亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        中國(guó)典型城市水環(huán)境中鄰苯二甲酸酯類(lèi)污染水平與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)

        2016-12-12 03:52:45張璐璐劉靜玲何建宗李華
        生態(tài)毒理學(xué)報(bào) 2016年2期
        關(guān)鍵詞:負(fù)效應(yīng)鄰苯二甲酸典型

        張璐璐,劉靜玲,何建宗,李華

        1. 河北科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,石家莊 050018 2. 北京師范大學(xué)環(huán)境學(xué)院 水環(huán)境模擬國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100875 3. 香港公開(kāi)大學(xué)科技學(xué)院,香港

        ?

        中國(guó)典型城市水環(huán)境中鄰苯二甲酸酯類(lèi)污染水平與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)

        張璐璐1,2,3,*,劉靜玲2,何建宗3,李華1

        1. 河北科技大學(xué)環(huán)境科學(xué)與工程學(xué)院,石家莊 050018 2. 北京師范大學(xué)環(huán)境學(xué)院 水環(huán)境模擬國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100875 3. 香港公開(kāi)大學(xué)科技學(xué)院,香港

        鄰苯二甲酸酯類(lèi)(PAEs)作為一類(lèi)重要的環(huán)境激素類(lèi)化學(xué)物質(zhì),被廣泛應(yīng)用于塑料的增塑劑中。隨著工業(yè)的發(fā)展,中國(guó)PAEs的需求量迅速增加,PAEs已成為中國(guó)城市水環(huán)境的重要風(fēng)險(xiǎn)因子,因此需要對(duì)其進(jìn)行生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)。本研究首先針對(duì)我國(guó)典型城市水環(huán)境中PAEs的污染現(xiàn)狀進(jìn)行文獻(xiàn)綜述,總結(jié)歸納得到我國(guó)典型城市水環(huán)境中PAEs的污染分布特征;其次運(yùn)用熵值法計(jì)算了我國(guó)典型水環(huán)境中PAEs對(duì)于藻類(lèi)、水蚤和魚(yú)類(lèi)種群的生態(tài)風(fēng)險(xiǎn),并依據(jù)生態(tài)風(fēng)險(xiǎn)等級(jí)劃分標(biāo)準(zhǔn)將PAEs生態(tài)風(fēng)險(xiǎn)劃分為4個(gè)水平。文獻(xiàn)綜述結(jié)果表明我國(guó)城市水環(huán)境中的PAEs濃度多數(shù)都高于8.00 μg·L-1,超過(guò)了我國(guó)地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(PRC-NS 2002)和飲用水質(zhì)量標(biāo)準(zhǔn)(PRC-NS 2006)中的規(guī)定限值,且在大城市或PAEs工業(yè)區(qū)周?chē)奈廴舅揭@著高于其他區(qū)域。將我國(guó)與國(guó)外典型城市水環(huán)境中PAEs的污染水平進(jìn)行比較,結(jié)果表明我國(guó)水環(huán)境中的PAEs污染水平明顯高于其他國(guó)家。此外,我國(guó)城市水環(huán)境中PAEs的污染不僅出現(xiàn)在地表水環(huán)境中,而且在廣東東莞等地的地下水環(huán)境中也出現(xiàn)了PAEs污染,PAEs濃度范圍為0.0~6.7 μg·L-1。生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的結(jié)果表明,鄰苯二甲酸二丁酯(DBP)、鄰苯二甲酸二異辛酯(DEHP)和鄰苯二甲酸丁芐酯(BBP)是我國(guó)城市水環(huán)境中最主要的風(fēng)險(xiǎn)因子。PAEs污染分布特征和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)的結(jié)果表明我國(guó)城市水環(huán)境中的PAEs生態(tài)風(fēng)險(xiǎn)值總體處于10 ≤ 風(fēng)險(xiǎn)熵(RQ) <100到RQ ≥ 100水平,尤其是在大城市或者PAEs工業(yè)密集區(qū)域,因此,亟需對(duì)我國(guó)城市水環(huán)境中PAEs的生態(tài)風(fēng)險(xiǎn)進(jìn)行早期預(yù)警和風(fēng)險(xiǎn)管理。

        鄰苯二甲酸酯類(lèi)(PAEs);城市水環(huán)境;污染分布特征;生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)

        鄰苯二甲酸酯類(lèi),又稱(chēng)酞酸酯,縮寫(xiě)PAEs,是鄰苯二甲酸形成的酯的統(tǒng)稱(chēng)。PAEs一般為無(wú)色液體,具有低揮發(fā)性、難溶于水和易溶于有機(jī)溶液等特點(diǎn)[1]。它是一類(lèi)重要的環(huán)境激素類(lèi)物質(zhì),主要用于塑料的增塑劑,也廣泛應(yīng)用于日常生活用品中,例如玩具、食品包裝材料、醫(yī)用血袋和膠管、乙烯地板、壁紙、清潔劑、潤(rùn)滑油和個(gè)人護(hù)理用品等[2]。因此,PAEs作為普遍存在的污染物廣泛存在于水體、土壤和大氣環(huán)境中[3-4]。例如,根據(jù)美國(guó)有毒物質(zhì)釋放數(shù)據(jù)庫(kù)(Toxics Release Inventory (TRI) database)計(jì)算,2012年美國(guó)PAEs的釋放量為1 492 674 kg,其中釋放到大氣環(huán)境中的PAEs有1 354 968 kg,釋放到水環(huán)境中的PAEs有237 kg[5]。

