亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        生物炭對(duì)土壤氮循環(huán)的影響研究進(jìn)展

        2016-11-28 09:03:41王洪媛蓋霞普翟麗梅劉宏斌
        生態(tài)學(xué)報(bào) 2016年19期
        關(guān)鍵詞:生物影響研究

        王洪媛, 蓋霞普, 翟麗梅, 劉宏斌

        中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 農(nóng)業(yè)部面源污染控制重點(diǎn)實(shí)驗(yàn)室,北京 100081

        ?

        生物炭對(duì)土壤氮循環(huán)的影響研究進(jìn)展

        王洪媛, 蓋霞普, 翟麗梅, 劉宏斌*

        中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 農(nóng)業(yè)部面源污染控制重點(diǎn)實(shí)驗(yàn)室,北京 100081

        生物炭;土壤氮循環(huán);文獻(xiàn)計(jì)量學(xué)

        科學(xué)界對(duì)生物炭的研究源于南美亞馬遜盆地黑土(Terra Preta)的發(fā)現(xiàn)[1]。生物炭是指在無氧或少氧條件下各種生物質(zhì)(木材、草、玉米稈、麥稈、種殼、糞便、樹葉等)經(jīng)過高溫處理,部分生物質(zhì)轉(zhuǎn)化為油和氣后產(chǎn)生的一類富碳產(chǎn)物[2]。生物炭含碳量豐富,具有高度的物理穩(wěn)定性、生物化學(xué)抗分解性[2- 3]以及具有較大的比表面積、多孔結(jié)構(gòu)[4]等優(yōu)良特性,不但有利于農(nóng)田土壤固持養(yǎng)分,提高養(yǎng)分利用率[5- 6],而且儲(chǔ)存于土壤,能大幅度提升土壤碳庫,是碳封存的一個(gè)重要手段[7- 9]。另外,有研究指出生物炭能夠減少N2O和CH4等溫室氣體的排放[10],Wolf等[11]認(rèn)為,全面應(yīng)用生物炭能夠削減12%的人為產(chǎn)生溫室氣體(CO2、CH4、N2O)。

        圖1 土壤氮循環(huán)示意圖[12]Fig.1 The diagram of soil nitrogen cycling[12]1: 生物固氮;2: 有機(jī)氮?dú)w還; 3: 腐殖化; 4- 1: 土壤腐殖質(zhì)礦化; 4- 2: 植物殘?bào)w分解; 5: 自養(yǎng)硝化作用; 6- 1: 銨態(tài)氮固持; 6- 2: 硝態(tài)氮固持的吸附與解;吸8- 1: 溶液的吸收; 8- 2: 吸附態(tài)的吸收; 8- 3: 硝態(tài)氮的吸收; 9: 土壤中液/氣相氨的平衡的固定; 11: 反硝化作用; 12: 氨揮發(fā)的淋洗; 14- 1: 氨沉降; 14- 2: 大氣硝酸鹽沉降

        因此,本文基于ISI Web of Science數(shù)據(jù)庫,采用文獻(xiàn)計(jì)量學(xué)方法,針對(duì)“生物炭對(duì)土壤氮循環(huán)影響”及其分支技術(shù)進(jìn)行文獻(xiàn)檢索、數(shù)據(jù)整理、分類以及主題分析,并對(duì)檢索出的文獻(xiàn)進(jìn)行兩個(gè)層面的分析:一是整體態(tài)勢(shì)分析,主要是對(duì)該領(lǐng)域全部年數(shù)據(jù)進(jìn)行輪廓性的年代、國家、機(jī)構(gòu)和期刊分布分析;二是具體分支技術(shù)分析,詳細(xì)介紹分支技術(shù)的研究發(fā)展現(xiàn)狀及趨勢(shì)。

        1 整體態(tài)勢(shì)分析

        以ISI Web of Science數(shù)據(jù)庫中全部期刊為檢索對(duì)象,檢索時(shí)間截止到2014年6月,檢索關(guān)鍵詞為“biochar/charcoal/blackchar/black carbon” and “nitrogen cycling/nitrogen-cycling”,共檢索到2468篇論文。其中,期刊論文(Article)2188篇、綜述性論文(Review)93篇,其它類論文177篇。對(duì)檢索出的文獻(xiàn)數(shù)據(jù)采用美國湯森路透公司文獻(xiàn)分析工具Thomson data analyzer(簡(jiǎn)稱TDA)和Excel 2010進(jìn)行分析。

