李創(chuàng)第,華逢忠,葛新廣
(廣西科技大學土木建筑工程學院,廣西柳州545006)
Maxwell阻尼耗能多層結構在有界噪聲激勵下的隨機響應解析分析
李創(chuàng)第,華逢忠,葛新廣
(廣西科技大學土木建筑工程學院,廣西柳州545006)
為研究Maxwell阻尼器耗能多層結構在有界噪聲激勵下的隨機響應問題,首先,建立了耗能結構時域非擴階微分積分動力方程;然后,用傳遞函數(shù)法,獲得了結構以第一振型表示的時域瞬態(tài)位移和速度響應非擴階解析解;最后,基于此解析解,獲得耗能結構在有界噪聲激勵下位移和速度隨機響應方差解析解,并給出算例,從而建立此種耗能結構在有界噪聲激勵下隨機響應解析分析的一整套方法.
Maxwell阻尼器;傳遞函數(shù)法;有界噪聲激勵;平穩(wěn)響應;解析解
粘彈性阻尼器耗能性能優(yōu)良,已廣泛應用于各種結構的被動減振控制[1-3].Maxwell阻尼[1-9]本構方程簡單,模型計算參數(shù)易于從試驗中擬合[10-11],且一般流體阻尼器比較符合Maxwell模型,粘彈性阻尼器也可以用Maxwell模型近似表示,故對Maxwell模型的應用研究受到日益重視[1-5,7-8].目前,分析Maxwell阻尼器耗能結構的精確法只有擴階復模態(tài)法[4-5,7-8,12],但該法因擴階方程組物理意義不明確,變量個數(shù)激增,計算效率低使該方法的實際應用受到限制.
有界噪聲隨機激勵模型[13-15]不僅可以模擬寬帶隨機激勵,而且可以模擬窄帶隨機激勵;不僅可以模擬地震激勵[16-17]、脈動風激勵[18-20],而且還可以模擬軌道和路面隨機起伏激勵[21],因而受到國內外較廣泛的應用[22-24].
本文采用非擴階微分積分方程精確建模,運用傳遞函數(shù)法,獲得Maxwell阻尼耗能多層結構在任意激勵下非擴階時域瞬態(tài)響應解析解和有界噪聲激勵下平穩(wěn)隨機響應解析解.
設n層結構質量、剛度和粘滯阻尼矩陣分別為:M,K和C;層間質量、剛度和阻尼分別為:mi,ki和ci,(i=1,…,n);各層間均設置Maxwell阻尼器,阻尼器剛度系數(shù)和阻尼系數(shù)為k0i和c0i,阻尼力為pi(t),(i=1,…,n);x(t)為結構相對于地面的位移向量,F(xiàn)(t)為激勵向量;結構計算簡圖如圖1所示,由D’Alembert原理[25],結構的運動力程為:
式中:αi=k0i/c0i,i=1,…,n;
圖1 多層耗能結構計算簡圖Fig.1 Calculation diagram of the multistorey energy dissipation structure
特別地,對地震激勵,F(xiàn)i=mi,(i=1,…,n);f(t)=-x¨g(t),x¨g(t)為地震地面加速度.
式(2)的分量形式為:
對于方程:
式中:δ(t)為Dirac delta函數(shù).
方程(6)兩邊同時乘以eαit,即:
也即:
2.1結構特征值分析
設結構的廣義初始位移y(t=0)和速度y˙(t=0)均為0,對式(14)進行拉譜拉斯變換,得:
3.1有界噪聲激勵的相關函數(shù)和譜密度
有界噪聲激勵f(t)的相關函數(shù)Cf(τ)和譜密度Sf(ω)分別為[16-20]:
式中:E[·]表示取數(shù)學期望;τ和ω分別為f(t)的時差和頻率變量;D,α和β分別為激勵的方差、相關因子和卓越頻率因子.
特別地,對于地震激勵x¨g(t),可取為[16-17,26]:
3.2耗能結構平穩(wěn)隨機響應解析分析
由式(32)得結構平穩(wěn)響應方協(xié)方差為:
式中:
將式(45)代入式(40),并令τ=0,得有界噪聲激勵下耗能結構隨機響應方差解析解:
特別地,對于地震激勵,F(xiàn)i=mi,f(t)=-x¨g;在表達式(45)中,令D=Dg;q=-αg+iβg;Fi=mi,式(49)即可表示為耗能結構隨機地震響應方差解析解.