        由于PAEs可能具有致癌性、致畸性和致突變性[6-9],美國(guó)和其他很多國(guó)家把PAEs列為優(yōu)先控制污染物[10-11]。雖然在某些區(qū)域和國(guó)家已經(jīng)采取了很多控制措施來(lái)限制和降低PAEs的生產(chǎn)與使用[12],但在亞洲PAEs的生產(chǎn)、使用并未得到有效控制。隨著工業(yè)的發(fā)展,我國(guó)PAEs的用量迅速增加,在2010年我國(guó)PAEs用量高達(dá)1.36×106t[13];在2010—2015期間,我國(guó)年均PAEs的用量增幅約為7.7%[14];此外,我國(guó)還是PAEs最大的進(jìn)口國(guó)。由于PAEs在環(huán)境中具有難降解、生物富集和內(nèi)分泌干擾效應(yīng),因此PAEs已成為我國(guó)城市水環(huán)境的重要風(fēng)險(xiǎn)因子。

        對(duì)PAEs有效的環(huán)境管理取決于準(zhǔn)確評(píng)價(jià)其生態(tài)風(fēng)險(xiǎn)水平,因此越來(lái)越多的研究對(duì)環(huán)境中PAEs的潛在生態(tài)風(fēng)險(xiǎn)進(jìn)行評(píng)價(jià)[15-16]。PAEs對(duì)于水生生物的有害影響一般會(huì)隨著烷基鏈長(zhǎng)度的增加而加大,但由于酯類(lèi)較低的水溶性特點(diǎn),該趨勢(shì)會(huì)在烷基鏈長(zhǎng)度達(dá)到生物機(jī)體耐受量限值時(shí)發(fā)生改變[17]。根據(jù)大量的研究結(jié)果,烷基鏈大于6個(gè)的PAEs在溶解限值時(shí),對(duì)于很多水生生物的急性和慢性毒性測(cè)試結(jié)果表明無(wú)毒[18]。因此,本研究主要關(guān)注低分子量的PAEs,如鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二丁酯(DBP)、鄰苯二甲酸丁芐酯(BBP)、鄰苯二甲酸二己酯(DHP)和鄰苯二甲酸二異辛酯(DEHP)。雖然我國(guó)的環(huán)境科學(xué)工作者已經(jīng)意識(shí)到PAEs在水環(huán)境中的生態(tài)風(fēng)險(xiǎn),但多數(shù)研究?jī)H集中于單一水環(huán)境中PAEs的污染現(xiàn)狀與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià),對(duì)我國(guó)典型城市水環(huán)境中PAEs的生態(tài)風(fēng)險(xiǎn)管理存在不確定性。因此,本研究首先對(duì)我國(guó)典型城市水環(huán)境中PAEs的污染現(xiàn)狀的文獻(xiàn)進(jìn)行綜述,總結(jié)歸納得到我國(guó)典型城市水環(huán)境中PAEs的污染分布特征;其次運(yùn)用熵值法計(jì)算了我國(guó)典型水環(huán)境中PAEs對(duì)于藻類(lèi)、水蚤和魚(yú)類(lèi)種群的生態(tài)風(fēng)險(xiǎn),對(duì)于我國(guó)城市水環(huán)境安全具有重要的現(xiàn)實(shí)意義。

        1 材料與方法 (Materials and methods)

        1.1 數(shù)據(jù)收集方法

        為了準(zhǔn)確掌握我國(guó)典型城市水環(huán)境中PAEs的污染分布特征,本研究首先運(yùn)用文獻(xiàn)綜述法對(duì)中國(guó)知網(wǎng)、萬(wàn)方、Elsevier、Springer、Google Scholar和PubMed數(shù)據(jù)庫(kù)中關(guān)于我國(guó)典型城市水環(huán)境中PAEs的污染現(xiàn)狀的文章和碩、博士論文等進(jìn)行文獻(xiàn)綜述,由于通過(guò)PAEs、污染現(xiàn)狀和分布特征等關(guān)鍵詞收索到的文獻(xiàn)數(shù)量較多,因此本研究主要分析有關(guān)我國(guó)典型城市水環(huán)境中PAEs污染分布特征的文章。有關(guān)PAEs對(duì)目標(biāo)生物的毒理數(shù)據(jù)主要從USEPA的ECOTOXicology數(shù)據(jù)庫(kù)[5]和相關(guān)文獻(xiàn)中獲得[19]。

        1.2 環(huán)境介質(zhì)中PAEs的分析方法

        PAEs的分析步驟主要可以分為:樣品前處理、萃取、清洗、分離和檢測(cè)。萃取和清洗是PAEs分析中最具挑戰(zhàn)和關(guān)鍵的步驟,直接關(guān)系到整個(gè)分析方法能否確定檢出限。萃取方法可以分為溶劑萃取或液-液萃取[20]和固相微萃取(SPME)[21];對(duì)于分離和檢測(cè)步驟,研究主要關(guān)注分析技術(shù)如液相色譜-質(zhì)譜(LC-MS)[22],氣相色譜-質(zhì)譜(GC-MS)[23]以及其他技術(shù)[24-25]。Cai等[26]開(kāi)發(fā)了一種新分析方法來(lái)檢測(cè)水體中PAEs濃度,主要包括固相萃取、用乙腈定量解吸和高效液相色譜(HPLC)的分析方法。雖然不同研究中采用的分析方法會(huì)影響到PAEs數(shù)據(jù)的結(jié)果,但由于本研究旨在掌握我國(guó)城市典型水環(huán)境中PAEs的整體污染水平,因此分析方法的差異不會(huì)影響到本文的結(jié)論。