        1.1 年代分布

        從圖2可以看出,20世紀(jì)初就有關(guān)于生物炭對(duì)土壤氮循環(huán)影響的研究報(bào)道,發(fā)文量呈持續(xù)增長的發(fā)展態(tài)勢(shì),但前期發(fā)展緩慢,年發(fā)文量均在10篇以下;進(jìn)入20世紀(jì)90年代后,相關(guān)研究發(fā)文量增長迅速,年增長率平均在15%左右,2013年年發(fā)文量突破260篇??梢?隨著全球氣候變化加劇,糧食及生態(tài)環(huán)境安全更加嚴(yán)重,尤其是目前嚴(yán)峻的氮肥資源緊缺及水體富營養(yǎng)化的形勢(shì),越來越多的專家開始關(guān)注生物炭對(duì)土壤氮循環(huán)過程的影響作用[15- 17]。

        圖2 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文年代分布Fig.2 The time distribution of SCI papers about the effect of biochar on the soil nitrogen cycling

        1.2 國家(或地區(qū))分布

        全球共有100多個(gè)國家/地區(qū)開展了生物炭對(duì)土壤氮循環(huán)影響的研究,其中前20位的國家排名見圖3。發(fā)文量名列前10位的國家分別是美國、中國、加拿大、英國、德國、日本、新西蘭、荷蘭、丹麥和印度,占發(fā)文總量的85.2%。尤其,美國在該主題的研究中占有絕對(duì)優(yōu)勢(shì),其發(fā)文量占全部論文的19.6%;中國在該領(lǐng)域的發(fā)文量排名第2,發(fā)文量占總量的13.4%。

        從研究區(qū)域上看,歐洲在生物炭對(duì)土壤氮循環(huán)影響的研究中占有明顯的優(yōu)勢(shì),整體實(shí)力雄厚,排名進(jìn)入前20位的歐洲國家有英國、德國、荷蘭、丹麥、法國、瑞典、意大利、比利時(shí)和奧地利,發(fā)文量占總量的39.7%;北美洲次之,美國和加拿大的發(fā)文量占總量的28.4%;東亞的中國和日本,發(fā)文量占總量的21.2%。

        圖3 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文國家/地區(qū)分布Fig.3 The country/region distribution of SCI papers about the effect of biochar on the soil nitrogen cycling

        從圖4中可以看出,發(fā)文量前4位國家中,美國最早在生物炭對(duì)土壤氮循環(huán)的影響方面開展相關(guān)研究,可追溯到1917年,其年發(fā)文量處于全球領(lǐng)先地位,并持續(xù)到2010年。進(jìn)入20世紀(jì)90年代后,加拿大和英國相繼進(jìn)入該研究領(lǐng)域,年發(fā)文量呈波動(dòng)上升的態(tài)勢(shì)。在全球良好的科研環(huán)境條件下,雖然中國起步較晚,但起點(diǎn)較高、發(fā)展勢(shì)頭強(qiáng)勁,近年來,中國的年發(fā)文量已超過美國,成為全球第一的年發(fā)文大國。

        圖4 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文前4位國家年代分布Fig.4 The time distribution of the former four countries of SCI papers about the effect of biochar on the soil nitrogen cycling

        1.3 研究機(jī)構(gòu)分布

        全球有1500多家研究機(jī)構(gòu)活躍在生物炭對(duì)土壤氮循環(huán)影響的研究領(lǐng)域。在前20位研究機(jī)構(gòu)中(表1),中國和美國各4家,加拿大和新西蘭各3家,丹麥、日本和英國各2家,荷蘭、法國、瑞典和德國各有1家。排名前5位的研究機(jī)構(gòu)依次是中國科學(xué)院、加拿大農(nóng)業(yè)與農(nóng)產(chǎn)食品部(Agriculture and Agri-Food Canada,AAFC)、美國農(nóng)業(yè)部農(nóng)業(yè)研究服務(wù)署(USDA,ARS)、新西蘭林肯大學(xué)(Lincoln University,LC)和荷蘭瓦赫寧根大學(xué)及研究中心(Wageningen University and Research Center,UWRC)。其中,中國科學(xué)院的發(fā)文量最多,達(dá)158篇,遠(yuǎn)遠(yuǎn)領(lǐng)先于其他研究機(jī)構(gòu),為該研究領(lǐng)域的第一研究梯隊(duì);加拿大農(nóng)業(yè)與農(nóng)產(chǎn)食品部與美國農(nóng)業(yè)部農(nóng)業(yè)研究服務(wù)署的發(fā)文量相當(dāng),分別為119篇和118篇,形成了該研究領(lǐng)域的第二研究梯隊(duì)。進(jìn)入排名前20位的中國研究機(jī)構(gòu)還有南京農(nóng)業(yè)大學(xué)、中國農(nóng)業(yè)科學(xué)院和中國農(nóng)業(yè)大學(xué),分別排在第10、13位和第15位。另外,浙江大學(xué)以17篇的發(fā)文量排在全球第35位。

