亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        THE SYMMETRIC POSITIVE SOLUTIONS OF 2n-ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES??

        2016-10-14 02:41:02YangyangYuLinlinWangYonghongFan
        Annals of Applied Mathematics 2016年3期
        關(guān)鍵詞:負(fù)效應(yīng)脈沖響應(yīng)沖擊

        Yangyang Yu,Linlin Wang,Yonghong Fan

        (School of Math.and Statistics Science,Ludong University,Shandong 264025,PR China)

        ?

        THE SYMMETRIC POSITIVE SOLUTIONS OF 2n-ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES??

        Yangyang Yu,Linlin Wang?,Yonghong Fan

        (School of Math.and Statistics Science,Ludong University,Shandong 264025,PR China)

        Abstract

        In this paper,we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales.By using induction principle,the symmetric form of the Green's function is established.In order to construct a necessary and sufficient condition for the existence result,the method of iterative technique will be used.As an application,an example is given to illustrate our main result.

        Keywordssymmetric positive solutions;boundary value problems;induction principle;time scales;iterative technique

        2000 Mathematics Subject Classification 34K10;34B27

        1 Introduction

        The theory of measure chains(time scales)was first introduced by Stefan Hilger in his Ph.D.thesis(see[1])in 1988.Although it is a new research area of mathematics,it has already caused a lot of applications,e.g.,insect population models,neural networks,heat transfer and epidemic models(see[2,3]).Some of these models can be found in[4-6].Such as in[5],Q.K.Song and Z.J.Zhao discussed the problem on the global exponential stability of complex-valued neural networks with both leakage delay and time-varying delays on time scales.By constructing appropriate Lyapunov-Krasovskii functionals and using matrix inequality technique,a delay-dependent condition assuring the global exponential stability for the considered neural networks was established.

        In the past few years,more and more scholars concentrated on a positive solution of boundary value problems for differential equations on time scales(see[7-12]).In[13,14],by using some fixed point theorems,the existences of pseudo-symmetric solutions of dynamic equations on time scales were obtained.In[15,16],the fourth order integral boundary value problems on time scales for an increasing homeomorphism and homomorphism were discussed.Recently,the conditions for the existence of symmetric positive solutions of boundary value problems were constructed in[17,18]. By applying an iterative technique,the existence and uniqueness of symmetric positive solutions of the 2n-order nonlinear singular boundary value problems of differential equation

        were obtained.

        In this paper,we are concerned with the existence of symmetric positive solutions of the following 2n-order boundary value problems(BVP)on time scales

        where f:[0,σ(1)]×[0,∞)→[0,∞)is continuous and f(t,u)may be singular at u=0,t=0(and/or t=σ(1)).If a function u:[0,σ(1)]→R is continuous and satisfies u(t)=u(σ(1)-t)for t∈[0,σ(1)],then we say that u(t)is symmetric on[0,σ(1)].By a symmetric positive solution of BVP(1),we mean a symmetric function u∈C2n[0,σ(1)]such that(-1)iuΔ2i(t)>0 for t∈(0,σ(1))and i= 0,1,···,n-1,and u(t)satisfies BVP(1).We assume that σ(1)and 0 are all right dense.Throughout this paper we let T be any time scale(nonempty closed subset of R)and[a,b]be a subset of T such that[a,b]={t∈T:a≤t≤b}.T satisfies

        and it is easy to see that T=R or T=hZ satisfies(2).And thuseT={σ(t)|t∈T}= T.

        2 Preliminary

        Before discussing the problems of this paper,we introduce some basic materials for time scales which are useful in proving our main results.These preliminaries can be found in[17-20].

        Lemma 2.1[20](Substitution)Assume that ν:T→R is strictly increasing andis a time scale.If f:T→ R is an rd-continuous function and ν is differentiable with rd-continuous derivative,then for a,b∈T,

        Throughout this paper,similar to[18],we assume that:

        (A1)For(t,u)∈[0,σ(1)]×[0,∞),f(t,u)is symmetric in t,that is,f satisfies

        (A2)For(t,u)∈[0,σ(1)]×[0,∞),f is non-decreasing with respect to u and there exists a constant λ∈(0,1),such that if σ∈(0,1],then

        It is easy to see that(4)implies that if σ∈[1,∞),then

        For convenience,in this paper we let

        Lemma 2.2 Let v∈C[0,σ(1)],then the following BVP

        has a unique solution

        where Gn(t,s)is defined in[0,σ(1)]×[0,σ(1)],and it follows from[19]that

        which satisfies

        It is easy to see

        Lemma 2.3 For any t,s∈[0,σ(1)],from(2)we have

        Proof For any t,s∈[0,σ(1)],when n=1,it is easy to see G1(σ(1)-t,σ(1)-σ(s))=G1(t,s).