        1.3 PAEs生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)方法

        PAEs的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)方法依據(jù)歐盟技術(shù)指導(dǎo)性文件[27]和先前的研究[15],主要采用熵值法來(lái)評(píng)價(jià)水體中PAEs的潛在生態(tài)風(fēng)險(xiǎn)[28-29]。在本研究中,風(fēng)險(xiǎn)熵(RQ)被用來(lái)評(píng)估目標(biāo)生物的生態(tài)風(fēng)險(xiǎn),它主要是根據(jù)環(huán)境中PAEs的測(cè)量濃度(MEC)與預(yù)測(cè)的無(wú)效應(yīng)濃度(PNEC)之間的比值。PNEC的估算是根據(jù)毒理學(xué)的相關(guān)濃度(LC50或EC50)與安全系數(shù)(f)的比值。因此,魚(yú)類(lèi)、水蚤和藻類(lèi)對(duì)DMP、DEP、DnBP和BBP的LC50或EC50被應(yīng)用于生態(tài)風(fēng)險(xiǎn)值的計(jì)算。PAEs的風(fēng)險(xiǎn)熵計(jì)算公式為:

        根據(jù)相關(guān)的文獻(xiàn),我們把生態(tài)風(fēng)險(xiǎn)分為下面4個(gè)水平[30]:

        當(dāng)RQ < 1.00時(shí),表示無(wú)顯著風(fēng)險(xiǎn);當(dāng)1.00 ≤ RQ < 10.0時(shí),表示存在較小的潛在負(fù)效應(yīng);當(dāng)10.0 ≤ RQ < 100時(shí),表示存在顯著的潛在負(fù)效應(yīng);當(dāng)RQ ≥ 100時(shí),表示存在預(yù)期的潛在負(fù)效應(yīng)。

        2 研究結(jié)果(Results)

        2.1 我國(guó)PAEs的生產(chǎn)和消費(fèi)

        表1列出了我國(guó)大陸地區(qū)2000—2010年P(guān)AEs的供應(yīng)和需求量,在2000—2010期間PAEs的表觀消費(fèi)量顯著增加,其中2010年比2000年的產(chǎn)量增加了183.54%,表觀消費(fèi)量增加了79.18%。表2列出了我國(guó)PAEs的主要生產(chǎn)企業(yè)及其產(chǎn)量,其中齊魯增塑劑有限公司作為內(nèi)地最大的PAEs制造商,其年產(chǎn)量高達(dá)40.00×104t,主要生產(chǎn)鄰苯二甲酸二辛酯(DOP)、DBP、鄰苯二甲酸二異壬酯(DiNP)和鄰苯二甲酸二異癸酯(DiDP);PAEs生產(chǎn)企業(yè)集中分布在山東、廣東、浙江和江蘇省。

        2.2 水環(huán)境中的PAEs污染水平

        根據(jù)我國(guó)典型水環(huán)境中PAEs的污染分布特征,除廣州(城市湖泊)、北京(城市湖泊)和長(zhǎng)江江蘇段外,我國(guó)典型河流和湖泊水體中PAEs濃度多數(shù)均高于8.00 μg·L-1,而根據(jù)我國(guó)地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)[32]和飲用水環(huán)境質(zhì)量標(biāo)準(zhǔn)[33],DEHP的濃度限值為8.00 μg·L-1或DBP的濃度限值為3.00 μg·L-1和DEHP的濃度限值為8.00 μg·L-1、DBP的濃度限值為3.00 μg·L-1或DEP的濃度限值為3.00 μg·L-1。因此,我國(guó)水環(huán)境中PAEs的潛在生態(tài)風(fēng)險(xiǎn)不容忽視[34-35]。將我國(guó)典型水環(huán)境中PAEs的污染水平與其他國(guó)家相比,結(jié)果表明整體上我國(guó)水環(huán)境中的PAEs污染水平較高,但在尼日利亞西南部的Ogun河PAEs的污染水平較高,達(dá)到395.00~4 775.00 μg·L-1,它的最大值要高于我國(guó)地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)的597倍(表3)。

        表1 我國(guó)大陸地區(qū)2000—2010年P(guān)AEs的供應(yīng)和需求量(104t)

        隨著城市PAEs消費(fèi)量的日益增加,導(dǎo)致城市水環(huán)境中PAEs污染水平顯著高于農(nóng)村地區(qū)。這主要是因?yàn)槌鞘兴h(huán)境會(huì)接收大量未經(jīng)有效處理的工業(yè)廢水,如德國(guó)柏林市污水處理廠所排放的廢水中PAEs濃度較高(高達(dá)182.00 μg·L-1)。此外,PAEs的污染不僅發(fā)生在地表水水環(huán)境中,也會(huì)污染地下水環(huán)境,如廣東省東莞市地下水的PAEs濃度范圍為0.00~6.70 μg·L-1。盡管如此,PAEs在地表水環(huán)境中(河流、湖泊和水庫(kù))的污染水平要顯著高于地下水環(huán)境[36]。

        表2 2006年我國(guó)PAEs的主要生產(chǎn)企業(yè)及其產(chǎn)量[31]

        表3 我國(guó)與其他國(guó)家水環(huán)境中PAEs的污染水平

        表4 生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中魚(yú)類(lèi)、水蚤和藻類(lèi)的急性毒性數(shù)據(jù)(LC50或EC50)

        表5 我國(guó)典型水環(huán)境中DMP、DEP、DBP、BBP、DHP和DEHP對(duì)魚(yú)類(lèi)種群的RQ以及總生態(tài)風(fēng)險(xiǎn)(μg·L-1)

        2.3 我國(guó)典型水環(huán)境中的PAEs的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)

