崔辰 趙世華 綜述
(中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 國家心血管病中心 阜外醫(yī)院磁共振影像科,北京100037)
?
·主題綜述·
基于經(jīng)皮主動(dòng)脈瓣膜植入術(shù)的影像學(xué)臨床應(yīng)用與進(jìn)展
崔辰 趙世華 綜述
(中國醫(yī)學(xué)科學(xué)院 北京協(xié)和醫(yī)學(xué)院 國家心血管病中心 阜外醫(yī)院磁共振影像科,北京100037)
主動(dòng)脈瓣狹窄是高齡人群最常見的瓣膜疾病,隨著中國老齡化的加劇,患病人數(shù)呈逐年上升的態(tài)勢(shì)。但許多患者常罹患其他伴隨疾病,難以耐受傳統(tǒng)外科手術(shù)。經(jīng)皮主動(dòng)脈瓣膜植入術(shù)(transcatheter aortic valve implantation,TAVI)經(jīng)過10年的發(fā)展,可作為外科手術(shù)高?;颊叩膫溥x治療方案。影像學(xué)在患者術(shù)前評(píng)估、術(shù)中指導(dǎo)、術(shù)后隨訪以及患者適應(yīng)證的選擇中均起著至關(guān)重要的作用?,F(xiàn)結(jié)合最新的循證醫(yī)學(xué)證據(jù)及TAVI中國專家共識(shí)[1],總結(jié)影像學(xué)在TAVI中的臨床應(yīng)用與最新進(jìn)展。
超聲心動(dòng)圖由于其便捷性和高時(shí)間分辨率,在觀察患者瓣膜形態(tài)和運(yùn)動(dòng)時(shí)有著其他影像學(xué)檢查無法比擬的優(yōu)勢(shì)。除了可準(zhǔn)確觀察瓣葉的數(shù)目和鈣化外,還可大致評(píng)估心臟的收縮功能,是TAVI術(shù)前評(píng)估不可或缺的影像學(xué)檢查。超聲心動(dòng)圖可快速測(cè)量主動(dòng)脈瓣環(huán),但超過90%的患者的瓣環(huán)呈橢圓形[2],二維超聲心動(dòng)圖僅能從某一切面測(cè)量瓣環(huán)內(nèi)徑,因此常會(huì)低估瓣環(huán)直徑[3]。三維經(jīng)食管超聲心動(dòng)圖可在術(shù)中準(zhǔn)確地觀察主動(dòng)脈瓣環(huán)最長(zhǎng)、最短徑隨心動(dòng)周期的變化,借助最新的分析軟件,還可動(dòng)態(tài)實(shí)時(shí)顯示主動(dòng)脈瓣根部的結(jié)構(gòu)[4-5]。研究發(fā)現(xiàn)三維經(jīng)食管超聲在瓣環(huán)直徑測(cè)量和在瓣周漏的預(yù)測(cè)方面與多層螺旋CT(multislice CT,MSCT)有高度一致性,在患者有CT對(duì)比劑過敏風(fēng)險(xiǎn)時(shí)可作為TAVI瓣膜型號(hào)選擇的參考[6]。
除了上述優(yōu)勢(shì)外,超聲心動(dòng)圖可在瓣膜釋放后即刻評(píng)估瓣膜的位置和功能,其中對(duì)瓣周漏的評(píng)估有重要意義。瓣周漏會(huì)顯著影響患者圍術(shù)期及長(zhǎng)期預(yù)后,在TAVI術(shù)后的發(fā)生率為11%~24%。術(shù)中經(jīng)食管超聲能即刻篩查瓣周漏,一旦發(fā)現(xiàn),可及時(shí)借助后擴(kuò)張、“瓣中瓣”等手段糾正。FRANCE2注冊(cè)研究指出經(jīng)食管超聲的應(yīng)用可顯著減少術(shù)后瓣周漏的發(fā)生[7]。
MSCT有高空間分辨率、大視野和容積成像的優(yōu)勢(shì),可準(zhǔn)確評(píng)價(jià)主動(dòng)脈瓣環(huán)及其根部形態(tài)。對(duì)于瓣環(huán)形態(tài)不規(guī)則的患者,在多平面重建處理后可對(duì)瓣環(huán)最長(zhǎng)徑、最短徑、周長(zhǎng)以及面積等多種參數(shù)進(jìn)行測(cè)量。除參數(shù)測(cè)量外,MSCT能提供胸、腹、髂血管的詳細(xì)解剖結(jié)構(gòu),明確患者血管扭曲及鈣化程度并排除動(dòng)脈夾層等危險(xiǎn)因素,是極為有效的入路評(píng)估手段。
