張新銘,達(dá)紅梅
(1.重慶大學(xué) 低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室, 重慶 400044;2.重慶大學(xué) 動力工程學(xué)院, 重慶 400044)
?
混合工質(zhì)泄漏對有機(jī)朗肯循環(huán)發(fā)電系統(tǒng)性能的影響
張新銘1,2,達(dá)紅梅1,2
(1.重慶大學(xué) 低品位能源利用技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室, 重慶 400044;2.重慶大學(xué) 動力工程學(xué)院, 重慶 400044)
基于有機(jī)朗肯循環(huán)系統(tǒng)中各部件、管道等密封導(dǎo)致的實(shí)際系統(tǒng)運(yùn)行過程中不可避免地存在著循環(huán)工質(zhì)的泄漏問題,結(jié)合余亥姆霍茲自由能狀態(tài)方程、混合法則和等溫泄漏模型,研究了非共沸混合工質(zhì)R245fa/R601a (初始質(zhì)量配比為0.6/0.4)在ORC發(fā)電系統(tǒng)蒸發(fā)器中泄漏率為0~50%時對混合工質(zhì)配比以及循環(huán)性能的影響.結(jié)果表明:非共沸混合工質(zhì)泄漏會造成混合工質(zhì)配比及工質(zhì)熱物性的變化,系統(tǒng)循環(huán)性能也會改變,且蒸發(fā)出口段發(fā)生液相泄漏時對循環(huán)性能影響最大.隨著泄漏率的增大,比凈輸出功減少率可達(dá)12.23%.
有機(jī)朗肯循環(huán);混合工質(zhì)泄漏;工質(zhì)配比變化;系統(tǒng)性能分析
由于ORC系統(tǒng)中各部件、管道等的密封問題,實(shí)際運(yùn)行過程中不可避免地存在著循環(huán)工質(zhì)的泄漏. 目前,由于泄漏引起的組分以及循環(huán)性能的變化,在制冷及熱泵系統(tǒng)中已受到了普遍關(guān)注和研究[7-8]. Garg等[9]研究結(jié)果表明混合工質(zhì)配比的改變對ORC系統(tǒng)性能影響巨大,當(dāng)混合工質(zhì)組分發(fā)生改變后,循環(huán)系統(tǒng)性能會偏離設(shè)計(jì)值. 文中以Kim M等[10]建立的等溫泄漏模型為基礎(chǔ),對采用非共沸混合物R245fa/R601a (初始比例為0.6/0.4)為工質(zhì)的低品位熱源ORC系統(tǒng)蒸發(fā)器中的泄漏造成的工質(zhì)配比及循環(huán)性能的變化進(jìn)行研究.
1.1 熱力學(xué)模型
圖1為ORC系統(tǒng)配置圖,圖2為ORC系統(tǒng)T-s圖.熱力學(xué)計(jì)算模型為
(1)
(2)
(3)
(4)
式中:Wp,Wt為比泵功和比膨脹功;qe,qc為比吸熱量和比放熱量;h1~h4為各狀態(tài)點(diǎn)對應(yīng)的比焓,單位為kJ·kg-1.
則系統(tǒng)輸出的比凈功為
(5)
系統(tǒng)的循環(huán)熱效率為
(6)
(7)
假設(shè)非共沸混合工質(zhì)在T-s圖中的相變曲線為線性.研究中采用的循環(huán)系統(tǒng)初始參數(shù)設(shè)定如表1所示.
表1 循環(huán)系統(tǒng)的初始條件
1.2 物性計(jì)算模型
非共沸混合工質(zhì)的物性和組元的種類與各組元所占的份額有關(guān).確定工質(zhì)在循環(huán)過程中各狀態(tài)點(diǎn)的熱力學(xué)參數(shù),要結(jié)合狀態(tài)方程和混合規(guī)則進(jìn)行計(jì)算.
1.2.1 狀態(tài)方程
文中采用基于余亥姆霍茲自由能模型的混合物狀態(tài)方程[11-12]:
(8)
式中:α為對比亥姆霍茲自由能;A為摩爾亥姆霍茲自由能;R為通用氣體常數(shù),J/( kg·K);T為工質(zhì)溫度,K;ρ為工質(zhì)密度,kg/m3;x為摩爾質(zhì)量分?jǐn)?shù)向量;δ為對比密度,δ=ρ/ρr(x);τ為對比溫度,τ=Tr(x)/T;上標(biāo)o為理想氣體性質(zhì);r為實(shí)際氣體性質(zhì); αo為理想氣體亥姆霍茲自由能;αr為實(shí)際氣體偏離理想氣體部分的亥姆霍茲自由能:
(9)
(10)
1.2.2 混合規(guī)則
采用以下基于余亥姆霍茲自由能模型的混合規(guī)則[11-12]
(11)
(12)
其中,
式中:f為逸度;c為對比方程部分;β為摩爾氣相分?jǐn)?shù);下標(biāo)c為臨界參數(shù);k,m為組分指數(shù).