        在我國(guó)PAEs對(duì)水環(huán)境造成的生態(tài)風(fēng)險(xiǎn)仍處于未知狀態(tài)。PAEs對(duì)水生生態(tài)系統(tǒng)的影響主要取決于PAEs的輸入量和其毒性參數(shù)。本研究中PAEs的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)方法以歐盟技術(shù)指導(dǎo)性文件為基礎(chǔ)[27],該文件要求至少同時(shí)考慮魚(yú)類(lèi)、水蚤和藻類(lèi)的LC50或EC50。PAEs的毒性數(shù)據(jù)主要來(lái)源于Staples的綜述“Aquatic Toxicity of Eighteen Phthalate Esters”[28]。RQ值是根據(jù)最大無(wú)影響效應(yīng)濃度(NOEC)、最低的LC50或EC50以及安全系數(shù)(1 000)進(jìn)行計(jì)算[27]。表4列出了RQ計(jì)算過(guò)程中3個(gè)種群對(duì)PAEs的LC50、EC50和NOEC。表5~7列出了我國(guó)典型城市水環(huán)境中典型PAEs對(duì)魚(yú)類(lèi)、水蚤和藻類(lèi)的RQ值,3個(gè)種群的RQ值呈現(xiàn)明顯差異。在我們計(jì)算的6種PAEs中,DBP、DEHP和BBP為最主要的風(fēng)險(xiǎn)物質(zhì)。DMP對(duì)Lepomis macrochirus的RQ變化范圍為0.00~2.78,對(duì)Daphnia magna的RQ變化范圍為0.00~25.10,對(duì)Selenastrum capricornutum的RQ變化范圍為0.00~0.66。相比而言,DEP、DBP、BBP和DEHP在長(zhǎng)江-江蘇段、松花江-吉林段對(duì)Lepomis macrochirus種群、在北京-朝陽(yáng)公園湖泊對(duì)Selenastrum capricornutum種群的RQ達(dá)到預(yù)期的潛在負(fù)效應(yīng)水平,即RQ > 100。一般來(lái)說(shuō),藻類(lèi)對(duì)于PAEs極其敏感,而Daphnia magna的RQs相對(duì)較小。除了DMP、DEP和DHP以外,多數(shù)PAEs的RQs變化范圍都在10.0~100.00,這表明我國(guó)水環(huán)境中的PAEs存在顯著的潛在負(fù)效應(yīng),研究發(fā)現(xiàn)DMP、DEP和DHP主要通過(guò)生長(zhǎng)限制對(duì)魚(yú)類(lèi)、水蚤和藻類(lèi)產(chǎn)生生態(tài)風(fēng)險(xiǎn)[15, 28]。

        為了計(jì)算PAEs在我國(guó)水環(huán)境中的聯(lián)合效應(yīng),本研究將各個(gè)點(diǎn)位中各種PAEs的RQ進(jìn)行加和計(jì)算,得到PAEs的總生態(tài)風(fēng)險(xiǎn)。結(jié)果表明,在長(zhǎng)江三角洲-徐州段魚(yú)類(lèi)、水蚤和藻類(lèi)種群的總生態(tài)風(fēng)險(xiǎn)處于無(wú)顯著風(fēng)險(xiǎn)水平,即RQ < 1.00,魚(yú)類(lèi)種群總的風(fēng)險(xiǎn)值變化范圍為0.16 (長(zhǎng)江三角洲-徐州段)~1 407.00 (長(zhǎng)江-江蘇段),水蚤種群總生態(tài)風(fēng)險(xiǎn)變化范圍為0.04 (長(zhǎng)江三角洲-徐州段)~333.00 (長(zhǎng)江-江蘇段),藻類(lèi)種群總生態(tài)風(fēng)險(xiǎn)變化范圍為0.31 (長(zhǎng)江三角洲-徐州段)~2 634.00 (長(zhǎng)江-江蘇段)??偵鷳B(tài)風(fēng)險(xiǎn)的結(jié)果表明在長(zhǎng)江-江蘇段PAEs對(duì)魚(yú)類(lèi)、水蚤和藻類(lèi)種群均存在顯著的潛在負(fù)效應(yīng),即RQ > 100。

        對(duì)于城市湖泊來(lái)說(shuō),除北京什剎海外,頤和園和官?gòu)d水庫(kù)中PAEs的生態(tài)風(fēng)險(xiǎn)處于無(wú)顯著風(fēng)險(xiǎn)或較小的潛在負(fù)效應(yīng)水平,大部分城市湖泊的PAEs生態(tài)風(fēng)險(xiǎn)處于存在顯著的潛在負(fù)效應(yīng)或預(yù)期的潛在負(fù)效應(yīng)水平。對(duì)于城市河流來(lái)說(shuō),除長(zhǎng)江-武漢段豐水期外,大部分河流的PAEs生態(tài)風(fēng)險(xiǎn)處于存在顯著的潛在負(fù)效應(yīng)或預(yù)期的潛在負(fù)效應(yīng)水平。對(duì)于其他水環(huán)境來(lái)說(shuō),如北京污水處理廠進(jìn)水的PAEs生態(tài)風(fēng)險(xiǎn)處于存在預(yù)期的潛在負(fù)效應(yīng)水平,而其他水環(huán)境多數(shù)處于存在較小的潛在負(fù)效應(yīng)或顯著的潛在負(fù)效應(yīng)水平。因此,需要對(duì)我國(guó)城市水環(huán)境中PAEs的生態(tài)風(fēng)險(xiǎn)進(jìn)行研究,可以通過(guò)長(zhǎng)期或短期的毒理學(xué)數(shù)據(jù),表征PAEs混合物在水環(huán)境中的綜合效應(yīng),建立水環(huán)境中可靠的PAEs生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)方法。

        此外,大量研究結(jié)果表明PAEs可以在生物體內(nèi)產(chǎn)生生物富集效應(yīng)[70-72]。Cheng等[71]檢測(cè)了香港市場(chǎng)上20多種魚(yú)類(lèi)體內(nèi)PAEs濃度,結(jié)果表明在淡水魚(yú)類(lèi)體內(nèi)ΣPAEs濃度范圍為1.66~3.14 μg·g-1(濕重),在海洋魚(yú)類(lèi)體內(nèi)ΣPAEs濃度范圍為1.57~7.10 μg·g-1(濕重);其中在淡水魚(yú)類(lèi)和海洋魚(yú)類(lèi)中,DEHP和DBP均為主要的PAEs風(fēng)險(xiǎn)物質(zhì)。Mo等[73]檢測(cè)了珠江三角洲9個(gè)種植園中11種蔬菜的PAEs濃度,結(jié)果表明ΣPAEs濃度范圍為0.07~11.20 μg·g-1(干重),PAEs濃度均值為3.20 μg·g-1(干重),其中Brassica parachinensis體內(nèi)PAEs濃度最高,這些結(jié)果表明PAEs可以通過(guò)胃腸消化系統(tǒng)在生物體內(nèi)富集,而PAEs的生物富集系數(shù)變化范圍為0.0001~0.61。

