胡俊茹 王國(guó)霞 孫育平 陳 冰
曹俊明1,2,3* 黃燕華1,2,3* 卓麗欣1,2,3
(1.廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所,廣州510640;2.廣東省動(dòng)物育種與營(yíng)養(yǎng)公共實(shí)驗(yàn)室,廣州510640;3.廣東省畜禽育種與營(yíng)養(yǎng)研究重點(diǎn)實(shí)驗(yàn)室,廣州510640)
?
飼料硒含量對(duì)黃顙魚幼魚生長(zhǎng)性能、抗氧化能力和脂肪代謝基因表達(dá)的影響
胡俊茹1,2,3王國(guó)霞1,2,3孫育平1,2,3陳 冰1,2,3
曹俊明1,2,3*黃燕華1,2,3*卓麗欣1,2,3
(1.廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所,廣州510640;2.廣東省動(dòng)物育種與營(yíng)養(yǎng)公共實(shí)驗(yàn)室,廣州510640;3.廣東省畜禽育種與營(yíng)養(yǎng)研究重點(diǎn)實(shí)驗(yàn)室,廣州510640)
本試驗(yàn)旨在研究飼料中硒含量對(duì)黃顙魚幼魚生長(zhǎng)性能、抗氧化能力和脂肪代謝基因表達(dá)的影響。選用初始體重為(2.12±0.01) g的黃顙魚幼魚450尾,隨機(jī)分為6組,每組設(shè)3個(gè)重復(fù),每個(gè)重復(fù)25尾幼魚,分別投喂硒含量<0.05(對(duì)照組)、0.15、0.23、0.35、0.47和0.96 mg/kg的6種等氮等脂試驗(yàn)飼料,飼養(yǎng)期為8周。結(jié)果顯示:黃顙魚的增重率隨著飼料硒含量的升高呈現(xiàn)先升高后降低的趨勢(shì),在飼料硒含量為0.23 mg/kg時(shí)達(dá)到最高,顯著高于對(duì)照組(P<0.05)。飼料系數(shù)的變化趨勢(shì)與增重率相反,在飼料硒含量為0.23 mg/kg時(shí)達(dá)到最低,顯著低于對(duì)照組(P<0.05)。存活率各組均為100%。全魚粗蛋白質(zhì)含量在飼料硒含量為0.35 mg/kg的組最高,顯著高于對(duì)照組和飼料硒含量為0.23 mg/kg的組(P<0.05)。對(duì)照組全魚粗脂肪含量顯著低于飼料硒含量為0.15、0.47和0.96 mg/kg的組(P<0.05),而對(duì)照組全魚水分含量則顯著高于飼料硒含量為0.15、0.35、0.47和0.96 mg/kg的組(P<0.05)。血漿膽固醇含量在飼料硒含量為0.23 mg/kg的組最低,顯著低于對(duì)照組(P<0.05)。全魚硒含量和肝臟谷胱甘肽過(guò)氧化物酶(GPx)活性隨著飼料硒含量的增加而升高,二者與飼料硒含量呈正劑量效應(yīng)關(guān)系。肝臟超氧化物歧化酶(SOD)活性隨著飼料硒含量由<0.05 mg/kg升高到0.47 mg/kg表現(xiàn)為先升高再降低,而后在飼料硒含量為0.96 mg/kg時(shí)又出現(xiàn)升高。對(duì)照組肝臟脂蛋白脂酶(LPL)和脂肪酸合成酶(FAS)mRNA的相對(duì)表達(dá)量顯著低于飼料硒含量為0.23 mg/kg的組(P<0.05)。以增重率為評(píng)價(jià)指標(biāo),通過(guò)非線性回歸分析計(jì)算出黃顙魚幼魚飼料中硒的適宜含量為0.20 mg/kg。
硒;黃顙魚幼魚;生長(zhǎng)性能;抗氧化能力;脂肪代謝基因表達(dá)
黃顙魚隸屬鯰形目鲿科黃顙魚屬,廣泛分布于我國(guó)內(nèi)陸各大水體,特別是長(zhǎng)江中下游的湖泊和水庫(kù),是我國(guó)重要的小型底層經(jīng)濟(jì)魚類,其肉質(zhì)鮮美、營(yíng)養(yǎng)豐富。近年來(lái),我國(guó)黃顙魚養(yǎng)殖發(fā)展非常迅速,尤其在南方養(yǎng)殖較為普遍,國(guó)內(nèi)外市場(chǎng)發(fā)展?jié)摿薮蟆D壳?,部分學(xué)者研究了銅、鐵、鋅、錳對(duì)黃顙魚生長(zhǎng)、生理功能的影響,然而關(guān)于硒的研究尚未見(jiàn)報(bào)道。為此,本試驗(yàn)以黃顙魚幼魚為研究對(duì)象,研究飼料中硒含量對(duì)黃顙魚幼魚生長(zhǎng)性能、抗氧化能力和脂肪代謝基因表達(dá)的影響,以便為硒在黃顙魚幼魚配合飼料中的合理應(yīng)用提供相應(yīng)的理論依據(jù)。
