劉 波 顧力強 鄒振浩 徐煒卿 張勁松
(上海交通大學機械與動力工程學院, 上海 200240)
?
基于多體動力學的整車臺階路況通過性動態(tài)仿真研究
劉 波 顧力強 鄒振浩 徐煒卿 張勁松
(上海交通大學機械與動力工程學院, 上海 200240)
基于多體動力學原理,利用ADAMS軟件建立了某轎車的多體動力學模型及四種不同高度臺階路面模型。依據(jù)實車臺階路況通過性試驗工況,對整車多體動力學模型進行了臺階路況通過性仿真并獲取了車身底部標記點與路面的干涉情況。本文對實車通過臺階路面時車身底部標記點和臺階的干涉情況與仿真結果進行了對比。對比結果表明,基于多體動力學的整車臺階路況通過性動態(tài)仿真結果具有較高的準確度。
多體動力學 整車模型 臺階路況 動態(tài)仿真 道路通過性
汽車通過性是指汽車在一定載荷作用下能以足夠高的平均速度通過各種壞路和無路地帶(如松軟地面、凹凸不平地面等)及各種障礙(如陡坡、側坡、壕溝、臺階、灌木叢、水障等)的能力[1]。我國是一個幅員遼闊的國家,汽車總量以及道路總里程均排名世界第一,但是道路質量狀況卻不容樂觀。2014年全國道路總里程達到446.39萬公里,但是未鋪裝路面以及簡易鋪裝路面占到了總里程的百分之四十六左右[2]。由于道路質量參差不齊以及整體質量不佳,在一些壞的路段以及道路拼接處經(jīng)常會形成一些臺階,壕溝等障礙。這些復雜的道路狀況無疑給汽車的行駛及汽車的通過性帶來了一定的困難。汽車在通過這些典型特殊路況時,不僅帶來了車內人員舒適性的問題而且路面與車身底部的干涉會造成汽車底部零部件的損壞。
多體系統(tǒng)是指由多個物體通過運動副連接的復雜機械系統(tǒng),其根本目的是應用計算機技術進行復雜機械系統(tǒng)的動力學分析與仿真。隨著計算機技術的不斷發(fā)展,以多體系統(tǒng)動力學為基礎的機械系統(tǒng)動力學分析與仿真不斷趨于成熟[3]其中最為著名的是美國MSC.software公司旗下的ADAMS動力學分析軟件和DADS軟件。
本文通過ADAMS多體動力學軟件,基于某款車型建立了整車多體動力學模型,并根據(jù)某試車場內的臺階路況建立了臺階路面模型。依據(jù)實車臺階通過性試驗工況參數(shù),對所建模型進行了通過性動態(tài)仿真研究。通過實車臺階通過性試驗,對仿真結果進行了驗證。
MSC/ADAMS是目前世界上應用范圍最廣、應用行業(yè)最多的機械系統(tǒng)動力學仿真工具之一。它采用笛卡爾坐標和歐拉角作為廣義坐標,并引入拉格朗日乘子λ,利用拉格朗日第一方程建立動力學方程[4]:
(1)
式中T為系統(tǒng)動能;q為系統(tǒng)廣義坐標向量;Q為系統(tǒng)廣義力列向量;λ為對應于約束的拉式乘子列向量。ADAMS采用SI1,SI2和SI3等積分格式進行積分求解。本文依據(jù)國內某企業(yè)某款車型通過Adams/car模塊進行整車多體動力學建模與仿真研究。
1.1 汽車前懸架建模
該車型汽車前懸架結構為麥弗遜懸架,根據(jù)該懸架結構特點對其進行簡化,并通過實測獲得該車前懸架相關硬點坐標。根據(jù)測得的相應的硬點坐標,在Adams/car中建立對應的前懸架模板模型并添加相應的約束條件以及對相關部件如彈簧、減震器、襯套等添加相應的屬性文件(其屬性文件根據(jù)實際部件的相關特性建立)。建立該車型前懸架簡化結構以及Adams/car中所建立的前懸架模型如圖1所示。
1.2 汽車后懸架建模
后懸架結構為扭力梁懸架。根據(jù)扭力梁懸架結構特點,首先對其進行簡化。由于扭力梁中橫梁部件是承受后橋彎曲與扭轉的主要部件,橫梁依靠自身的扭曲變形產(chǎn)生的力和力矩來平衡后橋的彎曲與扭轉。故在模型中,不能純粹的把橫梁當作剛性部件,而是需要將其轉化成柔性體部件。本文將橫梁轉化為柔性體部件的步驟為:1、將CATIA中的橫量模型進行結構簡化;2、將簡化后的模型導入的ANSA軟件中,并進行幾何修剪、中面抽取、網(wǎng)格劃分、材料及相關屬性賦值和RBE2連接點的設置等;3、將ANSA中處理完后的模型以.bdf格式的文件導出并修改頭文件,然后再導入到Nastran求解器中生成柔性體.mnf文件。在Adams/car中通過相關硬點建立對應的剛體部件、柔性體部件以及添加對應的約束和屬性文件,完成后懸架扭力梁結構模型的建立。后懸架模型簡化結構以及對應模型如圖2所示:
圖1 汽車前懸架簡化結構及Adams/car前懸架模型Fig.1 Vehicle front suspension simplified structure and Adams/car front suspension model
圖2 汽車后懸架簡化結構及Adams/car后懸架模型Fig.2 Vehicle rear suspension simplified structure and Adams/car rear suspension model
1.3 前穩(wěn)定桿建模
橫向穩(wěn)定桿是汽車懸架中的一種輔助彈性元件。其兩端連接左右車輪,當車身發(fā)生側傾、左右懸架跳動不一致時,穩(wěn)定桿扭曲,利用穩(wěn)定桿扭曲產(chǎn)生的彈力來抑制單邊懸架的跳動,盡量使車身保持平衡,通過減小車身的橫向傾斜和橫向角振動,從而改善舒適平順性[5]。本文通過Adams/car中Nonlinear Beam部件來建立穩(wěn)定桿模型。該Nolinear Beam力學模型考慮了剪應力和轉動慣量,求解精度高[6]。應用該模塊建立的橫向穩(wěn)定桿具有柔性體特性,可以提高動力學模型的仿真精度[7]。本文參考Nolinear Beam的建立方法,首先通過在catia模型中獲得穩(wěn)定桿各節(jié)點坐標值,然后再Adams中利用測得的節(jié)點建立Nolinear Beam部件,再建立與懸架連接的拉桿模型以及添加相應的約束、安裝部件和輸入輸出通訊器完成穩(wěn)定桿模型的建立。建立的前穩(wěn)定桿模型如圖3所示:
圖3 汽車前穩(wěn)定桿模型Fig.3 Vehicle front stabilizer bar model
1.4 輪胎模型
輪胎是汽車的重要部件,它的結構參數(shù)和力學特性決定著汽車的主要行駛性能。輪胎所受的垂直力、縱向力、側向力和回正力矩對汽車的平順性、操縱穩(wěn)定性和安全性起重要作用。輪胎模型對車輛動力學仿真技術的發(fā)展及仿真計算結果有很大的影響。因此,選用輪胎模型至關重要。
Ftire輪胎模型是由德國Esslingen大學Michael Gipser教授領導的小組開發(fā)的一種基于柔性環(huán)的模型,其本質上是一個物理模型。由于Ftire輪胎模型具有非常高的非線性特性、動態(tài)特性以及復雜的力學特性,在相同的激勵下更能準確的反應實際輪胎的相關特性[8]。因此,本文選用Ftire輪胎模型,并基于cosin Ftire/tools建立輪胎模型[9]。
1.5 發(fā)動機建模
由于臺階路況通過性仿真只需要勻速情況下考察汽車通過臺階路況時車身底部與路面的干涉情況。因此本文將發(fā)動機模型簡化成一個簡單剛體利用MAP圖控制動力輸出。通過獲取發(fā)動機相關硬點坐標,建立相關部件以及添加相關約束、屬性文件并匹配輸入輸出通信器等建立發(fā)動機模型。
1.6 車身建模
為了簡化車身模型,本文將車身通過一個質量快的方式來替代。為了獲取車身底部與路面的干涉情況,在車身底部與實車對應的標記點位置處建立了相應Mark點。車身質量塊的重量以及重心位置點通過實際測量來獲得。車身底部位置標記點由實車底部相關位置點通過三坐標測量儀來確定坐標。仿真時通過相關位置點在垂直方向上的位移量來確定車身底部與臺階路面的干涉情況。
1.7 轉向系統(tǒng)建模
由于臺階況的仿真不涉及車輛的轉向,所以該模型采用Adams/car中自帶的轉向系統(tǒng)通過修改相關硬點使得與實車匹配來獲得。
1.8 整車模型裝配
將所建立的Template模型在Adams/stand模式下生成對應的子系統(tǒng)。根據(jù)實車參數(shù)對各子系統(tǒng)的重量信息以及相關屬性進行修正匹配。通過將生成的懸架子系統(tǒng)、穩(wěn)定桿子系統(tǒng)、輪胎子系統(tǒng)、發(fā)動機子系統(tǒng)、轉向機構子系統(tǒng)以及車身子系統(tǒng)等組裝成整車模型。圖4為整車模型。
圖4 整車模型Fig.4 Vehicle model