軟土場地條件下,3層框架結構各層的質量m1,m2和m3分別為:16 t,16 t和8 t;各層剛度k1,k2和k3分別為:1.0×105kN/m,1.0×105kN/m和1.0×105kN/m;取第一振型阻尼比ξ1=5%;結構第一振型φ1=[0.500,0.866,1.000]T,第一振型頻率ω1為12.941 rad/s.Maxwell阻尼器參數(shù)如表1所示.8度抗震設防:I=8;ξg=0.96,ωg=10.9 rad/s.可以由式(20),解得結構各特征值sj;再利用式(22),得到系數(shù)ηj;最后各參數(shù)代入式(49),得到結構各層間位移和速度響應的方差.結構各層間位移和速度響應的標準差列于表2和表3.
表1 Maxwell阻尼器參數(shù)Tab.1 Calculation parameters of Maxwell dampers
表2 位移響應標準差Tab.2 Standard deviations of displacement responses m
表3 速度響應標準差Tab.3 Standard deviations of velocity responses m/s
表2和表3分別列出了表1中各工況對應的位移響應均方差和速度響應均方差.工況1是不設置Maxwell阻尼器的情況;工況2和工況3是同比例放大Maxwell阻尼器參數(shù)的情況,即工況2和工況3的Maxwell阻尼器具有相同的松弛時間;工況3與工況4的Maxwell阻尼器具有相同的阻尼系數(shù)但松弛時間不相同.計算結果表明:在松弛時間相同的情況下,Maxwell阻尼器參數(shù)越大,結構減震效果越明顯;在阻尼系數(shù)相同的情況下,Maxwell阻尼器的松弛時間越小,結構減震效果越明顯.
對設置Maxwell阻尼器耗能多層結構在有界噪聲激勵下的平穩(wěn)響應進行了研究.獲得了結構以第一振型表示的時域瞬態(tài)位移和速度響應解析解,并根據(jù)所得的解析解,獲得了耗能結構在有界噪聲激勵下位移和速度隨機響應方差解析解,從而建立此種耗能結構在有界噪聲激勵下隨機響應解析分析的一整套方法.由于有界噪聲激勵模型可以模擬多種工程隨機激勵,故所獲得的解析解具有較好的工程應用意義.
[1]周云.粘彈性阻尼減震結構設計[M].武漢:武漢理工大學出版社,2006.
[2]SOONGTT,DARGUSH GF.Passive Engrgy Dissipation Systems in Structural Engineering[M].England:John Wiley and Ltd,1997.
[3]CHRISTOPOULOS C,F(xiàn)ILIATRAULT A.Principle of Passive Supplemental Damping and Seismic Isolation[M].Pavia:IUSS Press,2006.
[4]YAMADA K.Dynamic Characteristics of SDOF Structure with Maxwell Element[J].Journal of Engineering Mechanics,2014,134(5):396-404.
[5]PALMERI A,RICCIARDELLI F,DELUCA A,et al.State Space Formulation for Linear Viscoelastic Dynamic Systems with Memory[J].Journal of Engineering Mechanics,2003,129(7):715-724.
[6]張義同.粘彈性理論[M].天津:天津大學出版社,2002.
[7]PALMERI A.Correlation Coefficients for Structures with Viscoelastic Dampers[J].Engineering Structures,2006,28(8):1197-1208.
[8]SINGH M P,VERMA N P,MORESCHIL M.Seismic Analysis and Design with Maxwell Dampers[J].Journal of Engineering Mechanics,2003,129(3):273–282.
[9]葛新廣,李創(chuàng)第,鄒萬杰.Maxwell阻尼減震結構的最大非平穩(wěn)響應[J].廣西工學院學報,2012,23(4):1-7.
[10]CHANG T S,SINGH M P.Mechanical Model Parameters for Viscoelastic Dampers[J].Journal of Engineering Mechanics,2009,135(6):581-584.