1.1 試驗(yàn)飼料
表1 基礎(chǔ)飼料組成及營(yíng)養(yǎng)水平(干物質(zhì)基礎(chǔ))
1)維生素預(yù)混料為每千克飼料提供Vitamin premix provided the following for per kg of the diet:VA 2 000 IU,VD3700 IU,VE 10 mg,VK32.5 mg,VB12.5 mg,VB25 mg,VB63 mg,VB120.01 mg,煙酰胺 niacin 17.5 mg,D-泛酸鈣D-calcium pantothenate 10 mg,葉酸 folic acid 0.8 mg,生物素 biotin 0.045 mg,肌醇 inositol 25 mg。
2)礦物質(zhì)預(yù)混料為每千克飼料提供Mineral premix provided the following for per kg of the diet:MgSO4·H2O 280 mg,CuSO4·5H2O 6 mg,F(xiàn)eSO4·H2O 30 mg,MnSO4·H2O 4.9 mg,F(xiàn)eSO4·H2O 30 mg,ZnSO4·H2O 86.95 mg,Ca(IO3)2(5%) 15 mg,CoSO4(5%) 3 mg。
1.2 試驗(yàn)魚與飼養(yǎng)管理
試驗(yàn)用黃顙魚幼魚購(gòu)于廣東省清遠(yuǎn)市黃沙漁業(yè)基地,購(gòu)回后暫養(yǎng)于廣東省農(nóng)業(yè)科學(xué)院動(dòng)物科學(xué)研究所水產(chǎn)研究室的室內(nèi)循環(huán)水養(yǎng)殖系統(tǒng)中,每天用商品飼料(粗蛋白質(zhì),42.24%;粗脂肪,7.06%;粗灰分,10.06%;水分,9.42%;硒,0.46 mg/kg)飽食投喂2次(09:00和16:00),馴養(yǎng)2周。養(yǎng)殖系統(tǒng)由18個(gè)容量為350 L的圓柱形玻璃纖維缸(直徑80 cm,高70 cm)組成,養(yǎng)殖實(shí)際水容量為300~320 L。試驗(yàn)開(kāi)始時(shí),挑選出體格健壯、大小均勻的平均體重為(2.12±0.01) g的黃顙魚幼魚450尾,分配于18個(gè)圓柱形玻璃纖維缸中,每缸放養(yǎng)25尾。將18個(gè)圓柱形玻璃纖維缸隨機(jī)分為6組(每組3個(gè)重復(fù)),分別投喂對(duì)應(yīng)的試驗(yàn)飼料,每天投喂2次(09:00和16:00),投飼量為體重的4%~6%,并根據(jù)攝食和生長(zhǎng)情況調(diào)節(jié)。每天記錄投飼量、死亡情況以及水溫。全天24 h不間斷曝氣,光照為自然光源,水溫26.0~32.0 ℃,pH 7.0~7.5,氨氮濃度<0.2 mg/L,水體未檢出硒。飼養(yǎng)期為8周。
1.3 樣品采集與分析
1.3.1 樣品采集
飼養(yǎng)試驗(yàn)結(jié)束時(shí),禁食24 h后計(jì)數(shù)、稱重。每缸隨機(jī)取6尾魚放于-20 ℃冰箱中保存,用于測(cè)定魚體組成和硒含量。每缸再隨機(jī)取10尾魚,使用濃度為60 mg/L的MS-222(蘇州信永生物醫(yī)藥技術(shù)有限公司)進(jìn)行麻醉,尾靜脈取血于抗凝管(BD公司)中混勻,于4 ℃下4 000 r/min離心10 min,制備血漿樣品,-78 ℃保存,用于血漿生化指標(biāo)測(cè)定。采血后的魚在冰盤上解剖取肝臟,將3尾魚的肝臟合并為1個(gè)樣品,迅速投入液氮中速凍,保存于-78 ℃冰箱用于肝臟脂蛋白脂酶(LPL)和脂肪酸合成酶(FAS)mRNA表達(dá)的分析,剩余魚的肝臟混合為1個(gè)樣品保存于-78 ℃冰箱用于肝臟GPx、超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量等抗氧化指標(biāo)測(cè)定。
1.3.2 樣品分析
飼料和全魚樣品中水分含量采用105 ℃常壓干燥法、粗蛋白質(zhì)含量采用凱氏定氮法、粗脂肪含量采用乙醚抽提法、粗灰分含量采用550 ℃灼燒法進(jìn)行測(cè)定。采用氫化物發(fā)生-原子吸收光譜法測(cè)定魚體硒含量。血漿葡萄糖(GLU)、總蛋白(TP)、膽固醇(CHO)和甘油三酯(TG)含量采用日立7170A全自動(dòng)生化分析儀進(jìn)行測(cè)定。肝臟MDA含量及GPx、SOD活性均采用市售的南京建成生物工程研究所的試劑盒測(cè)定,按照使用說(shuō)明進(jìn)行操作。