        表1 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文研究機(jī)構(gòu)分布

        圖5 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文前5位機(jī)構(gòu)年代分布Fig.5 The research institutions distribution of the former five countries of SCI papers about the effect of biochar on the soil nitrogen cycling

        分析國際前5位研究機(jī)構(gòu)歷年發(fā)文情況(圖5),20世紀(jì)90年代初期各研究機(jī)構(gòu)在生物炭對(duì)土壤氮循環(huán)影響方面的研究均處于起步階段;90年代中后期,各機(jī)構(gòu)的發(fā)文量開始增長。由圖5可以看出,加拿大農(nóng)業(yè)與農(nóng)產(chǎn)食品部(AAFC)最早開展相關(guān)研究,其次為美國農(nóng)業(yè)部農(nóng)業(yè)研究服務(wù)署(ARS),中國科學(xué)院(CAS)在90年代末期開展了相關(guān)研究,近年來發(fā)展迅速。

        國內(nèi)排名相對(duì)靠前的前5位研究機(jī)構(gòu)分別是中國科學(xué)院、南京農(nóng)業(yè)大學(xué)、中國農(nóng)業(yè)科學(xué)院、中國農(nóng)業(yè)大學(xué)和浙江大學(xué)。由圖6的機(jī)構(gòu)-年發(fā)文量情況可以看出,中國科學(xué)院和中國農(nóng)業(yè)科學(xué)院最早開展相關(guān)研究。另外,中國科學(xué)院和南京農(nóng)業(yè)大學(xué)的年發(fā)文量呈現(xiàn)連續(xù)性的特征,而其余研究機(jī)構(gòu)的相關(guān)研究時(shí)斷時(shí)續(xù)。

        1.4 期刊分布

        該主題發(fā)表的論文涉及期刊近500種,發(fā)文量前20位期刊情況見表2。其中,發(fā)文量最多的前5種期刊分別是:SOIL BIOLOGY & BIOCHEMISTRY(127篇)、AGRICULTURE ECOSYSTEMS & ENVIRONMENT(124篇)、NUTRIENT CYCLING IN AGROECOSYSTEMS(105篇)、JOURNAL OF ENVIRONMENTAL QUALITY(99篇)和PLANT AND SOIL(88篇)。該5種期刊的平均影響因子為2.985(2015年),其中,SOIL BIOLOGY & BIOCHEMISTRY和AGRICULTURE ECOSYSTEMS & ENVIRONMENT兩種期刊2015年影響因子均在3.2以上。

        綜上所述,自20世紀(jì)90年代后,國際上越來越多的專家開始關(guān)注生物炭對(duì)土壤氮素遷移轉(zhuǎn)化過程的影響作用,有1500多家研究機(jī)構(gòu)活躍在生物炭對(duì)土壤氮循環(huán)影響作用研究領(lǐng)域。美國、加拿大、英國等歐美國家在該領(lǐng)域的研究中占有明顯的優(yōu)勢(shì),而自2010年以來,中國已成為該領(lǐng)域全球第一的年發(fā)文大國。

        圖6 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文前5位中國機(jī)構(gòu)-年代分布Fig.6 The research institutions distribution of the former five countries of SCI papers about the effect of biochar on the soil nitrogen cycling in China

        2 分支技術(shù)分析

        2.1 論文發(fā)表情況

        圖7可以看出,生物炭對(duì)土壤N2O排放的影響方面發(fā)文量最多,為1237篇,占總發(fā)文量的50.1%;其次是生物炭對(duì)土壤氮肥利用率的影響主題,發(fā)文量為582篇,占總發(fā)文量的23.6%;生物炭對(duì)土壤硝化速率的影響主題的發(fā)文量為280篇,排在第3位;其余3類分支技術(shù)的發(fā)文量相對(duì)較少,在150篇以下。

