劉漢林
蘇霍姆林斯基說(shuō)過(guò),在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強(qiáng)烈。從這句話中我們可以發(fā)現(xiàn)探究式學(xué)習(xí)的內(nèi)在需求所在。
探究式學(xué)習(xí),不是信馬由韁,更不是天馬行空,我們從其本身的定義可以一窺其貌。所謂探究式學(xué)習(xí),即從學(xué)科領(lǐng)域或現(xiàn)實(shí)社會(huì)生活中選擇和確定研究主題,在教學(xué)中創(chuàng)設(shè)一種類(lèi)似于學(xué)術(shù)(或科學(xué))研究的情境,通過(guò)學(xué)生自主、獨(dú)立地發(fā)現(xiàn)問(wèn)題、實(shí)驗(yàn)、操作、調(diào)查、信息搜集與處理、表達(dá)與交流等探究活動(dòng),獲得知識(shí)、技能、情感與態(tài)度的發(fā)展。探究式學(xué)習(xí),既是數(shù)學(xué)學(xué)習(xí)的基本方式,也是數(shù)學(xué)教育需要培養(yǎng)的一種品質(zhì),是數(shù)學(xué)教育的目標(biāo)之一。近年來(lái),筆者在如何引導(dǎo)學(xué)生進(jìn)行探究式學(xué)習(xí)、培養(yǎng)學(xué)生探究品質(zhì)等方面進(jìn)行了粗淺探索。
一、 把脈學(xué)習(xí)起點(diǎn),探究式學(xué)習(xí)開(kāi)始的地方
探究式學(xué)習(xí)的切入點(diǎn)過(guò)低,學(xué)生已然熟知,無(wú)探究?jī)r(jià)值;切入點(diǎn)過(guò)高,超過(guò)學(xué)生可以承受的范圍,他們無(wú)從下手,茫然不知所措,挫傷探究積極性。因此,精準(zhǔn)把握、分析學(xué)生的知識(shí)起點(diǎn)非常重要。如本人申請(qǐng)校內(nèi)精品課,執(zhí)教內(nèi)容是蘇教版一年級(jí)下冊(cè)《元角分》,數(shù)學(xué)活動(dòng)主要以學(xué)生探究實(shí)踐為主,設(shè)計(jì)時(shí)認(rèn)為現(xiàn)在學(xué)生對(duì)于人民幣應(yīng)是了解很多,一些生活經(jīng)驗(yàn)肯定比較豐富,如小面值人民幣的互換、小面值人民幣的組合可以輕松帶過(guò)。然而在試教過(guò)程中,發(fā)現(xiàn)學(xué)生在活動(dòng)環(huán)節(jié)磕磕碰碰,教師教得滿頭大汗,學(xué)生學(xué)得云里霧里。究其原因,和學(xué)生交流了解到原來(lái)孩子使用人民幣購(gòu)物其實(shí)從不動(dòng)腦筋,只是機(jī)械地付款,拿走找回的錢(qián)而已。當(dāng)我真切地了解到學(xué)生的已有知識(shí)、經(jīng)驗(yàn)以后,及時(shí)調(diào)整教學(xué)目標(biāo),重新設(shè)計(jì)教學(xué)環(huán)節(jié),降低內(nèi)容坡度,循序漸進(jìn),將教學(xué)內(nèi)容設(shè)計(jì)成童話主題活動(dòng),讓學(xué)生結(jié)合生活經(jīng)驗(yàn)做數(shù)學(xué)、玩數(shù)學(xué),取得了良好的教學(xué)效果。反思本節(jié)課的成功之處在于準(zhǔn)確地把握住了學(xué)生知識(shí)經(jīng)驗(yàn)的起點(diǎn),有的放矢地開(kāi)展數(shù)學(xué)探究活動(dòng),讓學(xué)生的已有經(jīng)驗(yàn)與本節(jié)課的探究活動(dòng)之間建立起橋梁,為學(xué)生找到了新知識(shí)生長(zhǎng)的節(jié)點(diǎn)所在,從而保證了數(shù)學(xué)探究活動(dòng)的順利進(jìn)行。
二、 創(chuàng)設(shè)寬松民主的學(xué)習(xí)氛圍,包容不同的探究層次
心理學(xué)研究證明,在寬松民主的氛圍中,個(gè)人的聰明才智才能得以充分發(fā)揮,自覺(jué)地為達(dá)到某種目標(biāo)而努力。作為一名數(shù)學(xué)教師應(yīng)營(yíng)造自由安全的學(xué)習(xí)環(huán)境,讓學(xué)生的中樞神經(jīng)興奮起來(lái),打開(kāi)他們思維的閘門(mén),讓他們積極投入到探究活動(dòng)中去。例如一位教師執(zhí)教《用字母表示數(shù)》時(shí),設(shè)計(jì)了這樣一個(gè)教學(xué)環(huán)節(jié):請(qǐng)大家自學(xué)可以怎樣用字母簡(jiǎn)潔地表示數(shù)的內(nèi)容,看完后,如果有什么疑問(wèn),待會(huì)兒討論。說(shuō)實(shí)話,那段文字說(shuō)明很簡(jiǎn)單,諸多聽(tīng)課者覺(jué)得沒(méi)什么特別需要研究的,但后來(lái)學(xué)生的反應(yīng)卻讓聽(tīng)課者覺(jué)得這個(gè)教學(xué)環(huán)節(jié)異常出彩。
教學(xué)實(shí)錄:
學(xué)生閱讀完,進(jìn)入質(zhì)疑、釋疑環(huán)節(jié):
生1:為什么1n可以寫(xiě)成n,而3×n卻不能寫(xiě)成n呢?