取出-78 ℃冰箱中保存的肝臟組織,在液氮中充分研磨成粉末狀后,取試劑盒說(shuō)明書按照建議用量加入裂解液,并按照TaKaRa RNA小量提取試劑盒操作步驟進(jìn)行總RNA的提取。采用實(shí)時(shí)熒光定量PCR測(cè)定黃顙魚幼魚肝臟中的LPL、FASmRNA的相對(duì)表達(dá)量,以β-肌動(dòng)蛋白(β-actin)為內(nèi)參基因。根據(jù)瓦氏黃顙魚LPL、FAScDNA序列利用Primer 5.0軟件設(shè)計(jì)實(shí)時(shí)熒光定量PCR的特異引物L(fēng)PL(EU882966.1)、FAS(JN579124.1)、β-actin(EU161066.1)(表2)。測(cè)定所使用的主要儀器為定量PCR儀器(Biorad CFX connect)和分光光度計(jì)(Thermo Scientific NanoDrop ND2000)。將2 μL模板cDNA、4 μL引物對(duì)混合液、4 μL ddH2O 和10 μL SYBR Green qPCR Kit (All-in-OneTMmiRNA qRT-PCR Detection Kit)構(gòu)成20 μL反應(yīng)體系。每個(gè)樣品做3個(gè)重復(fù),以不加模板的PCR樣品作為陰性對(duì)照。反應(yīng)循環(huán)參數(shù)為:95 ℃預(yù)變性12 min;95 ℃變性10 s,58 ℃退火10 s,72 ℃延伸10 s,40個(gè)循環(huán)。使用Option Monitor Software 2.03 version (MJ Research,Cambridge,MA)軟件分析熔解曲線,按照2-△△Ct法進(jìn)行表達(dá)量差異分析。
表2 本試驗(yàn)中實(shí)時(shí)熒光定量PCR使用的引物
1.4 指標(biāo)計(jì)算
增重率(weight gain rate,WGR,%)=
100×(終末體重+死亡體重-初始體重)/初始體重;
攝食率(feeding rate,F(xiàn)R,%)=100×
攝入飼料總量/{[(初始總體重+終末體重)/2]×投喂天數(shù)};
飼料系數(shù)(feed conversion ratio,FCR)=
攝入飼料總量/(終末體重+死亡體重-初始體重);
存活率(survival rate,SR,%)=100×終末尾數(shù)/初始尾數(shù)。
1.5 數(shù)據(jù)統(tǒng)計(jì)與分析
試驗(yàn)數(shù)據(jù)(存活率除外)用平均值±標(biāo)準(zhǔn)誤表示,采用SPSS 11.5軟件進(jìn)行統(tǒng)計(jì)分析。首先對(duì)數(shù)據(jù)進(jìn)行方差齊性檢驗(yàn),若滿足方差齊性則用單因素方差分析(one-way ANOVA)分析數(shù)據(jù),差異顯著者再用LSD檢驗(yàn)方法進(jìn)行多重比較,若不滿足方差齊性則采用Dunnett’s T3檢驗(yàn)法進(jìn)行多重比較。P<0.05表示差異顯著。
2.1 飼料硒含量對(duì)黃顙魚幼魚生長(zhǎng)性能的影響
由表3可知,投喂含硒飼料8周后,飼料硒含量為0.23 mg/kg的組黃顙魚幼魚的增重率達(dá)到最高,顯著高于對(duì)照組(P<0.05),飼料系數(shù)達(dá)到最低,顯著低于對(duì)照組(P<0.05)。攝食率以對(duì)照組最高,顯著高于飼料硒含量為0.15和0.23 mg/kg的組(P<0.05)。黃顙魚幼魚的存活率未受飼料中硒含量的顯著影響(P>0.05),各組均為100%。對(duì)增重率進(jìn)行非線性回歸分析[14],得出黃顙魚幼魚飼料中適宜的硒含量為0.20 mg/kg(圖1)。
表3 飼喂不同硒含量飼料的黃顙魚幼魚的增重率、攝食率、飼料系數(shù)和存活率
同列數(shù)據(jù)肩標(biāo)不同小寫字母表示差異顯著(P<0.05)。下表同。
Values in the same column with different small letter superscripts mean significant difference (P<0.05). The same as below.