        We consider Gn+1(σ(1)-t,σ(1)-σ(s)).

        From(13),we obtain

        Therefore,the proof of Lemma 2.3 is complete.

        Remark 2.1 For any t,s∈[0,1],we have

        in a real space R,with the Green's function

        Let E be the Banach space C(2n)[0,σ(1)],and define

        and there exist constants lu,Luwith 0<lu<1<Lusuch that

        圖4右下表示LNAPI_SA對(duì)LNAPI_SA的脈沖響應(yīng)結(jié)果,表明CPI給自身一個(gè)沖擊,在第1期時(shí)便立即響應(yīng),產(chǎn)生正響應(yīng),且響應(yīng)的效果逐漸增強(qiáng),在第2期達(dá)到最大;之后響應(yīng)的效果逐漸減弱,在第5期時(shí)變?yōu)?;之后繼續(xù)下跌,產(chǎn)生負(fù)效應(yīng);在第7期時(shí)達(dá)到最大負(fù)效應(yīng);之后回升至第12期時(shí)再次變?yōu)?;之后趨于平穩(wěn)。這說明CPI受自身影響大,尤其是在CPI上升后的3個(gè)月內(nèi)影響最大,但在1年后產(chǎn)生了負(fù)影響。

        Proof The proof is similar to that of Lemma 2.3 in[18].

        Lemma 2.5 If u(t)is a symmetric solution of BVP(1),then there exist constants c1,c2with 0<c1<1<c2such that

        ProofFor c1e(t)≤u(t),since u(t)is a symmetric positive solution of(1),we obtain u(t)>0 and uΔΔ((t))≤0 for t∈[0,σ(1)].Choose a positive numberthen Lemma 2.4 implies c1e(t)≤u(t),t∈[0,σ(1)].

        and

        The symmetry of u(t)implies thatChoose a number c2>Then

        Clearly,(15)holds,and this completes the proof of Lemma 2.5.

        Lemma 2.6[20]Let [a,b]∈T,and f be right-dense continuous.If[a,b]consists of only isolated points,then

        3 The Existence Result

        Theorem 3.1Assume(A1)and(A2)hold.Then BVP(1)has at least one symmetric positive solution if and only if

        From(1),for t∈(0,σ(1)),when n is oddand when n is even,Then

        By(4),(5),(15),(18)and(19),

        and

        Now,(17)follows from(20)and(21).Now assume that(17)holds.We will show that BVP(1)has at least one symmetric positive solution.

        Define an operator T:E→E by

        where Gn(t,s)is defined by(9)and(10).It is clear that u is a solution if and only if u is a fixed point of T.

        Claim 1 The operator T:P→P is completely continuous and non-decreasing.

        In fact,for u∈P,it is obvious that Tu∈E,Tu(0)=Tu(σ(1))=0,Tu(t)>0,for t∈(0,σ(1)).From(22),we have

        Thus,for any u∈P,from(4),(5),(10),(11)and(17),we obtain that for t∈[0,σ(1)],

        and

        where LTuand lTuare positive constants satisfying

        Thus,it follows from(23)and(24)that there exist constants LTuand lTuwith 0<l<1<Lsuch that

        Therefore,Tu(t)∈P,that is,T:P→P.A standard argument can be used to show that T:P→P is completely continuous.

        From(A2),it is easy to see that T is non-decreasing with respect to u.Hence,Claim 1 holds.

        Claim 2 Let δ and γ be fixed numbers satisfying

        and assume

        Then,

        and there exists a u?∈P such that

        In fact,0>lTe<1<LTesince Te∈P.So 0<δ<1<γ.From(27),we have u0,v0∈P and u0≤v0.

        On the other hand,

        Since u0≤v0and T is nondecreasing,by induction,(27)holds.

        that for any natural number n,

        Thus,for each natural numbers n and p?,we have

        which implies that there exists a u?∈P such that(30)holds,and Claim 2 holds.