生2:我來(lái)回答,因?yàn)槿魏螖?shù)和1相乘,積還是原來(lái)那個(gè)數(shù),n和1相乘,得數(shù)還是n,所以1n可以簡(jiǎn)寫(xiě)成n,但3乘n乘積不是n,所以不能單獨(dú)寫(xiě)成n。
生1:我明白了。謝謝你!
生3:a×2可以寫(xiě)成2a,a×a卻寫(xiě)成a2,這兩個(gè)有什么區(qū)別嗎?我搞不明白。
生4:我是這樣想的,不知道對(duì)不對(duì)。a×2表示2個(gè)a相加,寫(xiě)成乘法是a×2,簡(jiǎn)寫(xiě)成2a,但a×a表示的是2個(gè)a相乘,就像3×3或4×4一樣要寫(xiě)成3的平方或4的平方,用字母表示數(shù),就要寫(xiě)成a2。
從上面的課堂實(shí)錄中我們可以感受到學(xué)生們都積極投入到自學(xué)活動(dòng)中去,不同的學(xué)生對(duì)數(shù)學(xué)的理解層次不同,但同學(xué)之間的質(zhì)疑、釋疑過(guò)程,無(wú)疑可以讓思維互相啟迪。在這樣輕松民主的氛圍中,學(xué)生自然可以感受到學(xué)習(xí)的樂(lè)趣、成功的喜悅。
三、 創(chuàng)設(shè)問(wèn)題情境,激發(fā)探究熱情
數(shù)學(xué)學(xué)習(xí)的核心在于問(wèn)題。一個(gè)好的問(wèn)題如一石激起千層浪,引發(fā)學(xué)生積極思考。在六年級(jí)教材“認(rèn)識(shí)比例尺”的教學(xué)伊始,我利用實(shí)物展示臺(tái),設(shè)計(jì)了這樣一個(gè)問(wèn)題情境:展示中國(guó)地圖,讓學(xué)生找到江蘇?。徽故窘K省地圖,讓學(xué)生找到某某市;展示某某市地圖,讓學(xué)生找到某某區(qū);展示某某區(qū)地圖,讓學(xué)生找到某某鎮(zhèn)。繼而提問(wèn):為什么在中國(guó)地圖上江蘇省只有那么小的一塊,而到了第二幅地圖上卻是這么大呢?同樣,某某市、某某區(qū)、某某鎮(zhèn)為什么在不同的地圖上看到的大小都不一樣呢?這個(gè)問(wèn)題一拋出,學(xué)生立刻感到好奇并竊竊私語(yǔ),是啊,怎么回事???大家紛紛提出自己的猜測(cè)。于是在學(xué)生猜想的基礎(chǔ)上,我伺機(jī)向?qū)W生揭示其中的秘密:原來(lái)是不同的地圖采用了不同的比例尺,所以在不同的地圖上,某個(gè)地區(qū)就呈現(xiàn)出不同的大小。學(xué)生對(duì)于比例尺的基本作用就有了一個(gè)初步了解,繼而產(chǎn)生對(duì)比例尺含義,在地圖上如何決定單位長(zhǎng)度、單位面積等方面探究的熱情。
四、 探究式學(xué)習(xí),需以引導(dǎo)學(xué)生方法技能遷移為抓手
探究式學(xué)習(xí),不是漫無(wú)目標(biāo)地天馬行空,而是需要根據(jù)教學(xué)內(nèi)容的特點(diǎn),教學(xué)目標(biāo)的設(shè)定,誘導(dǎo)學(xué)生的思維朝著正確的方向發(fā)展、延伸。
如本人執(zhí)教蘇教版小學(xué)一年級(jí)下冊(cè)《100以內(nèi)的加法和減法(二)》例四:50-26=的教學(xué):
師:同學(xué)們,我們?cè)谟?jì)算這道算式時(shí)會(huì)遇到什么問(wèn)題啊?
生:個(gè)位上0不夠減6。
師:那該怎么辦呢?
生:向十位上的5去借1個(gè)十。
師:大家真聰明,把我們前兩天學(xué)習(xí)的知識(shí)運(yùn)用起來(lái)了。那你現(xiàn)在想不想自己試著算一算這道算式的差是多少嗎?
生:想。
學(xué)生嘗試獨(dú)立計(jì)算。教師課間巡視,發(fā)現(xiàn)學(xué)生在獨(dú)立思考中有創(chuàng)新的計(jì)算方法:
師:我們來(lái)討論一下這兩位同學(xué)的計(jì)算方法,先請(qǐng)他們說(shuō)說(shuō)怎么想的,好嗎?