1.2.3 相平衡方程
(13)
組分i的逸度表達(dá)式為
(14)
代入式(13)得到
(15)
于是,i組分的氣液平衡比為
(16)
因?yàn)?/p>
(17)
所以
(18)
1.3 泄漏模型
根據(jù)泄漏速率可將工質(zhì)的泄漏分為等溫泄漏和絕熱泄漏.當(dāng)工質(zhì)長時間緩慢地泄漏到系統(tǒng)外時為等溫泄漏;當(dāng)工質(zhì)在一瞬間泄漏到系統(tǒng)外時為絕熱泄漏[10]. 文中采用的是等溫泄漏. 由定壓相平衡性可知,當(dāng)溫度、壓力一定時,混合工質(zhì)的氣相組成yi、液相組成xi與總組成zi不同,則混合工質(zhì)在兩相區(qū)的泄漏會改變混合工質(zhì)的配比.
假設(shè)泄漏發(fā)生時混合工質(zhì)處于氣液相平衡狀態(tài),泄漏過程中混合工質(zhì)保持熱力學(xué)平衡. 質(zhì)量守恒方程為
(19)
氣相泄漏方程為
(20)
液相泄漏方程為
(21)
利用物性計(jì)算軟件REFPROP8.0獲得混合物R245fa/R601a的物性參數(shù),根據(jù)式(1)~(21)編制程序?qū)べ|(zhì)泄漏的影響進(jìn)行理論計(jì)算.
如圖3所示,X≈0為蒸發(fā)器進(jìn)口段,X≈1為蒸發(fā)器出口段. 蒸發(fā)段中發(fā)生液相泄漏后,系統(tǒng)中R245fa的質(zhì)量分?jǐn)?shù)增加;發(fā)生氣相泄漏后 ,R245fa的質(zhì)量分?jǐn)?shù)降低;并且隨著泄漏率的增加,變化率也相應(yīng)增大. 這是因?yàn)樵赗245fa/R601a工質(zhì)對中,R245fa沸點(diǎn)較低,在蒸發(fā)過程中,先蒸發(fā)為氣體. 因此,當(dāng)混合工質(zhì)處于兩相區(qū)時,氣相中R245fa質(zhì)量分?jǐn)?shù)大于其在總組成中的質(zhì)量分?jǐn)?shù),液相中R601a質(zhì)量分?jǐn)?shù)大于其在總組成中的質(zhì)量分?jǐn)?shù). 所以氣相泄漏后,循環(huán)工質(zhì)中低沸點(diǎn)組分的質(zhì)量分?jǐn)?shù)減小;液相泄漏后,循環(huán)工質(zhì)中高沸點(diǎn)組分的質(zhì)量分?jǐn)?shù)減小.
蒸發(fā)段中的液相泄漏,使工質(zhì)與熱源的比換熱量減小,蒸發(fā)段中的氣相泄漏,使工質(zhì)與熱源的比換熱量增加,且變化率隨著泄漏率的升高而增大,如圖4所示.相同泄漏率時,液相泄漏比氣相泄漏的對比吸熱量的影響大,其中蒸發(fā)出口段的液相泄漏對應(yīng)的比吸熱量變化最大.當(dāng)泄漏率為50%時,蒸發(fā)出口段液相泄漏、蒸發(fā)入口段氣相泄漏后的比吸熱量變化率分別為11.98%、8.70%.這是因?yàn)榘l(fā)生氣相泄漏后,熱力性能較優(yōu)的R601a質(zhì)量分?jǐn)?shù)增加,換熱能力較強(qiáng);而發(fā)生液相泄漏后,R601a的質(zhì)量分?jǐn)?shù)減小.
圖5表明液相泄漏后,輸出比凈功減小,氣相泄漏后,輸出比凈功增大.其變化規(guī)律和換熱量隨著泄漏率的變化規(guī)律相同.當(dāng)泄漏率達(dá)到50%時,液相泄漏、氣相泄漏發(fā)生后,輸出比凈功最大變化率分別為12.23%、8.62%.蒸發(fā)出口段液相泄漏對比凈功的影響最大.
結(jié)合圖3和圖6知,對應(yīng)于熱效率最高時混合工質(zhì)R245fa/R601a的最佳質(zhì)量配比為0.6/0.4,當(dāng)系統(tǒng)發(fā)生泄漏之后,循環(huán)熱效率減小,且隨著泄漏率的增加,由于工質(zhì)配比變化越大,熱效率越低.蒸發(fā)出口段液相泄漏對循環(huán)熱效率的影響最大.
通過以上對采用混合工質(zhì)R245fa/R601a的低溫余熱ORC系統(tǒng)中蒸發(fā)器泄漏特性的研究,說明非共沸混合工質(zhì)泄漏會對循環(huán)性能造成影響.
① 在非共沸混合工質(zhì)低溫余熱ORC系統(tǒng)中,對于蒸發(fā)器相變段的泄漏,發(fā)生氣相泄漏時,漏出的低沸點(diǎn)工質(zhì)較多;而液相泄漏中漏出的高沸點(diǎn)工質(zhì)較多.