Adams/car中路面模型有2D路面模型和3D路面模型兩種。本文以某試車場臺階路面為依據(jù),通過對臺階路面的實際測量,獲取了路面的相關參數(shù)。以Adams/car自帶的路面建模工具,采用3D樣條曲線的建模方式建立了臺階路面模型。該臺階路面包括80、100、120、140mm四種不同高度類型。其中100mm高度臺階路面模型如圖5所示:
本文實車通過性試驗是在某汽車企業(yè)試車場進行,分別以80、100、120及140mm四種不同高度的臺階路進行試驗。為了使仿真模型與實車模型相匹配,試驗前測量整車前后軸重量信息以及重心位置。為了獲得整車通過臺階時路面與車身底部的干涉情況,本文在試驗車車身底部選取10個標記點,并通過三坐標儀獲得標記點在車身坐標系下的坐標以及在靜平衡狀態(tài)下測取標記點離地高度如表1所示。表2為測得的整車相關信息參數(shù)。通過在10個標記點處固定一定長度直徑為2mm的鋁絲,當整車通過臺階時,通過測得鋁絲的變形情況可以間接反應車身與路面的干涉情況(包括干涉部位以及干涉量)。10個標記點及鋁絲固定方式如圖6所示:
圖6 整車底部標記點位置Fig.6 Bottom mark position of vehicle
表1 標記點位置坐標及靜平衡狀態(tài)下離地高度Table 1 The position coordinates of the marking point and the height of the ground in the static equilibrium state
表2 整車相關參數(shù)Table 2 Vehicle related parameters
實車臺階通過性試驗是以整車分別以足夠低的速度(小于5km/h)正向上臺階以及反向下臺階來進行測試,臺階高度分別為80、100、120、140mm。每次上臺階或下臺階后,分別測取以及記錄鋁絲的變形量(鋁絲與路面的干涉量)并對鋁絲長度進行修正,由于臺階試驗干涉情況發(fā)生在下臺階的情形,所以本文只進行整車下臺階仿真。實車試驗結果如表3所示:
表3 整車通過性試驗結果Table 3 Full Vehicle Trafficability results
從表2中可以看出,當臺階高度為80mm左右時,第一排的鋁絲與路面有稍微的干涉,其余部位沒有發(fā)生干涉。當臺階高度為100mm左右時,前排三個標記點與路面完全干涉,其余標記點沒有干涉。當臺階高度為120mm時,前排標記點與路面完全干涉,第三排6號標記點與路面稍微發(fā)生干涉。其余部位沒有發(fā)生干涉。當臺階高度為140mm時,前排標記點與路面完全干涉,第三排6號、7號標記點與路面有稍微干涉,其余標記點沒有干涉。
4.1 靜平衡分析
為了提高模型的仿真精度,整車動態(tài)仿真之前,需要對所建的整車模型進行靜平衡分析。為了對比驗證整車仿真與實車試驗結果,在整車模型的車身底部與實車標記點相同位置建立10Mark標記點。為了匹配整車模型與實車靜止于路面狀態(tài)下前后輪及前后彈簧的受力以及各標記點的離地高度,需要對模型的質量、重心以及彈簧的初始安裝長度進行校正。使得各標記點的離地高度與實車參數(shù)基本一致。經(jīng)過相關參數(shù)校正,靜平衡狀態(tài)下實車與整車模型標記點離地高度如表4所示:
表4 靜平衡實車與模型標記點離地高度Table 4 Static equilibrium real vehicle and model mark point
4.2 整車模型臺階通過性動態(tài)性
當整車模型與實車靜平衡相關參數(shù)匹配完成后,進行整車模型臺階路況通過性動態(tài)仿真。仿真之前需要對求解器進行相關的設置,如仿真精度、最大迭代次數(shù)以及相關算法。由于實車通過性試驗上臺階時車身底部與路面沒有發(fā)生干涉,所以本文只選取整車后退下臺階進行仿真。整車后退下臺階仿真通過Adams/car整車仿真下的event builder來實現(xiàn)。求解器及下臺階仿真相關設置如圖7所示,圖8為下臺階仿真圖。
圖7 求解器參數(shù)設置以及下臺階參數(shù)仿真設置Fig.7 Solver parameter settings and the simulation setup of the lower step parameters of the vehicle
圖8 整車后退下臺階仿真Fig.8 Back step simulation of vehicle