        表2 生物炭對(duì)土壤氮循環(huán)的影響主題SCI論文期刊分布

        圖7 生物炭對(duì)土壤氮循環(huán)的影響主題分支技術(shù)SCI論文量Fig.7 The number of SCI papers of the branch technology about the effect of biochar on the soil nitrogen cycling

        圖8 生物炭對(duì)土壤氮循環(huán)的影響主題分支技術(shù)SCI論文年代分布Fig.8 The time distribution of SCI papers of the branch technology about the effect of biochar on the soil nitrogen cycling

        2.2 研究進(jìn)展

        2.2.1 生物炭對(duì)土壤N2O排放的影響

        N2O作為產(chǎn)生溫室效應(yīng)的主要組成氣體之一,可導(dǎo)致臭氧層破壞。目前,生物炭對(duì)土壤N2O排放影響的研究結(jié)果爭(zhēng)議性很大,有研究表明,添加生物炭能夠減少土壤N2O的排放,而也有研究認(rèn)為,生物炭對(duì)土壤N2O排放無影響,甚至促進(jìn)N2O排放(表3)。

        表3 生物炭對(duì)土壤N2O排放的影響

        生物炭減少N2O排放的作用機(jī)制一般認(rèn)為是生物炭增加了土壤pH,促使反硝化過程中N2O:N2向著有利于產(chǎn)生N2的方向變化[20],也有研究認(rèn)為是增加了土壤通氣性和土壤碳的穩(wěn)定性[18,22]。Yanai等[22]認(rèn)為,生物炭對(duì)N2O的排放受控于土壤的初始含水孔隙率,含水孔隙率較低的條件下(73%),生物炭能夠增強(qiáng)土壤的通氣性,降低土壤中的反硝化反應(yīng),進(jìn)而減少N2O的排放;當(dāng)含水孔隙率增加到83%,生物炭無法通過促進(jìn)土壤通氣性降低土壤反硝化速率,反而會(huì)促進(jìn)N2O的產(chǎn)生??傊?生物炭能夠顯著影響土壤N2O的排放,而這種影響與生物炭的類型、老化過程以及土壤類型及其含水孔隙率等密切相關(guān)[15]。

        2.2.2 生物炭對(duì)氮肥利用率的影響

        隨著人們對(duì)生物炭認(rèn)識(shí)和研究的不斷深入,生物炭在農(nóng)業(yè)生產(chǎn)上的應(yīng)用也逐漸受到重視(表4)。生物炭提高氮肥利用率[23-24],促進(jìn)作物增產(chǎn)的作用已得到大量試驗(yàn)證明[25, 17]。然而也有研究表明添加生物炭對(duì)作物氮肥利用率沒有提高,甚至發(fā)生抑制作用[28, 31-32]。

        表4 生物炭對(duì)氮肥利用率的影響

        生物炭提高作物氮肥利用率的作用機(jī)理眾說紛紜,主要包括生物炭改善了土壤結(jié)構(gòu),提高了土壤pH值、陽離子交換能力[26]和可利用磷含量[27,33],以及減緩了土壤的鋁毒作用等[29-30]。也有研究表明,氮肥在土壤中會(huì)發(fā)生微生物的固持作用或者被生物炭表面的有機(jī)物質(zhì)吸附[26,33],反而降低了作物的吸氮量??傮w而言,盡管生物炭對(duì)不同土壤類型、不同作物的氮肥利用率存在差異,但其對(duì)土壤肥力的長效作用已經(jīng)得到普遍認(rèn)可。

        2.2.3 生物炭對(duì)土壤硝化速率的影響

        生物炭對(duì)土壤硝化速率的影響作用結(jié)論不一,有研究認(rèn)為生物炭能夠促進(jìn)土壤硝化速率,而也有研究認(rèn)為,生物炭會(huì)抑制土壤硝化速率,且這種抑制作用受作用時(shí)間以及土壤類型等的影響很大(表5)。