圖1 飼料硒含量與黃顙魚幼魚增重率之間關(guān)系的非線性回歸分析
2.2 飼料硒含量對(duì)黃顙魚幼魚體組成的影響
由表4可知,投喂含硒飼料8周后,黃顙魚幼魚的全魚粗蛋白質(zhì)含量在飼料硒含量為0.35 mg/kg的組最高,顯著高于對(duì)照組和飼料硒含量為0.23 mg/kg的組(P<0.05)。對(duì)照組黃顙魚幼魚的全魚粗脂肪含量顯著低于飼料硒含量為0.15、0.47和0.96 mg/kg的組(P<0.05),而黃顙魚幼魚的全魚水分含量則表現(xiàn)為對(duì)照組高于其他各組,且與飼料硒含量為0.15、0.35、0.47和0.96 mg/kg的組差異達(dá)顯著水平(P<0.05)。黃顙魚幼魚全魚硒含量以飼料硒含量為0.96 mg/kg的組最高,顯著高于其他各組(P<0.05),以對(duì)照組最低,顯著低于除飼料硒含量為0.15 mg/kg的組外的其他各組(P<0.05)。
2.3 飼料硒含量對(duì)黃顙魚幼魚血漿生化指標(biāo)的影響
由表5可知,投喂含硒飼料8周后,飼料硒含量對(duì)黃顙魚幼魚血漿總蛋白、葡萄糖、甘油三酯含量均未產(chǎn)生顯著影響(P>0.05)。飼料硒含量為0.23 mg/kg時(shí),黃顙魚幼魚血漿膽固醇含量最低,顯著低于對(duì)照組(P<0.05)。
表4 飼喂不同硒含量飼料的黃顙魚幼魚的體組成
表5 飼喂不同硒含量飼料的黃顙魚幼魚的血漿生化指標(biāo)
2.4 飼料硒含量對(duì)黃顙魚幼魚肝臟抗氧化指標(biāo)的影響
由表6可知,投喂含硒飼料8周后,肝臟GPx活性隨著飼料硒含量的升高而升高,飼料硒含量為0.96mg/kg的組顯著高于其他各組(P<
0.05)。肝臟SOD活性隨著飼料硒含量的升高先升高再降低再升高,在飼料硒含量為0.96 mg/kg的組有最高值,并顯著高于其他各組(P<0.05)。各組間肝臟MDA含量差異不顯著(P>0.05)。
表6 飼喂不同硒含量飼料的黃顙魚幼魚的肝臟抗氧化指標(biāo)
2.5 飼料硒含量對(duì)黃顙魚幼魚肝臟LPL和FASmRNA表達(dá)的影響
由表7可知,投喂含硒飼料8周后,黃顙魚幼魚肝臟LPLmRNA相對(duì)表達(dá)量在飼料硒含量為0.23 mg/kg時(shí)達(dá)到最高,與對(duì)照組有顯著差異(P<0.05),然后隨著飼料硒含量繼續(xù)升高出現(xiàn)降低,但在飼料硒含量為0.93 mg/kg時(shí)又出現(xiàn)升高。黃顙魚幼魚肝臟FASmRNA相對(duì)表達(dá)量與LPLmRNA相對(duì)表達(dá)量具有相似的變化趨勢(shì),對(duì)照組FASmRNA的相對(duì)表達(dá)量最低,顯著低于除飼料硒含量為0.47 mg/kg的組外的其他各組(P<0.05)。
表7 飼喂不同硒含量飼料的黃顙魚幼魚的肝臟LPL和FAS mRNA相對(duì)表達(dá)量
3.1 飼料硒含量對(duì)黃顙魚幼魚生長(zhǎng)性能的影響
3.2 飼料硒含量對(duì)黃顙魚幼魚體組成的影響
魚體粗蛋白質(zhì)、粗脂肪、粗灰分、水分是魚類營(yíng)養(yǎng)學(xué)研究中評(píng)價(jià)魚體營(yíng)養(yǎng)狀況的重要研究?jī)?nèi)容[16],魚體水分含量與魚體粗蛋白質(zhì)、粗脂肪以及能量含量間存在負(fù)相關(guān)性,魚體水分含量能夠很好地反映魚體粗蛋白質(zhì)和粗脂肪含量的相對(duì)變化[17]。由本試驗(yàn)結(jié)果可知,飼料硒含量影響了黃顙魚幼魚的體組成,對(duì)照組黃顙魚幼魚的全魚粗脂肪含量最低,并顯著低于硒含量為0.15、0.47和0.96 mg/kg的組,并且全魚粗脂肪含隨著飼料硒含量的升高基本呈現(xiàn)升高的趨勢(shì),而全魚水分含量則隨著硒含量的升高基本呈降低趨勢(shì),這一變化趨勢(shì)與Jonsson等[17]的研究得出的趨勢(shì)相吻合。因此,硒缺乏導(dǎo)致黃顙魚幼魚體脂肪沉積減少,高硒導(dǎo)致體脂肪沉積增加,硒在一定程度上對(duì)黃顙魚幼魚體脂肪的代謝產(chǎn)生了影響。同樣,在大口黑鱸中的研究發(fā)現(xiàn),飼料中高含量的硒使肝臟脂肪含量升高,對(duì)肝臟脂質(zhì)代謝產(chǎn)生了影響[11]。在哺乳動(dòng)物中,硒能夠使大鼠體脂肪含量增加,硒缺乏降低大鼠5′-脫碘酶(5′-DIO)活性,破壞動(dòng)物棕色脂肪的非寒顫性產(chǎn)熱功能[18]。然而,在白鱘幼魚[12]和綠鱘幼魚[19]中,隨著飼料硒含量的升高魚體粗脂肪、能量含量顯著降低,水分含量顯著升高;在革胡子鯰中,飼料中高含量的硒也使魚體粗脂肪含量降低[10]。De Riu等[19]認(rèn)為硒的毒性使鱘魚通過(guò)脂肪和蛋白質(zhì)的消耗以補(bǔ)充能量的消耗。另外,試驗(yàn)動(dòng)物的種類、試驗(yàn)動(dòng)物初始階段的生長(zhǎng)速度也是影響脂肪沉積的因素。到目前為止,高硒降低機(jī)體脂肪含量的機(jī)制仍然不清楚,但可以肯定的是,硒對(duì)調(diào)節(jié)動(dòng)物脂肪代謝具有重要的作用,缺硒或高硒影響了體脂肪的沉積。
