吳書韜,梁 峰
(安徽師范大學 數(shù)學計算機科學學院,安徽 蕪湖 241003)
一類具時滯和比率依賴的捕食-食餌模型2個周期解存在性
吳書韜,梁 峰
(安徽師范大學 數(shù)學計算機科學學院,安徽 蕪湖 241003)
研究一類帶有HollingIII型反應函數(shù)的捕食-食餌模型
周期解;Mawhin重合度拓展定理;時滯;捕食-食餌模型;比率依賴
由于捕食和食餌的普遍存在性和重要性,它們之間的動態(tài)平衡問題一直是生態(tài)學和數(shù)學生態(tài)學中一個重要研究課題.前些年,傳統(tǒng)捕食-食餌模型被廣泛研究[1-3].現(xiàn)階段,由文獻[4-6]知,存在更直接的生物學和生理學證據(jù),其表明在許多情形下,尤其是捕食者之間不得不存在競爭或分享食物時,應該在基于比率的情形下,建立一個更具一般性的捕食-食餌模型[7-8].許多研究者已經(jīng)研究帶有或不帶時滯的基于比率依賴的捕食-食餌模型,并且研究了它們的動力學性質(zhì)[9-19].
鑒于實際問題的周期性,文獻[18]研究了帶有時滯和基于比率的捕食-食餌模型的周期解存在問題:
在(1)式中加入HollingIII反應函數(shù),文獻[19]研究了具有時滯和HollingIII型基于比率的捕食-食餌模型的周期解問題:
然而,對此類系統(tǒng)的帶有2個周期解存在性的研究結(jié)果相對較少.
受以上研究結(jié)果啟發(fā),在本文中,我們研究具有時滯和HollingIII型基于比率的捕食-食餌模型的2個周期解存在性問題:
在這里,a,b,c1,c2,r1,r2,τ1,τ2是周期為T的連續(xù)非負周期函數(shù),m>0,K(s):R+→R+是可測函數(shù),且滿足.這里r1(t)代表食餌的內(nèi)稟增長率,m代表半捕捉飽和常數(shù),r2(t)代表捕食者死亡率,c1(t)和c2(t)代表轉(zhuǎn)化率;函數(shù)代表在沒有捕食者時食餌的比生長速率;x2(t)/(m2y2(t)+x2(t))代表捕食者反應函數(shù)(反映了捕食者的捕食能力).運用Mawhin重合度拓展定理[20],本文證明系統(tǒng)(3)存在2個正周期解.
令X,Y是Banach空間,L:Dom L?X→Y是線性映射,N:X→Y是一個連續(xù)映射.如果L為指標為零的Fredholm映射且存在連續(xù)投影P:X→X,及Q:Y→Y使得Im P=Ker L,Ker Q=Im L=Im(I-Q),則L|DomL?KerP:(I-P)X→Im L是可逆的.設(shè)其逆映射為 Kp.如果 Ω是 X中的有界開集,有界且Kp(I-Q):是緊的,則稱 N在是 L-緊的.由于 Im Q與 Ker L同構(gòu),故存在同構(gòu)映射J:Im Q→Ker L.下面的Mawhin重合度拓展定理是證明本文結(jié)論的主要工具.
例1 在系統(tǒng)(3)中,令
則可得
那么可驗證(h1)和(h2)成立.因此,由定理1,可知系統(tǒng)(3)至少有2個不同的正周期解.
注2 由于只有相對較少的文獻考慮具有時滯和HollingIII型基于比率的捕食-食餌模型的多個周期解問題,所以本文結(jié)果相對來說是較為新穎的.
[1]ZHANG Zhengqiu,HOU Zhenting,WANG Li.Multiplicity of positive periodic solutions to a generalized delayed predatorprey system with stocking[J].Nonlinear Anal,2008,68:2608-2622.
[2]DING Xiaoquan,JIANG Jifa.Positive periodic solutions in delayed Gause-type predator-prey systems[J].J Math Anal Ap?pl,2008,339:1220-1230.