        表5 生物炭對(duì)土壤硝化速率的影響

        關(guān)于生物炭提高土壤硝化速率的作用機(jī)制解釋很多,有研究認(rèn)為,生物炭能夠吸附土壤中大量溶解態(tài)苯酚和萜烯等抑制硝化反應(yīng)的化合物[34,40];也有研究認(rèn)為,生物炭能夠抑制土壤中影響硝化細(xì)菌群落結(jié)構(gòu)多樣性的因子[38],促進(jìn)土壤中氨氧化細(xì)菌的豐富度和活性等[36],進(jìn)而提高土壤硝化速率。生物炭中含有的對(duì)微生物具有毒性作用的化合物(如多環(huán)芳烴類)是抑制土壤硝化速率的主要作用機(jī)制,但隨著生物炭老化過程的延長,能夠減弱這種抑制作用[16]。由此可見,生物炭可通過改變土壤微生物活性以及生物炭自身老化等途徑影響土壤硝化速率,進(jìn)而影響土壤供氮水平。

        表6 生物炭對(duì)/NH3吸附的影響

        2.2.6 生物炭對(duì)土壤微生物氮素固持作用的影響

        表7 生物炭對(duì)吸附的影響

        綜上所述,生物炭對(duì)土壤氮循環(huán)的影響,既決定于生物炭自身的性質(zhì),也決定于特定土壤的理化性質(zhì)和作物生物學(xué)屬性等諸多方面,復(fù)雜的交互作用及其過程也會(huì)使試驗(yàn)結(jié)果不盡一致。因此,生物炭應(yīng)用于農(nóng)業(yè)生產(chǎn),應(yīng)該因地、因作物、因具體條件而異。

        3 展望

        隨著科學(xué)界對(duì)農(nóng)業(yè)面源污染領(lǐng)域的重視,生物炭在土壤氮循環(huán)過程中的作用機(jī)制受到越來越多的關(guān)注,然而,目前已有的相互矛盾的研究結(jié)果,充分表明了目前關(guān)于生物炭對(duì)土壤氮循環(huán)影響了解的知識(shí)是極為有限的,還存在許多的不確定性和未解決問題,已有的科學(xué)結(jié)論和問題需要更進(jìn)一步的研究來驗(yàn)證和豐富,針對(duì)“生物炭對(duì)土壤氮循環(huán)影響”6個(gè)分支主題,作者做了以下幾點(diǎn)展望:

        (1)生物炭具有固碳、減緩全球氣候變化和降低溫室氣體排放等作用,將生物炭對(duì)碳氮循環(huán)的影響有機(jī)結(jié)合起來,將為農(nóng)業(yè)發(fā)展及環(huán)境保護(hù)的和諧發(fā)展提供可借鑒意義。

        (2)已有的短、中期試驗(yàn)結(jié)果表明施用生物炭能夠提高作物肥料利用率,但目前仍缺少長期定位試驗(yàn)的結(jié)論,需要大量的長期監(jiān)測(cè)試驗(yàn)。

        (3)不同的研究者關(guān)于“生物炭對(duì)土壤硝化速率的影響作用研究”得到的結(jié)論不同,缺少關(guān)鍵作用機(jī)制的研究。如,生物炭對(duì)土壤氮相關(guān)功能微生物的主要作用機(jī)制是什么,生物炭如何影響其硝化和反硝化反應(yīng)等關(guān)鍵問題仍沒有答案。

        (4)進(jìn)一步在大氣-土壤-植物生態(tài)系統(tǒng)中開展土壤氮素的定性和定量研究,為明確生物炭對(duì)土壤微生物氮素固持作用機(jī)制提供有力手段。

        [1] Sombroek W. Amazon soils: A reconnaissance of the soils of the Brazilian Amazon region [R]. Wageningen: Center for Agricultural Publications and Documentation, 1966.

        [2] Lehmann J, Joseph S. Biochar for environmental management: An introduction [M]. In Lehmann J and Joseph S, eds. Biochar for environmental management, science and technology, London: Earthscan Publications Ltd., 2009: 1- 12.

        [3] Xie T, Reddy K R, Wang C, Yargicoglu E, Spokas K. Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 2015, 45: 939- 969.

        [4] Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O′Neill B, Skjemstad J O, Thies J, Luizao F J, Petersen J, Neves E G. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 2006, 70(5): 1719- 1730.

        [5] Zhang A, Bian R, Hussain Q, Li L, Pan G, Zheng J, Zhang X, Zheng J. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems & Environment, 2013, 173: 37- 45.

        [6] Zhai L, CaiJi Z, Liu J, Wang H, Ren T, Gai X, Xi B, Liu H. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 2015, 51(1): 113- 122.