3.3 飼料硒含量對(duì)黃顙魚幼魚血漿生化指標(biāo)的影響
溫度、光照、飼養(yǎng)密度、鹽度等環(huán)境因素,生殖周期、年齡、性別、營(yíng)養(yǎng)等生理因素,以及馴養(yǎng)等級(jí)等社會(huì)因素都會(huì)對(duì)魚類的血液指標(biāo)產(chǎn)生影響,血液生化指標(biāo)能夠作為一種比較敏感的方法監(jiān)測(cè)由養(yǎng)殖環(huán)境產(chǎn)生的應(yīng)激[20],血液中總蛋白、葡萄糖、膽固醇、甘油三酯的含量能夠很好地反映動(dòng)物的營(yíng)養(yǎng)健康狀況。蛋白質(zhì)代謝、碳水化合物代謝以及脂肪代謝等活動(dòng)異常通常會(huì)引起血液中總蛋白和膽固醇含量的變化[21],因此膽固醇常被用于檢測(cè)由脂肪代謝紊亂產(chǎn)生相關(guān)疾病[22]。研究發(fā)現(xiàn),缺硒導(dǎo)致大鼠DIO活性下降[23],最終引起血漿低密度脂蛋白膽固醇(LDL-C)含量異常升高,這與本研究中發(fā)現(xiàn)的對(duì)照組(缺硒組)黃顙魚幼魚血漿膽固醇含量高于其他組的結(jié)果一致。研究發(fā)現(xiàn),載脂蛋白(Apo)B能介導(dǎo)低密度脂蛋白(LDL)與LDL受體(LDL-R)的結(jié)合,因而具有清除血液循環(huán)中LDL-C的作用。T3則參與促進(jìn)LDL-R[24]和ApoB的表達(dá)[25],但T3需要DIO催化T4脫碘而成,缺硒導(dǎo)致DIO活性下降[23],最終引起血漿LDL-C含量異常升高。也有研究認(rèn)為,缺硒導(dǎo)致血漿中膽固醇升高的原因可能與動(dòng)物本身抗氧化能力降低,大量的自由基氧化攻擊使得血漿中葡萄糖和膽固醇的含量升高有關(guān)[26]。
3.4 飼料硒含量對(duì)黃顙魚幼魚肝臟抗氧化指標(biāo)的影響
3.5 飼料硒含量對(duì)黃顙魚幼魚肝臟LPL和FASmRNA表達(dá)的影響
LPL是動(dòng)物組織中脂肪沉積的關(guān)鍵酶,是甘油三酯降解為甘油和游離脂肪酸(FFA)反應(yīng)的限速酶,在脂質(zhì)代謝和轉(zhuǎn)運(yùn)過(guò)程中起著重要作用。LPL通過(guò)控制其在脂肪組織與其他組織器官表達(dá)量的高低直接決定脂肪組織與其他組織器官脂質(zhì)底物配額的相對(duì)量,從而間接決定從食物中攝入脂類的代謝前途:以體脂形式貯備起來(lái)或作為能源底物消耗掉,并最終對(duì)機(jī)體脂肪蓄積狀況產(chǎn)生決定性影響[37]。FAS能夠催化乙酰輔酶A和丙二酸單酰輔酶A合成軟脂酸(C16∶0),F(xiàn)AS的多少和活性的高低對(duì)動(dòng)物體脂沉積具有重要意義,從而在動(dòng)物體脂沉積中發(fā)揮重要作用。迄今未止,關(guān)于硒調(diào)控脂肪代謝相關(guān)基因表達(dá)的報(bào)道較少,僅見(jiàn)梁楊[38]在雞脂肪組織中開(kāi)展了此方面研究,他發(fā)現(xiàn)缺硒對(duì)脂肪組織中LPLmRNA的表達(dá)具有促進(jìn)作用,即缺硒通過(guò)促進(jìn)LPL的表達(dá)促進(jìn)脂肪組織中脂肪酸的攝取,增加脂肪組織形成。而在本試驗(yàn)中,對(duì)照組(缺硒組)黃顙魚幼魚肝臟LPL和FASmRNA的相對(duì)表達(dá)量較低,這與本試驗(yàn)所得的對(duì)照組黃顙魚幼魚的全魚粗脂肪含量較低的結(jié)果具有一致性,同時(shí)結(jié)合黃顙魚幼魚血漿膽固醇含量偏高這一現(xiàn)象,我們認(rèn)為這可能是由于缺硒影響胰島素信號(hào)級(jí)聯(lián)因子的激活狀態(tài),從而可能模仿、增強(qiáng)或干擾胰島素對(duì)碳水化合物和脂肪代謝的調(diào)控[38],進(jìn)而影響了LPL和FASmRNA的表達(dá),最終影響黃顙魚幼魚體脂肪的沉積。目前,硒調(diào)控動(dòng)物脂肪代謝屬于一個(gè)全新的研究領(lǐng)域,研究資料不多,因此,關(guān)于此方面作用機(jī)理的揭示尚有待深入研究。
飼料中添加一定水平的硒能夠提高黃顙魚幼魚的增重率,降低飼料系數(shù)和血漿膽固醇含量,提高魚體粗蛋白質(zhì)、粗脂肪含量,肝臟抗氧化能力及LPL、FASmRNA的相對(duì)表達(dá)量。以增重率為評(píng)價(jià)指標(biāo),通過(guò)非線性回歸分析計(jì)算出黃顙魚幼魚飼料中硒的適宜含量為0.20 mg/kg。