        表6 我國(guó)典型水環(huán)境中DMP、DEP、DBP、BBP、DHP和DEHP對(duì)水蚤種群的RQ以及總生態(tài)風(fēng)險(xiǎn)(μg·L-1)

        表7 我國(guó)典型水環(huán)境中DMP、DEP、DBP、BBP、DHP和DEHP對(duì)藻類(lèi)種群的RQ以及總生態(tài)風(fēng)險(xiǎn)(μg·L-1)

        我國(guó)作為全球范圍內(nèi)最大的PAEs生產(chǎn)國(guó)和消費(fèi)國(guó),PAEs應(yīng)用廣泛,它已經(jīng)嚴(yán)重威脅到我國(guó)水環(huán)境生態(tài)安全??傮w而言,我國(guó)PAEs的主要來(lái)源為塑料業(yè)和增塑劑相關(guān)的產(chǎn)業(yè)。由于我國(guó)對(duì)PAEs和以PAEs為原料產(chǎn)品的需求日益增加,因此我國(guó)未來(lái)PAEs的污染水平將日益嚴(yán)峻。PAEs的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)主要是基于準(zhǔn)確檢測(cè)環(huán)境介質(zhì)中PAEs的濃度和相關(guān)的毒理學(xué)參數(shù)。需要通過(guò)PAEs在水環(huán)境中長(zhǎng)期的生物暴露研究才能確定自然條件下PAEs對(duì)水環(huán)境造成的生態(tài)影響。目前,亟需掌握我國(guó)不同環(huán)境介質(zhì)中PAEs的來(lái)源、污染分布特征、毒性參數(shù)和生態(tài)風(fēng)險(xiǎn)水平,尤其是在高度城市化的地區(qū)和PAEs工業(yè)密集區(qū)域。

        [1] Autian J. Toxicity and health threats of phthalate esters: Review of the literature [J]. Environmental Health Perspectives, 1973, 4: 3-26

        [2] Graham P R. Phthalate ester plasticizers--Why and how they are used [J]. Environmental Health Perspectives, 1973, 3: 3-12

        [3] Peijnenburg W J G M, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63: 204-215

        [4] Teil M J, Blanchard M, Chevreuil M. Atmospheric fate of phthalate esters in an urban area (Paris-France) [J]. Science of the Total Environment, 2006, 354: 212-223

        [5] U. S. Environmental Protection Agency (USEPA). 2012 TRI Data Summary [M]. http://www2.epa.gov/toxics-release- inventory-tri-program/2012-tri-national-analysis

        [6] Koch H M, Calafat A M. Human body burdens of chemicals used in plastic manufacture [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2063-2078

        [7] Meeker J D, Sathyanarayana S, Swan S H. Phthalates and other additives in plastics: Human exposure and associated health outcomes [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2097-2113

        [8] Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2047-2062

        [9] Talsness C E, Andrade A J M, Kuriyama S N, et al. Components of plastic: Experimental studies in animals and relevance for human health [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2079-2096

        [10] Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines [M]// Chapter 6: Parameter-Specific Background Information: Phthalates Esters. Ottawa, Ontario: Task Force on Water Quality Guidelines, 1989

        [11] U. S. Environmental Protection Agency (USEPA). Ambient water quality criteria for phthalate esters. EPA-440/5-80-067. [R]. Washington DC: Office of Water Regulations and Standards, Criteria and Standard Division, 1980

        [12] Andrady A L, Neal M A. Applications and societal benefits of plastics [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 1977-1984

        [13] Emanuel C. Plasticizer market update [C]. 22nd Annual Vinyl Compounding Conference, Calvin Emanuel, 2011

        [14] Wang F, Xia X, Sha Y. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China [J]. Journal of Hazardous Materials, 2008, 154(1): 317-324

        [15] Staples C A, Parkerton T F, Peterson D R. A risk assessment of selected phthalate esters in North American and Western European surface waters [J]. Chemosphere, 2000, 40(8): 885-891

        [16] Xia X, Yang L, Bu Q, et al. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China [J]. Journal of Environmental Quality, 2011, 40(5): 1643-1651

        [17] Adams W J, Biddinger G R, Robillard K A, et al. A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms [J]. Environmental Toxicology and Chemistry, 1995, 14: 1569-1574

        [18] Staples C A, Adams W J, Parkerton T F, et al. Aquatic toxicity of eighteen phthalate esters: A review [J]. Environmental Toxicology and Chemistry, 1997, 16(5): 875-891

        [19] Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data [J]. Regulatory Toxicology and Pharmacology, 1997, 25(1): 1-5

        [20] Page B D, Lacroix G M. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985-1989: A survey [J]. Food Additives and Contaminants, 1995, 12(1): 129-151

        [21] Arthur C L, Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers [J]. Analytical Chemistry, 1990, 62: 2145-2148

        [22] Lin Z P, Ikonomou M G, Jing H, et al. Determination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet [J]. Environmental Science & Technology, 2003, 37(10): 2100-2108

        [23] Farahani H, Norouzi P, Dinarvand R, et al. Development of dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples [J]. Journal of Chromatography A, 2007, 1172(2): 105-112

        [24] Kozyrod R P, Ziaziaris J. A survey of plasticizer migration into foods [J]. Journal of Food Protection, 1989, 52: 578-580