        [7] Van Zwieten L, Kimber S W L, Morris S G, Singh B P, Grace P R, Scheer C, Rust J, Downie A E, Cowie A L. Pyrolysing poultry litter reduces N2O and CO2fluxes. Science of the Total Environment, 2013, 465: 279- 287.

        [8] Hu Y, Wu F, Zeng D, Chang S. Wheat straw and its biochar had contrasting effects on soil C and N cycling two growing seasons after addition to a Black Chernozemic soil planted to barley. Biology and Fertility of Soils, 2014, 50: 1291- 1299.

        [9] Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS ONE, 2014, 9(1).

        [10] Cayuela M L, Van Zwieten L, Singh B P, Jeffery S, Roig A, Sanchez-Monedero M A. Biochar′s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 2014, 191:5- 16.

        [11] Woolf D, Amonette J E, Stree-Perrott F A, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1: 56.

        [12] 呂貽忠,李保國. 土壤學(xué). 北京:中國農(nóng)業(yè)出版社,2006.

        [13] Canas-Guerrero I, Mazarron F R, Pou-Merina A, Calleja-Perucho C, Diaz-Rubio G. Bibliometric analysis of research activity in the “Agronomy” category from the Web of Science, 1997- 2011. European Journal of Agronomy, 2013, 50: 19- 28.

        [14] Sun J S, Wang M H, Ho Y S. A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin, 2012, 64(1): 13- 21.

        [15] Singh B P, Hatton B J, Singh B, Cowie A L, Kathuria A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 2010, 39(4): 1224- 1235.

        [16] Clough T J, Bertram J E, Ray J L, Condron L M, O′Callaghan M, Sherlock R R, Wells N S. Unweathered biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America Journal, 2010, 74(3): 852- 860.

        [17] Dong D, Feng Q, McGrouther K, Yang M, Wang H, Wu W. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field. Journal of Soils and Sediments, 2015, 15: 153- 162.

        [18] Zhang A F, Cui L Q, Pan G X, Li L, Hussain Q, Zhang X, Zheng J, Crowley D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 2010, 139(4): 469- 475.

        [19] Rondon M, Ramirez J A, Lehmann J. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In Proc. of the 3rd Symp. on Greenhouse Gases and Carbon Sequestration. USDA, Baltimore, MA, 2005: 208.

        [20] Cayuela M L, Sànchez-Monederol M A, Roig A, Hanley K, Enders A, Lehmann J. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports, 2013, 3(1732): 1- 6.

        [21] Verhoeven E, Six J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agriculture, Ecosystems & Environment, 2014.

        [22] Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 2007, 53(2): 181- 188.

        [23] Ma L, Hou Z, Lv N, Ye J, Su S, Liang Y. Effects of biochar application on wheat growth and nitrogen balance. Xinjiang Agricultural Sciences, 2012, 49: 589- 594.

        [24] Jones D L, Rousk J, Edwards-Jones G, DeLuca T H, Murphy D V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 2012, 45: 113- 124.

        [25] Clough T J, Condron L M. Biochar and the nitrogen cycle: Introduction. Journal of Environmental Quality, 2010, 39: 1218- 1223.

        [26] Steiner C, Glaser B, Teixeira W G, Lehmann J, Blum W E H, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Soil Science and Plant Nutrition, 2008, 171(6): 893- 899.

        [27] Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Soil Research, 2008, 46(5): 437- 444.

        [28] Van Zwieten L, Kimber S, Morris S, Chan K Y, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327(1/2): 235- 246.

        [29] Zhu Q, Peng X, Huang T, Xie Z. Holden N M. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere, 2014, 24, 699- 708.

        [30] Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman A R, Lehmann J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 2012, 48: 271- 284.

        [31] Major J, Rondon M, Molina D, Riha S J, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 2010, 333(1/2): 117- 128.

        [32] Gaskin J W, Speir R A, Harris K, Das K C, Lee R D, Morris L A, Fisher D S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 2010, 102: 623- 633.

        [33] Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Agronomic values of green waste biochar as a soil amendment. Soil Research, 2007, 45(8): 629- 634.

        [34] Berglund L M, DeLuca T H, Zackrisson O. Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biology and Biochemistry, 2004, 36(12): 2067- 2073.

        [35] Ball P N, MacKenzie M D, DeLuca T H, Holben W E. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 2010, 39(4): 1243- 1253.