[1] HILTON J W,HODSON P V,SLINGER S J.The requirement and toxicity of selenium in rainbow trout (Salmogairdneri)[J].The Journal of Nutrition,1980,110(12):2527-2535.
[2] GATLIN III D M,WILSON R P.Dietary selenium requirement of fingerling channel catfish[J].Journal of Nutrition,1984,114(3):627-633.
[3] 曹娟娟,張文兵,徐瑋,等.大黃魚幼魚對(duì)飼料硒的需求量[J].水生生物學(xué)報(bào),2015,39(2):241-249.
[4] LIN Y H,SHIAU S Y.Dietary selenium requirements of juvenile grouper,Epinephelusmalabaricus[J].Aquaculture,2005,250(1/2):356-363.
[5] LIU K,WANG X J,AI Q H,et al.Dietary selenium requirement for juvenile cobia,RachycentroncanadumL.[J].Aquaculture Research,2010,41(10):e594-e601.
[6] 梁萌青,王家林,常青,等.飼料中硒的添加水平對(duì)鱸魚生長(zhǎng)性能及相關(guān)酶活性的影響[J].中國(guó)水產(chǎn)科學(xué),2006,13(6):1017-1022.
[7] 金明昌.幼鯉硒缺乏癥及其機(jī)制和硒需要量研究[D].博士學(xué)位論文.成都:四川農(nóng)業(yè)大學(xué),2007.
[8] WANG W F,MAI K S,ZHANG W B,et al.Dietary selenium requirement and its toxicity in juvenile abaloneHaliotisdiscushannaiIno[J].Aquaculture,2012,330-333:42-46.
[9] 田文靜.飼料中添加硒和鎂對(duì)中華絨螯蟹幼蟹生長(zhǎng)、抗氧化性能的影響[D].碩士學(xué)位論文.上海:華東師范大學(xué),2014.
[10] ABDEL-TAWWAB M,MOUSA M A A,ABBASS F E.Growth performance and physiological response of African catfish,Clariasgariepinus(B.) fed organic selenium prior to the exposure to environmental copper toxicity[J].Aquaculture,2007,272(1/2/3/4):335-345.
[11] ZHU Y,CHEN Y J,LIU Y J,et al.Effect of dietary selenium level on growth performance,body composition and hepatic glutathione peroxidase activities of largemouth bassMicropterussalmoide[J].Aquaculture Research,2012,43(11):1660-1668.
[12] TASHJIAN D H,TEH S J,SOGOMONYAN A,et al.Bioaccumulation and chronic toxicity of dietaryL-selenomethionine in juvenile white sturgeon (Acipensertransmontanus)[J].Aquatic Toxicology,2006,79(4):401-409.
[13] ASHOURI S,KEYVANSHOKOOH S,SALTAT A P,et al.Effects of different levels of dietary selenium nanoparticles on growth performance,muscle composition,blood biochemical profiles and antioxidant status of common carp (Cyprinuscarpio)[J].Aquaculture,2015,446:25-29.