瓣膜鈣化在主動(dòng)脈瓣狹窄的發(fā)生發(fā)展中起到重要作用,同時(shí)也是患者不良預(yù)后的危險(xiǎn)因素[8]。早期研究發(fā)現(xiàn):超聲心動(dòng)圖檢查中瓣膜中量以上鈣化者較無鈣化者預(yù)后更差[9]。主動(dòng)脈瓣膜鈣化積分可經(jīng)CT圖像后處理獲取,能定量評(píng)估患者鈣化的范圍和程度,與鈣化組織的質(zhì)量高度相關(guān)[10]。瓣膜鈣化積分可作為患者預(yù)后判斷的可靠指標(biāo)。Clavel等在一794例大樣本、多中心的前瞻性研究中發(fā)現(xiàn):較高的主動(dòng)脈鈣化積分是主動(dòng)脈瓣狹窄患者死亡的獨(dú)立預(yù)測(cè)因子(HR=1.75,95%CI1.04~2.92),強(qiáng)烈提示了對(duì)瓣膜重度鈣化患者隨訪的重要性。
鈣化積分不光有疾病預(yù)后判斷價(jià)值,也與術(shù)后瓣周漏這一危險(xiǎn)因素高度相關(guān)[11-12]。Koos等[13]的研究發(fā)現(xiàn)主動(dòng)脈瓣鈣化積分與瓣周漏的嚴(yán)重程度高度相關(guān),當(dāng)瓣膜鈣化積分>3 000時(shí),患者術(shù)后的瓣周漏風(fēng)險(xiǎn)顯著增高。 Koh等[14]通過進(jìn)一步研究發(fā)現(xiàn),瓣周漏多發(fā)生于主動(dòng)脈瓣鈣化程度較高的瓣葉處,肯定了瓣膜鈣化對(duì)患者預(yù)后的判斷價(jià)值。
借助多方位成像和高信噪比的優(yōu)勢(shì),通過妥善的平面選擇,磁共振(magnetic resonance imaging,MRI)電影序列或相位對(duì)比速度編碼電影序列可以在多個(gè)平面內(nèi)觀察瓣膜的運(yùn)動(dòng)。MRI二維面積測(cè)量法可在超聲心動(dòng)圖聲窗受限時(shí)直接計(jì)算瓣膜的面積。此外,MRI能更加準(zhǔn)確地評(píng)估患者的左室功能、心肌質(zhì)量和心室容積[15]。研究證實(shí),在評(píng)估瓣環(huán)和主動(dòng)脈根部結(jié)構(gòu)時(shí),MRI電影序列和3D心臟掃描序列與MSCT一致性好,兩者效果相當(dāng)[3,16]。MRI穩(wěn)態(tài)自由進(jìn)動(dòng)序列無需對(duì)比劑就可顯示患者重要的解剖結(jié)構(gòu),在患者不能耐受CT對(duì)比劑時(shí),可作為替代CT的首選檢查方法。然而也有研究指出,CT、MRI及超聲心動(dòng)圖對(duì)瓣環(huán)的測(cè)量結(jié)果相近,但不完全相同,需要在進(jìn)一步的對(duì)照研究中證實(shí)不同影像檢查參數(shù)測(cè)量的準(zhǔn)確性。在術(shù)后瓣周漏評(píng)估中,MRI可以在肉眼看不到反流束的情況下通過相位對(duì)比法定量反流的大小,是超聲心動(dòng)圖檢查受限時(shí)有效的備選檢查方案。
MRI延遲強(qiáng)化(late gadolinium enhancement,LGE)是評(píng)估局灶性心肌纖維化的金標(biāo)準(zhǔn),對(duì)缺血性心臟病和非缺血性心肌病的預(yù)后判斷都有重要價(jià)值,LGE對(duì)于心臟疾病的意義已經(jīng)逐漸從“bright is dead”向“bright is bad”轉(zhuǎn)變。在主動(dòng)脈瓣狹窄的患者中,左室肥厚作為后負(fù)荷增加的主要代償手段,而病理證實(shí)心肌纖維化也在同時(shí)發(fā)生。