生:好。
生1:個(gè)位上0不夠減6,我就到十位上借1個(gè)十,個(gè)位上現(xiàn)在就是10,我就在個(gè)位上寫(xiě)上10,十位上原來(lái)是5個(gè)十,被借走1個(gè)十,還剩下4個(gè)十,我就把5杠掉,寫(xiě)上4。然后,先算個(gè)位,再算十位,結(jié)果等于24。
師:同學(xué)們聽(tīng)明白了嗎?誰(shuí)再來(lái)把他的想法再說(shuō)一遍。
指名再重復(fù)說(shuō)說(shuō),讓多數(shù)學(xué)生明白算理。
師:我們?cè)賮?lái)聽(tīng)聽(tīng)第二位同學(xué)的想法。
生2:我的想法和第一位同學(xué)是一樣的,但我把借的1個(gè)十寫(xiě)在了十位的下面。
師:剛才這兩位學(xué)說(shuō)得非常好,而且把思考的過(guò)程用豎式展示出來(lái)了,很有創(chuàng)造性。大家掌聲鼓勵(lì)下。我們來(lái)比較下,哪位同學(xué)的過(guò)程清楚,哪位同學(xué)的過(guò)程簡(jiǎn)潔。
師指著第一道豎式。
師:我們可以把想的過(guò)程放在心里面,但要把關(guān)鍵的退位像計(jì)算兩位數(shù)進(jìn)位加法一樣做出標(biāo)記,防止自己忘記就行了。我們?cè)賮?lái)看看第二位同學(xué)的算式,大家覺(jué)得有什么地方需要修改嗎?
生:退位借的1個(gè)十,寫(xiě)在橫線的上面,一不小心會(huì)當(dāng)成進(jìn)上來(lái)的1個(gè)十呢?
師:大家看一下,是不是會(huì)產(chǎn)生這樣的誤會(huì)呢?怎么辦呢?我們可以把借的1個(gè)十,標(biāo)記在被減數(shù)的頭上,用一個(gè)小點(diǎn)來(lái)表示,就像戴了一頂小帽子,大家覺(jué)得這樣會(huì)和進(jìn)位混淆了嗎?
生異口同聲回答:不會(huì)了!
綜觀兩位學(xué)生的計(jì)算過(guò)程,我們不難發(fā)現(xiàn),他們都將前面學(xué)習(xí)的口算兩位數(shù)退位減法和筆算不退位減法的方法遷移到此例題中,探究出筆算兩位數(shù)退位減法的方法并根據(jù)自己的理解將思考的過(guò)程用豎式呈現(xiàn)出來(lái),非常難得。作為一年級(jí)的學(xué)生,知識(shí)儲(chǔ)備少,學(xué)習(xí)技能缺乏,在適當(dāng)?shù)慕虒W(xué)節(jié)點(diǎn)上教師的有效引導(dǎo)必不可少。
五、 探究式學(xué)習(xí),課堂內(nèi)外結(jié)合,相輔相成
數(shù)學(xué)知識(shí)的學(xué)習(xí),數(shù)學(xué)思維的形成等,課堂并不是唯一途徑,同樣探究式學(xué)習(xí)也非數(shù)學(xué)課堂專屬,教師應(yīng)有意識(shí)地將數(shù)學(xué)探究式引向課外,形式也應(yīng)多種多樣。例如,1. 探究性預(yù)習(xí),預(yù)習(xí)的要求不僅僅是看看課本,而應(yīng)根據(jù)學(xué)習(xí)內(nèi)容設(shè)計(jì)核心問(wèn)題引導(dǎo)學(xué)生去探究,嘗試解決問(wèn)題。2. 經(jīng)驗(yàn)儲(chǔ)備性實(shí)踐活動(dòng)。數(shù)學(xué)來(lái)源于生活,有些數(shù)學(xué)知識(shí)的學(xué)習(xí)缺少生活經(jīng)驗(yàn)的支撐,課堂學(xué)習(xí)會(huì)大打折扣,而教師預(yù)先布置的實(shí)踐探究活動(dòng),可以為提高課堂教學(xué)效率打下良好的基礎(chǔ)。3. 有些數(shù)學(xué)知識(shí)學(xué)習(xí)需要收集資料、實(shí)地調(diào)查等,這就需要教師利用家長(zhǎng)學(xué)校、個(gè)別交流、家校通等互動(dòng)平臺(tái)對(duì)學(xué)生家長(zhǎng)進(jìn)行有效輔導(dǎo),提高家長(zhǎng)的認(rèn)識(shí),獲得他們的理解支持,從而逐漸改變告知式家庭教育。
探究式學(xué)習(xí),迎合了學(xué)生的學(xué)習(xí)心理,是學(xué)生發(fā)現(xiàn)數(shù)學(xué)、發(fā)展數(shù)學(xué)、提升數(shù)學(xué)素養(yǎng)的必經(jīng)之路。