        [36] Song Y, Zhang X, Ma B, Chang S, Gong J. Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biology and Fertility of Soils, 2014, 50: 321- 332

        [37] Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 2012, 55:20- 27.

        [38] Deluca T H, Mackenzie M D, Gundale M J, Holben W E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal, 2006, 70(2): 448- 453.

        [39] Cheng Y, Cai Z, Chang S X, Wang J, Zhang J. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils, 2012, 48: 941- 946

        [40] Paavolainen L, KitunenV, Smolander A. Inhibition of nitrification in forest soil by monoterpens. Plant and Soil, 1998, 205(2): 147- 157.

        [41] Ding Y, Liu Y, Wu W, Shi D, Yang M, Zhong Z. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water air and soil pollution, 2010, 213(1/4): 47- 55.

        [42] Yao Y, Gao B, Zhang M, Inyang M, Zimmerman A R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 2012, 89(11): 1467- 1471.

        [43] Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. 2014. PLoS ONE, 9(12).

        [44] 劉瑋晶, 劉燁, 高曉荔, 楊旻, 王英惠, 代靜玉. 外源生物質(zhì)炭對(duì)土壤中銨態(tài)氮素滯留效應(yīng)的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 31(5): 962- 968.

        [45] 邢英, 李心清, 王兵. 生物炭對(duì)黃壤中氮淋溶影響:室內(nèi)土柱模擬. 生態(tài)學(xué)雜志, 2011, 30(11): 2483- 2488.

        [46] Iyobe T, Asada T, Kawata K, Oikawa K. Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon. Journal of Health Science, 2004, 50(2): 148- 153.

        [47] Kastner J R, Miller J, Das K C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. Journal of Hazardous Materials, 2009, 164(2/3): 1420- 1427.

        [48] Hollister C C, Bisogni J J, Lehmann J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). Journal of Environmental Quality, 2013, 42(1): 137- 144.

        [49] Cheng C H, Lehmann J, Thies J E, Burton S D, Engelhard M H. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry, 2006, 37(11): 1477- 1488.

        [50] Silber A, Levkovitch I, Graber E R. pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environmental Science & Technology, 2010, 44(24): 9318- 9323.

        [51] Nguyen B T, Lehmann J. Black carbon decomposition under varying water regimes. Organic Geochemistry, 2009, 40(8): 846- 853.

        [52] Asada T, Ishihara S, Yamane S, Toba A, Yamada A, Oikawa K. Science of bamboo charcoal: Study of carbonizing temperature of bamboo charcoal and removal capability of harmful gases. Journal of Health Science, 2002, 48(6): 473- 479.

        [53] Asada T, Ohkubo T, Kawata K, Oikawa K. Ammonia adsorption on bamboo charcoal with acid treatment. Journal of Health Science, 2006, 52(5): 585- 589.

        [54] Clough T J, Condron L M, Kammann C, Müller C. A review of biochar and soil nitrogen dynamics. Agronomy, 2013, 3(2): 275- 293.

        [56] Zheng H, Wang Z, Deng X, Herbert S, Xing B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206: 32- 39.

        [57] Dempster D N, Jones D L, Murphy D V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research, 2012, 50(3): 216- 221.

        [58] Kameyama K, Miyamoto T, Shiono T, Shinogi Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality, 2012, 41(4): 1131- 1137.

        [59] Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 2004, 95(3): 255- 257.

        [60] Ohe K, Nagae Y, Nakamura S, Baba Y. Removal of nitrate anion by carbonaceous materials prepared by bamboo and coconut shell. Journal of Chemical Engineering of Japan, 2003, 36(4): 511- 515.

        [61] 蓋霞普, 劉宏斌, 翟麗梅, 王洪媛. 玉米秸稈生物炭對(duì)土壤無機(jī)氮素淋失風(fēng)險(xiǎn)的影響研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, (34)2: 310- 318.

        [62] Al-Wabel M I, Al-Omran A, El-Naggar A H, Nadeem M, Usman A R A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 2013, 131: 374- 379.

        [63] Eykelbosh A J, Johnson M S, Couto E G. Biochar decreases dissolved organic carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane soil. Journal of Environmental Management, 2015, 149: 9- 16.

        [64] Cheng C H, Lehmann J. Ageing of black carbon along a temperature gradient. Chemosphere, 2009, 75(8): 1021- 1027.