        Let n→∞in(28),we obtain u?(t)=Tu?(t),which is a symmetric positive solution of BVP(1).Thus,the proof of Theorem 3.1 is complete.

        4 Example

        Example 4.1 Consider

        where α∈R,0< β<1.Let f(σ(t),uσ(t))= (σ(t))α(σ(1)-σ(t))αuβ(σ(t)),(t,u)∈[0,σ(1)]×[0,∞),then,for α>-β-1,there is at least one symmetric positive solution of BVP(31).

        Note that the function f satisfies assumptions(A1)and(A2).In fact,for(t,u)∈[0,σ(1)]×[0,∞),f(σ(1)-σ(t),uσ(t))=f(σ(t),uσ(t)),f is non-decreasing with respect to u and if σ∈(0,1],there exists a constant λ with 0<β≤λ<1,such that f(σ(t),σuσ(t))≥σλf(σ(t),uσ(t)).

        Thus,from Theorem 3.1,there is at least one symmetric positive solution of BVP(31)if and only if

        In fact,the integration converges if and only if α>-β-1,then(32)holds.That is,for α>-β-1,there is at least one symmetric positive solution of BVP(31).

        5 Discussion

        Theorem 5.1Assume that(A1)and(A2)hold.Then BVP(1)has at least one symmetric positive solution if and only if

        In particular,letting

        it is easy to see that f satisfies assumptions(A1)and(A2),and there is

        Thus,from Theorem 5.1,BVP(1)has at least one symmetric positive solution.

        References

        [1]S.Hilger,Ein Mabkettenkalk¨ul mit Anwendung auf Zentrumsmannigfaltigkeiten,Ph.D. thesis,Universit¨at of W¨urzburg,1988.

        [2]R.P.Agarwal,M.Bohner,W.T.Li,Nonoscillation and Oscillation Theory for Functional Differential Equations,Pure Appl.Math.,Dekker,F(xiàn)lorida,2004.

        [3]B.Kaymak?calan,V.Lakshmikantham,S.Sivasundaram,Dynamic Systems on Measure Chains,Kluwer Academic Publishers,Boston,1996.

        [4]Q.Z.Xiao,B.X.Dai,Dynamics of an impulsive predator-prey logistic population model with state-dependent,Applied Mathematics and Computation,259(2015),220-230.

        [5]Q.K.Song,Z.J.Zhao,Stability criterion of complex-valued neural networks with both leakage delay and time-varying delays on time scales,Neurocomputing,171(2016),179-184.

        [6]L.L.Qian,E.Winfree,J.Bruck,Neural network computation with DNA strand displacement cascades,Nature,475(2011),368-372.

        [7]H.R.Sun,L.T.Tang,Y.H.Wang,Eigenvalue problem for p-Laplacian three-point boundary value problems on time scales,J.Math.Anal.Appl.,331(2007),248-262.

        [8]E.Cetin,S.Gulsan Topal,Higher order boundary value problems on time scales,J. Math.Anal.Appl.,334(2007),876-888.

        [9]H.R.Sun,W.T.Li,Positive solutions for nonlinear three-point boundary value problems on time scales,J.Math.Anal.Appl.,299(2004),508-524.

        [10]Y.B.Sang,H.Su,Several existence theorems of nonlinear m-point boundary value problem for p-Laplacian dynamic equations on time scales,J.Math.Anal.Appl.,340(2008),1012-1026.

        [11]H.R.Sun,W.T.Li,Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales,J.Differential Equations,240(2007),217-248.

        [12]L.Erbe,R.Mathsen,A.Peterson,Existence,multiplicity,and nonexistence of positive solutions to a differential equation on a measure chain,J.Comput.Appl.Math.,113:1-2(2000),365-380.

        [13]Y.H.Su,Multiple positive pseudo-symmetric solutions of p-Laplacian dynamic equations on time scales,Math.Comput.Modelling,49(2009),1664-1681.

        [14]Y.H.Su,W.T.Li,H.R.Sun,Triple positive pseudo-symmetric solutions of threepoint BVPs for p-Laplacian dynamic equations on time scales,Nonlinear Anal.,68(2008),1442-1452.

        [15]N.A.Hama,F(xiàn).Yoruk,Symmetric positive solutions of fourth order integral BVP for an increasing homeomorphism and homomorphism with sign-changing nonlinearity on time scales,Comput.Math.Appl.,59(2010),3603-3611.