        [25] Hogberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations [J]. Environmental Health Perspectives, 2008, 116(3): 334-339

        [26] Cai Y Q, Jiang G B, Liu J F, et al. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography [J]. Analytica Chimica Acta, 2003, 494(1): 149-156

        [27] European Commission’s Technical Guidence Document (EC). Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market [R]. Ispra (VA), Italy: European Chemicals Bureau (ECB), European Commission Joint Research Centre, 2003

        [28] Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review [J]. Chemosphere, 1997, 35(4): 667-749

        [29] U. S. Environmental Protection Agency (USEPA). Final Water Quality Guidance for the Great Lakes System [R]. US Environmental Protection Agency, 1995

        [30] Wentsel R S, LaPoint T W, Simini M, et al. Tri-service Procedural Guidelines for Ecological Risk Assessment [R]. US Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD, 1996

        [31] 龔瀏澄, 鄭德, 李杰. 塑料助劑產(chǎn)業(yè)前景看好(一)[J]. 精細(xì)與專(zhuān)用化學(xué)品, 2007, 15(16): 30-35

        Gong L C, Zheng D, Li J. Bright prospect of plastics additives industry [J]. Fine and Specialty Chemicals, 2007, 15(16): 30-35 (in Chinese)

        [32] PRC-NS. GB 3838-2002. Environmental Quality Standard for Surface Water [S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002

        [33] PRC-NS. GB 5749-2006. Standard for Drinking Water Quality [S]. Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China, 2006

        [34] 莫測(cè)輝, 蔡全英, 吳啟堂, 等. 我國(guó)城市污泥中鄰苯二甲酸酯的研究[J]. 中國(guó)環(huán)境科學(xué), 2001, 21(4): 362-366

        Mo C H, Cai Q Y, Wu Q T, et al. A study of phthalic acid esters (PAEs) in the municipal sludges of China [J]. China Environmental Science, 2001, 21(4): 362-366 (in Chinese)

        [35] Lan Q, Cui K, Zeng F, et al. Characteristics and assessment of phthalate esters in urban dusts in Guangzhou City, China [J]. Environmental Monitoring and Assessment, 2012, 184(8): 4921-4929

        [36] Liu X, Shi J, Bo T, et al. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009-2012 [J]. Environment Pollution, 2014, 184: 262-270

        [37] 鐘嶷盛, 陳莎, 曹瑩, 等. 北京公園水體中鄰苯二甲酸酯類(lèi)物質(zhì)的測(cè)定及其分布特征[J]. 中國(guó)環(huán)境監(jiān)測(cè), 2010, 26(3): 60-64

        Zhong Y S, Chen S, Cao Y, et al. The determination and distribution characteristics of phthalate esters in Beijing park lakes [J]. Environmental Monitoring in China, 2010, 26(3): 60-64 (in Chinese)

        [38] Wang H, Wang C, Wu W, et al. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment [J]. Chemosphere, 2003, 50(4): 557-562

        [39] 郭棟生, 袁小英, 楊艷, 等. 萬(wàn)家寨引黃工程水源地水質(zhì)調(diào)查分析[J]. 環(huán)境化學(xué), 2002, 21(3): 271-275

        Guo D S, Yuan X Y, Yang Y, et al. Water quality analysis to the water source of Wanjiazhai Yellow River water transfer project [J]. Environmental Chemistry, 2002, 21(3): 271-275 (in Chinese)

        [40] Zeng F, Cui K, Xie Z, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China [J]. Environment International, 2008, 34(3): 372-380

        [41] Zheng X, Zhang B T, Teng Y. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities [J]. Science of the Total Environment, 2014, 476: 107-113

        [42] Chi J. Phthalate acid esters in Potamogeton crispus L. from Haihe River, China [J]. Chemosphere, 2009, 77(1): 48-52

        [43] 魏薇, 謝瑩, 王建剛, 等. 鄰苯二甲酸酯在松花江吉林段水體中的分布規(guī)律[J]. 中國(guó)環(huán)境監(jiān)測(cè), 2011, 27(5): 60-64

        Wei W, Xie Y, Wang J G, et al. Distribution law of PAEs in the water body of Songhua River Jilin Section [J]. Environmental Monitoring in China, 2011, 27(5): 60-64 (in Chinese)

        [44] Sha Y, Xia X, Yang Z, et al. Distribution of PAEs in the middle and lower reaches of the Yellow River, China [J]. Environmental Monitoring and Assessment, 2007, 124(1-3): 277-287

        [45] Zhang L, Dong L, Ren L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China [J]. Journal of Environmental Science, 2012, 24(2): 335-342

        [46] 湯斌, 李科林, 肖劍波. 湘江水中鄰苯二甲酸酯類(lèi)環(huán)境激素的研究[J]. 精細(xì)化工中間體, 2010, 40(2): 67-72

        Tang B, Li K L, Xiao J B. Study on the environmental hormone of phthalic acid esters in Xiangjiang River [J]. Fine Chemical Intermediates, 2010, 40(2): 67-72 (in Chinese)

        [47] 張?zhí)N暉, 陳秉衡, 鄭力行, 等. 環(huán)境樣品中鄰苯二甲酸酯類(lèi)物質(zhì)的測(cè)定與分析[J]. 環(huán)境與健康雜志, 2003, 20(5): 283-286

        Zhang Y H, Chen B H, Zheng L X, et al. Determination of phthalates in environmental samples [J]. Journal of Environment and Health, 2003, 20(5): 283-286 (in Chinese)

        [48] He H, Hu G J, Sun C, et al. Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China [J]. Environment Science and Pollution Research, 2011, 18(4): 638-648

        [49] 劉征濤, 姜福欣, 王婉華, 等. 長(zhǎng)江河口區(qū)域有機(jī)污染物的特征分析[J]. 環(huán)境科學(xué)研究, 2006, 19(2): 1-5