[14] FORSTER I,OGATA H Y.Lysine requirement of juvenile Japanese flounderParalichthysolivaceusand juvenile red sea breamPagrusmajor[J].Aquaculture,1998,161(1/2/3/4):131-142.
[15] 蘇傳福.草魚幼魚硒的營(yíng)養(yǎng)需要研究[D].碩士學(xué)位論文.重慶:西南大學(xué),2008.
[16] 王安利,王維娜,劉存岐,等.飼料中硒含量對(duì)中國(guó)對(duì)蝦生長(zhǎng)及其體內(nèi)含量的影響[J].水產(chǎn)學(xué)報(bào),1994,18(3):245-248.
[17] JONSSON N,JONSSON B.Body composition and energy allocation in life-history stages of brown trout[J].Journal of Fish Biology,1998,53(6):1306-1316.
[18] 咼于明,ARTHUR J R,周毓平.硒缺乏破壞動(dòng)物褐脂肪的非寒顫性產(chǎn)熱功能[J].畜牧獸醫(yī)學(xué)報(bào),1994,25(3):201-205.
[19] DE RIU N,LEE J W,HUANG S S Y,et al.Effect of dietary selenomethionine on growth performance,tissue burden,and histopathology in green and white sturgeon[J].Aquatic Toxicology,2014,148:65-73.
[20] CHEN C Y,WOOSTE G A,GETCHELL R G,et al.Blood chemistry of healthy,nephrocalcinosis-affected and ozone-treated tilapia in a recirculation system,with application of discriminant analysis[J].Aquaculture,2003,218(1/2/3/4):89-102.
[21] ANDENEN D E,REID S D,MOON T W,et al.Metabolic effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchusmykiss)[J].Canadian Journal of Fisheries and Aquatic Sciences,1991,48(9):1811-1817.
[22] JOHN P J.Alteration of certain blood parameters of freshwater teleostMystusvittatusafter chronic exposure to metasystox and sevin[J].Fish Physiology and Biochemistry,2007,33(1):15-20.
[23] DHINGRA S,SINGH U,BANSAL M P.Effect of selenium depletion and supplementation on the kinetics of type Ⅰ 5′-iodothyronine deiodinase and T3/T4in rats[J].Biological Trace Element Research,2004,97(1):95-104.
[24] NESS G C,LOPEZ D,CHAMBERS C M,et al.Effects ofL-triiodothyronine and the thyromimeticL-94901 on serum lipoprotein levels and hepatic low-density lipoprotein receptor,3-hydroxy-3-methylglutaryl coenzyme A reductase,and apo A-Ⅰ gene expression[J].Biochemical Pharmacology,1998,56(1):121-129.
[25] MUKHOPADHYAY D,PLATEROTI M,ANANT S,et al.Thyroid hormone regulates hepatic triglyceride mobilization and apolipoprotein B messenger ribonucleic acid editing in a murine model of congenital hypothyroidism[J].Endocrinology,2003,144(2):711-719.
[26] LE K T,FOTEDAR R.Immune responses toVibrioanguillarumin yellowtail kingfish,Seriolalalandi,fed selenium supplementation[J].Journal of the Word Aquaculture Society,2014,45(2):138-148.
[27] KIM J H,KANG J C.The selenium accumulation and its effect on growth,and haematological parameters in red sea bream,Pagrusmajor,exposed to water borne selenium[J].Ecotoxicology and Environmental Safety,2014,104:96-102.
[28] PACINI N,ELIA A C,ABETE M C,et al.Antioxidant response versus selenium accumulation in the liver and kidney of the Siberian sturgeon (Acipenserbaeri)[J].Chemosphere,2013,93(10):2405-2412.
[29] RIDER S A,DAVIES S J,JHA A N,et al.Supra-nutritional dietary intake of selenite and selenium yeast in normal and stressed rainbow trout (Oncorhynchusmykiss):implications on selenium status and health responses[J].Aquaculture,2009,295(3/4):282-291.
[30] GERBHART R.Oxidative stress,plant-derived antioxidants and liver fibrosis[J].Planta Medica,2002,68(4):289-296.
[31] WINSTON G W,DI GIULIO R T.Prooxidant and antioxidant mechanisms in aquatic organisms[J].Aquatic Toxicology,1991,19(2):137-161.
[32] LORENTZEN M,MAAGE A,JULSHAMN K.Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selenium concentrations[J].Aquaculture Nutrition,1998,4(1):67-72.
[33] WATANABE T,KIRON V,SATOH S.Trace minerals in fish nutrition[J].Aquaculture,1997,151(1/2/3/4):185-207.
[34] ESTERBAUER H,SCHAUR R J,ZOLLNER H.Chemistry and biochemistry of 4-hydroxynonenal,malonaldehyde and related aldehydes[J].Free Radical Biology and Medicine,1991,11(1):81-128.