仿真完成后,通過ADAMS/Post Processing模塊獲取車身底部10個標記點在Z軸方向的位移曲線圖。并將路面曲線導入到后處理中。由于Adams/car整車仿真導入路面模型和整車模型時,存在兩個不同的坐標系,一個是路面坐標系另一個是整車坐標系。根據(jù)Adams/car整車仿真原則,導入整車模型和路面模型時,路面模型主動與整車模型接觸。由于整車模型中,輪胎最低點Z坐標是-57mm,所以在導入路面模型之前,需要將路面模型整體往Z軸負方向平移57mm。臺階仿真結果如圖9到圖12所示:由于整車模型的左右對稱性,本文只選取了整車模型左側及后面5個標記點軌跡曲線進行分析。圖標中最下端的曲線為路面曲線,上邊五條曲線為五個標記點在Z軸方向的位移曲線,曲線前面的數(shù)字分別表示第幾排第幾個標記點。圖標中橫坐標表示整車行駛方向的位移,縱坐標表示整車在Z方向的位移量。
圖9 80mm臺階仿真結果Fig.9 80mm step simulation results
圖10 100mm臺階仿真結果Fig.10 100mm step simulation results
圖11 120mm臺階仿真結果Fig.11 120mm step simulation results
圖12 140mm臺階仿真結果Fig.12 140mm step simulation results
圖9為80mm臺階路況仿真結果,從圖中可以得出各曲線最低點離臺階路面最近的曲線為1-1曲線,也就是第一排1號標記點,最低點與臺階路面的距離為58.4mm。由于實車標記點處鋁絲長度為62mm,由此可以推出該標記點處鋁絲會發(fā)生干涉現(xiàn)象,干涉量為3.6mm。由于其余各標記點最低點處與路面的距離均大于其所在點出鋁絲的長度,所以可以推出其余標記點處鋁絲與地面均未發(fā)生干涉。圖10為100mm臺階路況仿真結果,從圖中可以得出各曲線最低點處離臺階路面最近的曲線為1-1曲線,其與臺階路面最低點距離為24mm。由于該標記點處鋁絲長度為62mm,可以推出該標記點與路面的干涉量為38mm。由于其余標記點曲線最低處與路面的距離均大于各標記點處鋁絲的長度,所以可以推出其余各標記點處與路面沒有發(fā)生干涉。圖11為120mm臺階路況仿真結果,從圖中可以得出各曲線最低點處離臺階路面最近的曲線為1-1曲線,其最低點處已經(jīng)與上臺階路面完全干涉。其次最低點處于臺階路面距離最近的為3-6曲線,其最低點處于臺階路的距離為85.7mm,該標記點處的鋁絲長度為90mm,由此可以推出該標記點處與地面的干涉量為4.3mm。由于其余標記點曲線最低處與路面的距離均大于各標記點處鋁絲的長度,所以可以推出其余各標記點處與路面沒有發(fā)生干涉。圖12為140mm臺階路況仿真結果,從圖中可以得出各曲線最低點處離臺階路面最近的曲線為1-1曲線,其最低點處已經(jīng)與上臺階路面完全干涉。其次最低點處與臺階路面距離最近的為3-6曲線,其最低點處與臺階路的距離為72.8mm,該標記點處的鋁絲長度為90mm,由此可以推出該標記點處與地面的干涉量為17.2mm。由于其余標記點曲線最低處與路面的距離均大于各標記點處鋁絲的長度,所以可以推出其余各標記點處與路面沒有發(fā)生干涉。四種不同高度臺階仿真結果統(tǒng)計如表4所示:
表4 整車模型臺階動態(tài)仿真結果Table 4 Dynamic simulation results of step model in vehicle model
通過對比實車試驗結果與仿真實驗結果可以得出:通過Adams/car模塊建立的多體動力學整車模型,其通過臺階路況時的動態(tài)仿真結果與實車試驗結果具有較高的匹配度。
通過ADAMS軟件并基于多體動力學原理,建立了完備的整車多體動力學模型及臺階路面模型。依據(jù)某試車場臺階通過性試驗工況,對建立的整車模型進行了四種不同高度臺階類型通過性動態(tài)仿真并獲取了車身底部標記點與臺階的干涉情況。本文通過實車臺階通過性試驗驗證了仿真結果的正確性,對整車道路通過性試驗研究以及整車結構設計具有一定的參考價值。
[1] 余志生. 汽車理論[M]. 北京:機械工程出版社,2009.
[2] 2014年交通運輸行業(yè)發(fā)展統(tǒng)計公報[N].