        Liu Z T, Jiang F X, Wang W H, et al. Character analysis of organic pollutants in Yangtze estuary area [J]. Research of Environmental Science, 2006, 19(2): 1-5 (in Chinese)

        [50] 張利飛, 楊文龍, 董亮, 等. 蘇南地區(qū)農(nóng)田表層土壤中多環(huán)芳烴和酞酸酯的污染特征及來(lái)源[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(11): 2202-2209

        Zhang L F, Yang W L, Dong L, et al. Pollution characteristics and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in agricultural surface soil from the southern Jiangsu Province, China [J]. Journal of Agro-Environment Science, 2011, 30(11): 2202-2209 (in Chinese)

        [51] Zhang D, Liu H, Liang Y, et al. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China [J]. Frontiers of Earth Science, 2009, 3(1): 73-79

        [52] Shi W, Hu X, Zhang F, et al. Occurrence of thyroid hormone activities in drinking water from eastern China: Contributions of phthalate esters [J]. Environmental Science & Technology, 2012, 46(3): 1811-1818

        [53] 林興桃, 陳明, 王小逸, 等. 污水處理廠中鄰苯二甲酸酯類(lèi)環(huán)境激素分析[J]. 環(huán)境科學(xué)與技術(shù), 2004, 6: 79-81

        Lin X T, Chen M, Wang X Y, et al. Analysis of phthalate esters of environmental hormone in water samples of wastewater treatment plant [J]. Environmental Science and Technology, 2004, 6: 79-81 (in Chinese)

        [54] Huang R X, Wang Z X, Liu G, et al. Removal efficiency of environmental endocrine disrupting chemicals pollutants-phthalate esters in northern WWTP [J]. Advanced Materials and Structures, 2013, 807: 694-698

        [55] Liu P, Tian T, Barreto J, et al. Assessment and analysis of phthalate esters, in Lake Pontchartrain, by SPME combining with GC-MS [J]. Environmental Technology, 2013, 34(4): 453-462

        [56] Adeniyi A A, Okedeyi O O, Yusuf K A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun River catchments, Ketu, Lagos, Nigeria [J]. Environmental Monitoring and Assessment, 2011, 172(1-4): 561-569

        [57] Tan G H. Residue levels of phthalate esters in water and sediment samples from the Klang River basin [J]. Bulletin of Environmental Contamination and Toxicology, 1995, 54(2): 171-176

        [58] Vitali M, Guidotti M, Macilenti G, et al. Phthalate esters in freshwaters as markers of contamination sources—A site study in Italy [J]. Environment International, 1997, 23(3): 337-347

        [59] Thurén A. Determination of phthalates in aquatic environments [J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(1): 33-40

        [60] Long J L, House W A, Parker A, et al. Micro-organic compounds associated with sediments in the Humber Rivers [J]. Science of the Total Environment, 1998, 210: 229-253

        [61] Dargnat C, Blanchard M, Chevreuil M, et al. Occurrence of phthalate esters in the Seine River estuary (France)[J]. Hydrological Processes, 2009, 23(8): 1192-1201

        [62] Penalver A, Pocurull E, Borrull F, et al. Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection [J]. Journal of Chromatograph A, 2000, 872(1): 191-201

        [63] Polo M, Llompart M, Garcia-Jares C, et al. Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters [J]. Journal of Chromatograph A, 2005, 1072(1): 63-72

        [64] Fromme H, Küchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment [J]. Water Research, 2002, 36(6): 1429-1438

        [65] Guidotti M, Giovinazzo R, Cedrone O, et al. Determination of organic micropollutants in rain water for laboratory screening of air quality in urban environment [J]. Environment International, 2000, 26(1): 23-28

        [66] Sirivithayapakorn S, Thuyviang K. Dispersion and ecological risk assessment of di (2-ethylhexyl) phthalate (DEHP) in the surface waters of Thailand [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 503-506

        [67] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of phthalate esters and PCBs in a marine ecosystem [J]. Environmental Science & Technology, 2006, 40: 3481-3488

        [68] Fatoki O S, Noma A. Solid phase extraction method for selective determination of phthalate esters in the aquatic environment [J]. Water Air and Soil Pollution, 2002, 140(1-4): 85-98

        [70] Gorsuch J W, Staples C A, Brown D, et al. Vapor-phase toxicity of butylbenzyl phthalate to three plant species: White mustard, chinese cabbage, and white clover [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(2): 220-224

        [71] Cheng Z, Nie X P, Wang H S, et al. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption [J]. Environment International, 2013, 57: 75-80

        [72] Wang W X, Zhang Q. Dioxin and phthalate uptake and assimilation by the green mussel Perna viridis [J]. Environmental Pollution, 2013, 178: 455-462

        [73] Mo C H, Cai Q Y, Tang S R, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China [J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2): 181-189

        [74] LeBlanc G A. Acute toxicity of priority pollutants to water flea (Daphnia magna) [J]. Bulletin of Environmental Contamination and Toxicology, 1980, 24: 684-691

        [75] Gledhill W E, Kaley R G, Adams W J, et al. An environmental safety assessment of butyl benzyl phthalate [J]. Environmental Science & Technology, 1980, 14: 301-305

        [76] Brown D, Williams N J. Chronic toxicity to Daphnia magna [R]. Brussels, Belgium: European Council for Plasticisers and Intermediates, CEFIC, 1994

        [77] Yuan S Y, Liu C, Liao C S, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments [J]. Chemosphere, 2002, 49(10): 1295-1299

        The Occurrence and Ecological Risk Assessment of Phthalate Esters (PAEs) in Urban Aquatic Environments of China