② 混合工質(zhì)在蒸發(fā)器預(yù)熱段中為單相液,在蒸發(fā)器過熱段,混合工質(zhì)為單相氣,此兩處發(fā)生工質(zhì)泄漏時,工質(zhì)配比不會發(fā)生變化,泄漏只改變了混合工質(zhì)的充灌量.即蒸發(fā)器中泄漏對混合工質(zhì)配比和循環(huán)性能的影響,主要體現(xiàn)在蒸發(fā)段.
③ 在蒸發(fā)出口段,發(fā)生液相泄漏造成的混合工質(zhì)的組分變化最大,若不能及時補(bǔ)液,會對循環(huán)性能造成很大影響.故應(yīng)關(guān)注混合工質(zhì)ORC系統(tǒng)泄漏問題,加強(qiáng)ORC系統(tǒng)在實(shí)際運(yùn)行過程中的密封性能.
[1] 劉強(qiáng),段遠(yuǎn)源,萬緒財(cái).利用汽包鍋爐連續(xù)排污余熱的有機(jī)朗肯循環(huán)發(fā)電系統(tǒng)[J].中國電機(jī)工程學(xué)報(bào),2013,33(35):2-7.
Liu Qiang,Duan Yuanyuan,Wan Xuchai. Power generation systems using continuous blowdown waste heat from drum boilers driving an organic Rankine cycle[J]. Proceeding of the CSEE, 2013,33(35):2-7. (in Chinese)
[2] Srinivasan K K, Mago P J, Krishnan S R. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic rankine cycle[J]. Energy, 2010,35(6):2387-2399.
[3] 舒歌群,高媛媛,田華.基于分析的內(nèi)燃機(jī)排氣余熱ORC混合工質(zhì)性能分析[J].天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2014(3):218-223.
Shu Gequn,Gao Yuanyuan,Tian Hua. Performance analysis of mixtures used in ORC for engine exhaust gas waste heat recovery based on exergy analysis [J]. Journal of Tianjin University: Science and Technology,2014(3):218-223. (in Chinese)
[4] Heberle F, Prei?inger M, Brüggemann D. Zeotropic mixtures as working fluids in organic rankine cycles for low-enthalpy geothermal resources[J]. Renewable Energy, 2012,37(1):364-370.
[5] Wang J L, Zhao L, Wang X D. A comparative study of pure and zeotropic mixtures in low-temperature solar rankine cycle[J]. Applied Energy, 2010,87(11):3366-3373.
[6] Chys M, Van den Broek M, Vanslambrouck B, et al. Potential of zeotropic mixtures as working fluids in organic rankine cycles[J]. Energy, 2012,44(1):623-632.
[7] Zhao X, Shi L, Han L, et al. Experimental research and calculating model on the composition fractionation during refrigerant mixtures leakage[J]. Journal of Engineering Thermophysics, 1998,19:283-286.
[8] Johansson A, Lundqvist P. A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures[J]. International Journal of Refrigeration, 2001,24(8):798-808.
[9] Garg P, Kumar P, Srinivasan K, et al. Evaluation of isopentane, R245fa and their mixtures as working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2013,51(1):292-300.
[10] Kim M, Didion D. Simulation of isothermal and adiabatic leak processes of zeotropic refrigerant mixtures[J]. HVAC&R Research, 1995,1(1):3-20.
[11] Lemmon E W, Tillner-Roth R.A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures[J]. Fluid Phase Equilibria, 1999,165(1):1-21.
[12] Gernert J, J?ger A, Span R. Calculation of phase equilibria for multi-component mixtures using highly accurate helmholtz energy equations of state[J]. Fluid Phase Equilibria, 2014,375:209-218.
(責(zé)任編輯:孫竹鳳)
Effect of Leakage in Evaporator on the System Performance of the Organic Rankine Cycle with Binary Non-Azeotropic Mixtures
ZHANG Xin-ming1,2,DA Hong-mei1,2
(1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education,Chongqing University, Chongqing 400044, China; 2.College of Power Engineering, Chongqing University,Chongqing 400044, China)
The leak of working fluids is inevitably in the actual operation, since the sealing problems in organic Rankine cycle (ORC) such as in components, pipes, etc. Combined Helmholtz free energy model, mixing rule and isothermal leakage model, the variation of mass fraction ratio and cycle performance along with the leakage rate within 0~50% in different positions in the evaporator by using the R245fa/R601a as the working fluid of ORC system were analyzed. The results show that when leakage occurred, the change of the mass fraction ratio of mixed working medium, the thermal properties as well as system performance will take place. With the leakage rate increasing, the specific net work even reduces 12.23%. In addition, the liquid leak in the outlet section of evaporation makes a greatest influence on the system performance.
organic Rankine cycle; zeotropic mixture leak; composition variation; system performance analysis
2015-05-16
國家“九七三”項(xiàng)目(2011CB710701)
張新銘(1953—), 男, 博士,教授,碩士生導(dǎo)師,E-mail:xmzhang@cqu.edu.cn.
達(dá)紅梅(1990—),女,碩士生,E-mail:891800696@qq.com.
TK 123
A
1001-0645(2016)09-0899-06
10.15918/j.tbit1001-0645.2016.09.004