[3] 余聯(lián)慶,梅順齊,杜利珍,等.Adams在機械系統(tǒng)仿真技術教學中的應用[J].武漢科技學院學報,2008(3): 5-8.
[4] 張云清,項 俊,陳立平,孫 營. 整車多體動力學模型的建立驗證及仿真分析[J].汽車工程,2006, 28(3):1-2.
[5] 劉一夫, 朱茂桃, 陳 陽, 等. 橫向穩(wěn)定桿對整車側傾及縱傾特性的影響[J]. 機械設計, 2013, 30(2): 92-96.
[6] Abri D N, Manamanni K, Guelton M N, et al. Decentralized stabilization of discrete-time large scale switched systems[C]. 18thMediterranean Conference on Control & Automation, 2010: 1230-1234.
[7] 石 晶,孫 艷,陳 雙,李 剛,王長明.L型麥弗遜前懸架橫向穩(wěn)定桿對整車性能影響研究[J].遼寧工業(yè)大學學報(自然科學版),2015,35(4):1-3.
[8] 費瑞萍,盧 蕩,郭孔輝. Ftire輪胎模型的仿真分析及實驗研究[A].中國汽車工程學會年會論文集[C]2010.
[9] Ftire estim. COSIN scientific software, 2010. http://www.cosin.eu.
Research on The Dynamic Simulation of Full Vehicle Step Road Trafficability Based on Multi-body Dynamics
LiuBoGuLiqiangZouZhenhaoXuWeiqingZhangJinsong
(SchoolofMechanicalEngineering,ShanghaiJiaotongUniversity,Shanghai200240)
Based on the multi-body dynamics theory, the multi-body dynamics model of a certain car and four kinds of different height step road models are built by using ADAMS software. The dynamic simulation of full vehicle step road trafficability based on multi-body dynamics has done and the interference between the marking points on the bottom of the vehicle and the road surface have got based on the real vehicle step trafficability test conditions. In this paper, the simulation results are compared with the results of the real vehicle step trafficability test on the interference between the bottom mark points and the steps road surface. The comparison results show that, the results of the dynamic simulation of full vehicle step road trafficability based on multi-body dynamics has a high degree of accuracy.
Multi-body dynamics Full vehicle model Step road Dynamic simulation Road trafficability
1006-8244(2016)03-008-06
劉 波、1990、上海交通大學機械工程專業(yè)碩士在讀、主要從事汽車多體動力學仿真研究。
U461.5+2
B