[35] ORUN I,ATES B,SELAMOGLU Z,et al.Effects of various sodium selenite concentrations on some biochemical and hematological parameters of rainbow trout (Oncorhynchusmykiss)[J].Fresenius Environmental Bulletin,2005,14(1):18-22.
[36] Kü?üKBAY F Z,YAZLAK H,KARACA I,et al.The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchusmykiss) under crowding conditions[J].Aquaculture Nutrition,2009,15(6):569-576.
[37] ZECHNER R.The tissue-specific expression of lipoprotein lipase:implications for energy and lipoprotein metabolism[J].Current Opinion Lipidology,1997,8(2):77-88.
[38] 梁楊.低硒對(duì)雞脂肪組織中脂肪代謝與硒蛋白表達(dá)的影響[D].碩士學(xué)位論文.哈爾濱:東北農(nóng)業(yè)大學(xué),2014.
*Corresponding authors: CAO Junming, professor, E-mail: junmcao@163.com; HUANG Yanhua, professor, E-mail: huangyh111@ 126.com
(責(zé)任編輯 菅景穎)
Effects of Dietary Selenium Content on Growth Performance, Antioxidant Capacity and Lipid Metabolism Gene Expression of Juvenile Yellow Catfish (Pelteobagrusfulvidraco)
HU Junru1,2,3WANG Guoxia1,2,3SUN Yuping1,2,3CHEN Bing1,2,3CAO Junming1,2,3*HUANG Yanhua1,2,3*ZHUO Lixin1,2,3
(1.InstituteofAnimalScience,GuangdongAcademyofAgriculturalSciences,Guangzhou510640,China; 2.GuangdongPublicLaboratoryofAnimalBreedingandNutrition,Guangzhou510640,China; 3.GuangdongKeyLaboratoryofAnimalBreedingandNutrition,Guangzhou510640,China)
This experiment was conducted to investigate the effects of dietary selenium content on growth performance, antioxidant capacity and lipid metabolism gene expression of juvenile yellow catfish (Pelteobagrusfulvidraco). A total of 450 juvenile yellow catfish with the initial body weight of (2.12±0.01) g were randomly divided into 6 groups with 3 replicates per group and 20 fish per replicate. The fish in those groups were fed 6 isonitrogenous and isolipid experimental diets containing <0.05 (control group), 0.15, 0.23, 0.35, 0.47 and 0.96 mg/kg selenium for 8 weeks, respectively. The results showed as follows: the weight gain rate (WGR) increased firstly and decreased subsequently with dietary selenium content increasing, and the highest value appeared at the 0.23 mg/kg selenium group, which was significantly higher than that in control group (P<0.05). The feed conversion rate (FCR) exhibited an opposite trend to the WGR, and the 0.23 mg/kg selenium group had the lowest value, which was significantly lower than that in control group (P<0.05). The survival ratio in all groups was 100%. The highest whole body crude protein content was found in the 0.35 mg/kg selenium group, which was significantly higher than that in control group and 0.23 mg/kg selenium group (P<0.05). The whole body crude lipid content in control group was significantly lower than that in 0.15, 0.47 and 0.96 mg/kg selenium groups (P<0.05), but the whole body moisture content in control group was significantly higher than that in 0.15, 0.35, 0.47 and 0.96 mg/kg selenium groups (P<0.05). The plasma cholesterol (CHO) content in 0.23 mg/kg selenium group was the lowest, and was significantly lower than that in control group (P<0.05). The whole body selenium content and liver glutathione peroxidase (GPx) activity were enhanced with dietary selenium content increasing, and presented a dose-response relationship. The liver superoxide dismutase (SOD) activity was firstly increased and then decreased with dietary selenium content increased from <0.05 to 0.47 mg/kg, and then was increased again when dietary selenium content was 0.96 mg/kg. The relative expression levels of lipoprotein lipase (LPL) and lipoprotein lipase (FAS) mRNA in control group were significantly lower than those in 0.23 mg/kg selenium group (P<0.05). Using WGR as the evaluation index, the suitable dietary selenium content of juvenile yellow catfish is estimated to be 0.20 mg/kg by nonlinear regression analysis.[ChineseJournalofAnimalNutrition, 2016, 28(12):3925-3934]
selenium; juvenile yellow catfish; growth performance; antioxidant capacity; lipid metabolism gene expression
10.3969/j.issn.1006-267x.2016.12.026
2016-06-24
2011年廣東省農(nóng)業(yè)科技項(xiàng)目(高生物量富硒酵母的制備及其在養(yǎng)殖中的應(yīng)用)
胡俊茹(1979—),女,河北唐山人,助理研究員,博士,從事水產(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料研究。E-mail: hujunru1025@163.com
*通信作者:曹俊明,研究員,博士生導(dǎo)師,E-mail: junmcao@163.com;黃燕華,研究員,碩士生導(dǎo)師,E-mail: huangyh111@126.com
S963
A
1006-267X(2016)12-3925-10