meromorphic functions,the problem of the existence of meromorphic admissible solutions of complex higher-order nonlinear algebraic differential equation is investigated.It is obtained that the meromorphic solution of the differential equations system are all admissible or non admissible.Moreover,some other results are also given,which are more general than the previous ones.

        algebraic differential equations systems;meromorphic function;admissible solution;Nevanlinna theory;value distribution

        1000-1832(2016)04-0010-05

        10.16163/j.cnki.22-1123/n.2016.04.003

        2015-08-20

        貴州省科學(xué)技術(shù)基金資助項(xiàng)目(2010GZ43286,2012GZ10526);貴州省畢節(jié)市科研基金資助項(xiàng)目([2011]02);貴州省教育廳重點(diǎn)項(xiàng)目([2015]392).

        金瑾(1962-),男,教授,主要從事復(fù)分析研究.

        O 174.52 [學(xué)科代碼] 110·41

        A

        猜你喜歡
        亞純凌云畢節(jié)
        保留一點(diǎn)兒焦慮感
        做人與處世(2022年2期)2022-05-26 22:34:53
        亞純函數(shù)的差分多項(xiàng)式
        Q萌霸氣凌云秀
        亞純函數(shù)與其差分的唯一性
        尋味貴州——畢節(jié)
        游洞——畢節(jié)織金洞
        唯有凌云多壯“質(zhì)”
        軍工文化(2017年12期)2017-07-17 06:08:02
        瘋狂的凌云
        汽車觀察(2016年3期)2016-02-28 13:16:22
        畢節(jié)發(fā)展山地高效生態(tài)農(nóng)業(yè)
        我驕傲,我是畢節(jié)幼師人
        北方音樂(2015年21期)2015-04-29 17:05:07
        av一区二区三区人妻少妇 | 最新日本免费一区二区三区| 一区二区三区亚洲免费| 一区二区三区免费看日本| 大地资源高清在线视频播放| 人妻av鲁丝一区二区三区 | 日批视频免费在线观看| 亚洲中文字幕黄色小视频| 女人天堂国产精品资源麻豆| 日本一区二区三区免费精品| 国产成人精品a视频一区| 国产96在线 | 欧美| 波多野结衣一区二区三区视频| 少妇一区二区三区乱码| 一区二区三区蜜桃av| 国色天香中文字幕在线视频| 国产精品一区二区久久不卡| 国产精品一区二区久久乐下载| 中国少妇和黑人做爰视频| 蜜桃高清视频在线看免费1| 天堂在线资源中文在线8| 国产伦精品一区二区三区| 久久精品免视看国产明星| 黄色三级国产在线观看| 亚洲中文字幕久久精品色老板| 亚洲国产精品无码久久久| 中国xxx农村性视频| 午夜精品久视频在线观看| 人妻秘书被社长浓厚接吻| 久久综合九色欧美综合狠狠| 色吊丝中文字幕| 国产一区二区激情对白在线| 日本视频一区二区二区| 亚洲美女自拍偷拍视频| 2020无码专区人妻系列日韩| 97一区二区国产好的精华液| 日本精品久久性大片日本| 亚洲丰满熟女一区二亚洲亚洲| 人人妻人人澡人人爽欧美一区双| 亚洲精品无码mv在线观看| 国产亚洲高清在线精品不卡|