[3]HU Xiaoling,LIU Guirong,YAN Jurang.Existence of multiple positive periodic solutions of delayed predator-prey models with functional responses[J].Comput Math Appl,2006,52:1453-1462.
[4]KUANG Y,BERETTA E.Global qualitative analysis of a ratio-dependent predator-prey system[J].J Math Biol,1998,36:389-406.
[5]JOST C,ARINO O,ARDITI R.About deterministic extinction in ratio-dependent predator-prey models[J].Bull Math Bi?ol,1999,61:19-32.
[6]HSU S,HWANG T,KUANG Y.Global dynamics of a predator-prey model with Hassell-Varley type functional response[J].J Math Biol,2008,10:1-15.
[7]HANSKI I.The functional response of predator:worries bout scale[J].TREE,1991,6:141-142.
[8]ARDITI R,PERRIN N,SAIAH H.Functional response and heterogeneities:an experiment test with cladocerans[J]. OIKOS,1991,60:69-75.
[9]LIU Xiangsen,LI Gang,LUO Guilie.Positive periodic solution for a two-species ratio-dependent predator-prey system with time delay and impulse[J].J Math Anal Appl,2007,325:715-723.
[10]SAHA T,BANDYOPADHYAY M.Dynamical analysis of a delayed ratio-dependent prey-predator model within fluctuat?ing environmen[tJ].Appl Math Comput,2008,196:458-478.
[11]XIAO Dongmei,LI Wenxia,HAN Maoan.Dynamics in a ratio-dependent predator-prey model with predator harvesting[J].J Math Anal Appl,2006,324:14-29.
[12]RYU K,AHN I.Positive solutions for ratio-dependent predator-prey interaction systems[J].J Differential Eqns,2005,218:117-135.
[13]DAI Binxiang,ZHANG Na,ZOU Jiezhong.Permanence for the Michaelis-Menten type discrete three-species ratio-depen?dent food chain model with delay[J].J Math Anal Appl,2006,324:728-738.
[14]AKHMET M,BEKLIOGLU M,ERGENC T,et al.An impulsive ratio-dependent predator-prey system with diffusion[J]. Nonlinear Anal RWA,2006,7:1255-1267.
[15]FAN Yonghong,LI Wantong.Global asymptotic stability of a ratio-dependent predator-prey system with diffusion[J].J Comput Appl Math,2006,188:205-227.
[16]DEANGELIS D,HOLLAND J.Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism[J].Ecol Model,2006,191:551-556.
[17]WANG Mingxin.Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional re?sponses and diffusion[J].Phys D:Nonlinear Phenom,2004,196:172-192.
[18]FAN Meng,WANG Ke.Periodicity in a delayed ratio-dependent predator-prey system[J].J Math Anal Appl,2001,262:179-190.
[19]WANG Linlin,LI Wantong.Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predatorprey model with Holling type functional response[J].J Comput Appl Math,2004,162:341-357.
[20]GAINES R,MAWHIN J.Coincidence degree and nonlinear differential equations,Lecture notes in math[M].Berlin:Springer,1977.
Existence of Two Periodic Solutions for a Generalized Delayed Ratio-dependent Predator-prey Model with Holling Type III Functional Response
WU Shutao,LIANG Feng
(School of Mathematics and Computer,Anhui Normal University,241003,Wuhu,Anhui,China)
periodic solutions;Mawhin′s continuation theorem;delay;predator-prey model;ratio-dependent.
O 175
A
2095-0691(2016)04-0015-07
2016-04-11
安徽省自然科學基金項目(1308085MA08)
吳書韜(1991- ),男,安徽安慶人,碩士,研究方向:泛函微分方程.通信作者:梁峰(1974-),男,安徽太和人,博士,副教授,研究方向:微分方程理論及應用.
運用重合度拓展定理,證明其存在2個正周期解.并舉一個實例驗證結(jié)論的可行性.