        [65] DeLuca T H, MacKenzie M D, Gundale M J. Biochar effects on soil nutrient transformations. In Lehmann J and Joesph S, eds. Biochar for environmental management, science and technology. London: Earthscan Publications Ltd., 2009: 251- 270.

        [66] Smith J L, Collins H P, Bailey V L. The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 2010, 42(12): 2345- 2347.

        [67] Bruun E W, Ambus P, Egsgaard H, Hauggaard-Nielsen H. Effects of slow and fast pyrolysis biochar on soil C and N dynamics. Soil Biology and Biochemistry, 2012, 46: 73- 79.

        [68] Prayogo C, Jones J E, Baeyens J, Bending G. Impact of biochar on mineralization of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 2014, 50: 695- 702.

        [69] Zackrisson O, Nilsson M C, Wardle D A. Key ecological function of charcoal from wildfire in the boreal forest. Oikos, 1996, 77: 10- 19.

        [70] Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labelling. Soil Biology and Biochemistry, 2009, 41(4): 210- 219.

        [71] Bruun S, Jensen E S, Jensen L S. Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration. Organic Geochemistry, 2008, 39(7): 839- 845.

        [72] Major J, Rondon M, Molina D, Riha S, Lehmann J. Nutrient leaching in a Colombian savanna Oxisol amended with biochar. Journal of Environmental Quality, 2012, 41: 1076- 1086.

        Effect of biochar on soil nitrogen cycling: a review

        WANG Hongyuan, GAI Xiapu, ZHAI Limei, LIU Hongbin*

        KeyLaboratoryofNonpointSourcePollutionControl,MinistryofAgriculture/InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China

        to agriculture application for biochar.

        biochar; soil nitrogen cycling; literature retrieval metrology

        公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201303095);國家自然科學(xué)基金資助項(xiàng)目(41301311)

        2014- 12- 05;

        日期:2016- 01- 15

        10.5846/stxb201412052414

        *通訊作者Corresponding author.E-mail: liuhongbin@caas.cn

        王洪媛, 蓋霞普, 翟麗梅, 劉宏斌.生物炭對(duì)土壤氮循環(huán)的影響研究進(jìn)展.生態(tài)學(xué)報(bào),2016,36(19):5998- 6011.

        Wang H Y, Gai X P, Zhai L M, Liu H B.Effect of biochar on soil nitrogen cycling: a review.Acta Ecologica Sinica,2016,36(19):5998- 6011.

        猜你喜歡
        生物影響研究
        生物多樣性
        FMS與YBT相關(guān)性的實(shí)證研究
        生物多樣性
        上上生物
        是什么影響了滑動(dòng)摩擦力的大小
        遼代千人邑研究述論
        哪些顧慮影響擔(dān)當(dāng)?
        第12話 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        視錯(cuò)覺在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        日本女优久久精品观看| 色偷偷亚洲第一成人综合网址| 丝袜人妻一区二区三区| 亚洲精品国偷拍自产在线| 97人妻人人做人碰人人爽| 亚洲av无码av在线播放| 欧洲美女黑人粗性暴交| 伊人久久大香线蕉综合网站| 人成午夜免费大片| 久久频这里精品99香蕉| 亚洲 暴爽 AV人人爽日日碰| 黄色毛片视频免费| 国产一区二区三区色区| 亚洲精品中文字幕乱码3| 亚州中文字幕乱码中文字幕| 国产精品丝袜美腿诱惑| 国产女主播大秀在线观看| 青青视频在线播放免费的| 国产成人一区二区三区影院| 免费人成视网站在线剧情| 浪货趴办公桌~h揉秘书电影| 51国产黑色丝袜高跟鞋| 亚洲精品久久久久中文字幕一福利| 欧美性猛交xxxx黑人猛交| 国产一级毛片卡| 亚洲第一女人天堂av| 少妇爽到高潮免费视频| 亚洲妇熟xxxx妇色黄| 成 人 免费 黄 色 视频| 国产一区二区波多野结衣| 精品少妇大屁股白浆无码| 亚洲av午夜成人片精品| 国产视频在线播放亚洲| 一级黄色一区二区三区| 亚洲最大成人综合网720p| 四川发廊丰满老熟妇| 国产亚洲精品aaaaaaa片| 国产精品久久婷婷六月丁香| 亚洲AV成人无码久久精品四虎| 男人的天堂av一二三区| 中文字幕一区二区黄色|