        Zhang Lulu1,2,3,*, Liu Jingling2, Ho Kinchung3, Li Hua1

        1. School of Environmental Science and Technology, Hebei University of Science and Technology, Shijiazhuang 050018, China 2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China 3. School of Science and Technology, The Open University of Hong Kong, HKSAR, China

        Received 14 July 2015 accepted 15 October 2015

        Phthalate esters (PAEs) are endocrine disruptors and have been used as plasticizing agents in cellulosics and elastomers. The demand for PAEs has grown rapidly, especially in China. It will lead to much more environmental PAE contamination. PAEs are listed as the chemical that poses significant ecological risk. This paper reviews the literature concerning the pollution status of PAEs, summarizes the main characteristics of PAEs in typical aquatic environment in China, assesses the ecological risk of PAEs to alage, daphnia, and fish by risk quotient (RQ) approach which is based on the predicted no effect concentration (PNEC) and PAE concentrations in aquatic environments. The results showed that PAEs concentrations in most of river and lake waters were higher than 8.00 μg·L-1, which are higher than the concentrations of PAEs in the Environmental Quality Standards for Surface Water (PRC-NS 2002) (DEHP, 8.00 μg·L-1and DBP, 3.00 μg·L-1) and Standards for Drinking Water Quality (PRCNS 2006) (DEHP, 8.00 μg·L-1, DBP, 3.00 μg·L-1and DEP, 3.00 μg·L-1), respectively. With the increasing consumption of PAEs in metropolitan areas, the concentrations of PAEs detected in urban water bodies were obviously higher than those in other areas of China. Compared with other countries, the PAE concentrations in the waters of China are higher than global PAE levels. Furthermore, PAE pollution of water bodies was found not only in surface waters but also in underground waters; for instance, PAE concentrations in the range of 0.00-6.70 μg·L-1were detected in underground waters in Dongguan, Guangdong Province, China. The results of RQs showed that significant (10 ≤ RQ < 100) or very significant (RQ ≥ 100) potential adverse effects for algae, daphnia, and fish in aquatic environments near PAE-based industrial and urban areas, and DBP, DEHP and BBP contributed the most. Thus, the ecological risk of PAEs in Chinese aquatic environments should be considered, especially in areas where commercial plastics are produced.

        phthalate esters (PAEs); urban aquatic environment; pollution level; ecological risk; China

        10.7524/AJE.1673-5897.20150714001

        國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2015CB458900);河北科技大學(xué)博士啟動(dòng)基金(1181200)

        張璐璐(1985-),女,博士,浙江浦江人,講師,研究方向?yàn)槲廴旧鷳B(tài)學(xué),E-mail: zhanglulu19850703@163.com

        2015-07-14 錄用日期:2015-10-15

        1673-5897(2016)2-421-15

        X171.5

        A

        簡(jiǎn)介:張璐璐(1985-),女,工學(xué)博士,講師,主要研究方向?yàn)槲廴旧鷳B(tài)學(xué)及生態(tài)毒理學(xué)。

        張璐璐, 劉靜玲, 何建宗, 等. 中國(guó)典型城市水環(huán)境中鄰苯二甲酸酯類(lèi)污染水平與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 421-435

        Zhang L L, Liu J L, He K C, et al.The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 421-435 (in Chinese)

        猜你喜歡
        負(fù)效應(yīng)鄰苯二甲酸典型
        用最典型的事寫(xiě)最有特點(diǎn)的人
        多項(xiàng)式求值題的典型解法
        QuEChERS-氣相色譜-質(zhì)譜法測(cè)定植物油中16種鄰苯二甲酸酯
        典型胰島素瘤1例報(bào)道
        分析微信公眾平臺(tái)新聞傳播正負(fù)效應(yīng)
        新聞傳播(2018年7期)2018-12-06 08:57:42
        微信公眾平臺(tái)對(duì)新聞傳播產(chǎn)生的正負(fù)效應(yīng)
        新聞傳播(2018年12期)2018-09-19 06:26:52
        青菜對(duì)鄰苯二甲酸酯類(lèi)物質(zhì)的積累和代謝初探
        THE SYMMETRIC POSITIVE SOLUTIONS OF 2n-ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES??
        法制報(bào)道“負(fù)效應(yīng)”的規(guī)避與防范
        新聞傳播(2016年4期)2016-07-18 10:59:22
        鄰苯二甲酸二丁酯的收縮血管作用及其機(jī)制
        av剧情演绎福利对白| 97中文字幕在线观看| 亚洲成a人网站在线看| 男女午夜视频一区二区三区| 亚洲国产日韩一区二区三区四区 | 国产一级淫片a免费播放口 | 久久久人妻一区二区三区蜜桃d| 我和隔壁的少妇人妻hd| 国产成人av一区二区三区| 正在播放国产对白孕妇作爱| 免费va国产高清不卡大片| 一级a免费高清免在线| 日韩人妖视频一区二区| 中文字幕一区日韩精品| 人成午夜免费大片| 国产不卡视频一区二区在线观看| 中文无字幕一本码专区| 亚洲一区二区三区特色视频| 人与禽性视频77777| 久久综合给合久久狠狠狠97色69| 人妻少妇中文字幕久久69堂| 国产毛片精品av一区二区| 欧美男生射精高潮视频网站| 成人三级a视频在线观看| 日本免费一区二区三区在线看| 国产日韩精品视频一区二区三区| 亚洲国产av一区二区四季 | 特级毛片爽www免费版| 美女黄18以下禁止观看| 国产亚洲三级在线视频| 国产片在线一区二区三区| 成人特黄a级毛片免费视频| 精品成人乱色一区二区| 亚洲红杏AV无码专区首页| 久久伊人精品中文字幕有| 国产综合精品一区二区三区| 欧美aa大片免费观看视频| 东京热无码人妻中文字幕| 男女啪啪在线视频网站| 久爱www人成免费网站| 999久久久免费精品国产|