[11]PARK SW.Analytical Modeling of Viscoelastic Dampers for Structural and Vibration Control[J].International Journal of Solids and Structures,2001,38(S44-45):8065-8092.
[12]ZHANG R H,SOONG T T.Seismic Design of Viscoelastic Dampers for Structural Application[J].Journal of Structural Engineering,1992,118(5):1375-1392.
[13]HUANG Z L,ZHU W Q,NI Y Q,et al.Stochastic Averaging of Strongly Non-Linear Oscillators under Bounded Noise Excitation[ J].Journal of Sound and Vibration,2002,254(2):245-267.
[14]LIU W Y,ZHU W Q,HUANG Z L.Effect of Bounded Noise on Chaotic Motion of Duffing Oscillator under Parametric Excitation[J].Chaos,Solitons and Fractals,2001,12(3):527–537.
[15]ZHU W Q,HUANG Z L,YANG Y Q.Stochastic Averaging of Quasi-Integrable Hamiltonian Systems[J].Journal of Applied Mechanics,1997,64(4):975–984.
[16]胡聿賢.地震工程學[M].2版.北京:地震出版社,2006.
[17]李桂青.抗震結構計算理論和方法[M].北京:地震出版社,1985.
[18]LIN Y K,LIQ C.Stochastic Stability of Wind Excited Structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1995,54(94):75-82.
[19]LIN Y K.Stochastic Stability of Wind-Excited Long-S pan Bridges[J].Probabilistic Engineering Mechanics,1996,11(4):257-261.
[20]LIN Y K,LI Q C.New Stochastic Theory for Bridge Stability in Turbulent Flow[J].Journal of Engineering Mechanics,1993,119(1):113–127.
[21]DIMENTBERG M F.Stability and Subcritical Dynamics of Structures with Spatially Disordered Travelling Parametric Excitation[J]. Probabilistic Engineering Mechanics,1992,7(3):131–134.
[22]劉雯彥,陳忠漢,朱位秋.有界噪聲激勵下單擺—諧振子系統(tǒng)的混沌運動[J].力學學報,2003,35(5):634-639.
[23]XIE W C.Moment Lyapunov Exponents of a Two-Dimensional System under Bounded Noise Parametric Excitation[J].Journal of Sound and Vibration,2003,263(3):593-616.
[24]ZHU J,XIE W C,SO R M,et al.Parametric Resonance of Two Degrees of Freedom System Induced by Bounded Noise[J].Journal of Applied Mechanics,2009,76(4):041007-1~13.
[25]劉晶波,杜修力.結構動力學[M].北京:機械工業(yè)出版社,2005.
[26]李桂青,曹宏,李秋勝,等.結構動力可靠性理論及其應用[M].北京:地震出版社,1993.
(學科編輯:黎婭)
Exact analysis of the random responses of multi-storey structure with Maxwell dampers under bounded noise excitation
LI Chuang-di,HU A Feng-zhong,GE Xin-guang
(School of Civil Engineering and Architecture,Guangxi University of Science and Technology,Liuzhou 545006,China)
The random responses of multi-storey structure with Maxwell dampers under bounded noise excitation are studied.Firstly,the structural non-extended order differential-integral dynamic response equations are established;Then,by using transfer function method,the exact solutions of structural transient displacement and velocity responses in time-domain are obtained by expanding the structure with respect to the first mode.Finally,by using above exact solutions,analytical solutions of the response variances of the displacement and velocity of energy dissipation structure under the bounded noise excitation are obtained.Therefore,a complete set of analytical method for the stochastic response of the energy dissipation structure under bounded noise excitation is established and a numerical example is given.
Maxwell dampers;transfer function method;bounded noise excitation;stationary response;exact solutions
TU311.3
A
2095-7335(2016)04-0001-06
10.16375/j.cnki.cn45-1395/t.2016.04.001
2016-03-30
國家自然科學基金項目(51468005,51368008);廣西自然科學基金項目(2014GXNSFAA118315);廣西科技大學創(chuàng)新團隊支持計劃項目(2015年)資助.
李創(chuàng)第,博士,教授,研究方向:被動控制結構抗風抗震,E-mail:lichuangdi1964@163.com.