        [16]E.C?etin,F(xiàn).Serap Topal,Symmetric positive solutions of fourth order boundary value problems for an increasing homeomorphism and homomorphism on time-scales,Comput.Math.Appl.,63(2012),669-678.

        [17]X.L.Lin,Z.Q.Zhao,Existence and uniqueness of symmetric positive solutions of 2norder nonlinear singular boundary value problems,Appl.Math.Lett.,26(2013),629-698.

        [18]Y.Luo,Z.G.Luo,A necessary and sufficient condition for the existence of symmetric positive solutions of higher-order boundary value problems,Appl.Math.Lett.,25(2012),862-868.

        [19]L.J.Kong,Q.K.Kong,Even order nonlinear eigenvalue problems on a measure chain,Nonlinear Anal.,52(2003),1891-1909.

        [20]M.Bohner and A.Peterson,Dynamic Equations on Time Scales:An Introduction with Applications,Birkh¨auser,Boston,2001.

        (edited by Liangwei Huang)

        ?Supported by NNSF of China(11201213,11371183),NSF of Shandong Province(ZR2010AM022,ZR2013AM004),the Project of Shandong Provincial Higher Educational Science and Technology(J15LI07),the Project of Ludong University High-Quality Curriculum(20130345)and the Teaching Reform Project of Ludong University in 2014(20140405).

        ?Manuscript received December 4,2015

        ?Corresponding author.E-mail:wangll 1994@sina.com

        猜你喜歡
        負(fù)效應(yīng)脈沖響應(yīng)沖擊
        基于重復(fù)脈沖響應(yīng)的發(fā)電機(jī)轉(zhuǎn)子繞組匝間短路檢測技術(shù)的研究與應(yīng)用
        分析微信公眾平臺(tái)新聞傳播正負(fù)效應(yīng)
        新聞傳播(2018年7期)2018-12-06 08:57:42
        微信公眾平臺(tái)對(duì)新聞傳播產(chǎn)生的正負(fù)效應(yīng)
        新聞傳播(2018年12期)2018-09-19 06:26:52
        淺談多媒體在高中語文教學(xué)中負(fù)效應(yīng)的解決對(duì)策
        法制報(bào)道“負(fù)效應(yīng)”的規(guī)避與防范
        新聞傳播(2016年4期)2016-07-18 10:59:22
        脈沖響應(yīng)函數(shù)下的我國貨幣需求變動(dòng)與決定
        基于有限元素法的室內(nèi)脈沖響應(yīng)的仿真
        電大理工(2015年3期)2015-12-03 11:34:12
        奧迪Q5換擋沖擊
        奧迪A8L換擋沖擊
        一汽奔騰CA7165AT4尊貴型車換擋沖擊
        亚洲另类自拍丝袜第五页| 国产福利不卡视频在线| 青青草是针对华人绿色超碰| 91麻豆精品久久久影院| 久久精品国产亚洲av蜜点| 国产精品久线在线观看| 亚洲综合久久成人a片| 欧美老熟妇又粗又大| 91自国产精品中文字幕| 中文字幕亚洲高清视频| 久久理论片午夜琪琪电影网| 亚洲欧美在线观看| 国产亚洲午夜精品| 日本视频一区二区三区三州| 97cp在线视频免费观看| 亚洲日韩av无码| 国产精品毛片无遮挡高清| 国产成人综合久久三区北岛玲 | 最近日本中文字幕免费完整| 久久天天躁狠狠躁夜夜爽蜜月| 亚洲AV无码中文AV日韩A| 蜜桃人妻午夜精品一区二区三区| 国产免费av手机在线观看片| 少妇无码av无码一区| 免费超爽大片黄| 国产精品不卡在线视频| 亚洲av无一区二区三区久久蜜桃| 欧美大屁股xxxx高潮喷水| 好吊色欧美一区二区三区四区 | 国产欧美日韩综合一区二区三区 | 日本熟妇美熟bbw| 中文字幕人妻被公上司喝醉| 日本黄页网站免费大全| 久久青草国产免费观看| 亚洲香蕉久久一区二区| 国产一级二级三级在线观看av| 国产精品扒开腿做爽爽爽视频| 美女胸又www又黄的网站| 日韩高清av一区二区| 亚洲一区二区刺激的视频| 亚洲中文字幕久久无码精品|