Dweck等[17]利用心臟MRI對(duì)143例主動(dòng)脈瓣狹窄患者心肌纖維化情況進(jìn)行了評(píng)估,在兩年的隨訪中發(fā)現(xiàn),存在LGE的患者有高于無LGE者8倍的死亡風(fēng)險(xiǎn);壁間(mid-wall)纖維化是患者死亡的獨(dú)立預(yù)測(cè)因子之一。2014年的一項(xiàng)研究發(fā)現(xiàn)與上述研究類似,證實(shí)了MRI所測(cè)得的LGE會(huì)增加TAVI及外科主動(dòng)脈瓣膜置換術(shù)患者圍術(shù)期及5年內(nèi)的全因死亡風(fēng)險(xiǎn)[18]。另有研究發(fā)現(xiàn)存在延遲強(qiáng)化的患者即使進(jìn)行瓣膜置換術(shù),纖維化的狀況也無逆轉(zhuǎn)[17,19],而嚴(yán)重纖維化的患者術(shù)后的NYHA分級(jí)并沒有明顯改善[19]。這些研究結(jié)果均提示:在疾病早期出現(xiàn)LGE前TAVI更加安全,患者進(jìn)行手術(shù)的獲益更大;而當(dāng)疾病發(fā)展到出現(xiàn)LGE時(shí),即使進(jìn)行TAVI,癥狀改善也不明顯。中國目前TAVI專家共識(shí)中,行TAVI需參考瓣膜的受損情況及患者癥狀[1],而在患者出現(xiàn)癥狀時(shí),部分患者可能已經(jīng)存在嚴(yán)重的心肌纖維化,因此LGE對(duì)手術(shù)時(shí)機(jī)的選擇也有重要的指導(dǎo)價(jià)值。
彌漫性心肌纖維化被認(rèn)為是許多心臟疾病的治療靶點(diǎn)[20],而LGE成像技術(shù)依賴?yán)w維化和正常組織注射對(duì)比劑后信號(hào)強(qiáng)度的差異,對(duì)彌漫性纖維化敏感度差。T1 mapping技術(shù)可通過量化組織的T1值反映患者心肌纖維化的情況。T1值在經(jīng)過血漿和血池中對(duì)比劑的分布容積校正后,可獲取患者心肌的細(xì)胞外容積分?jǐn)?shù)(extracellular volume fraction,ECV)。該參數(shù)常評(píng)估彌漫性或早期纖維化,可重復(fù)性好[21]。Flett等[22]通過ECV技術(shù)計(jì)算了19例主動(dòng)脈瓣狹窄患者的ECV值,其結(jié)果與病理組織切片所計(jì)算的膠原容積分?jǐn)?shù)高度相關(guān)。雖然部分研究發(fā)現(xiàn)主動(dòng)脈瓣狹窄患者與健康志愿者ECV值有一定的重疊[23],限制了ECV對(duì)主動(dòng)脈瓣狹窄的診斷效力,但研究已經(jīng)證實(shí)了ECV對(duì)其他心血管疾病的預(yù)后判斷價(jià)值[24],由于有較高的敏感度和可重復(fù)性,隨著循證醫(yī)學(xué)證據(jù)的積累,ECV勢(shì)必將成為主動(dòng)脈瓣狹窄患者預(yù)后評(píng)價(jià)的新指標(biāo)。
在TAVI中,實(shí)時(shí)準(zhǔn)確地定位導(dǎo)管的位置,顯示患者解剖結(jié)構(gòu)至關(guān)重要。目前主要的心血管系統(tǒng)介入引導(dǎo)手段為血管造影,常受限于二維影像以及對(duì)造影劑的依賴。影像融合技術(shù)能有效地結(jié)合不同影像學(xué)方法的優(yōu)勢(shì),已在不同結(jié)構(gòu)性心臟病中相繼開展運(yùn)用[25]。其中,以超聲心動(dòng)圖和血管造影的融合發(fā)展最為迅速,這種實(shí)時(shí)成像技術(shù)使術(shù)者在透視操作的同時(shí),通過超聲心動(dòng)圖明確患者心內(nèi)結(jié)構(gòu)及瓣膜運(yùn)動(dòng),大大增加了手術(shù)的成功率。Arujuna等[26]已在2014年分別于體模、實(shí)驗(yàn)動(dòng)物及人體實(shí)現(xiàn)了超聲心動(dòng)圖和血管造影的融合引導(dǎo)的TAVI,融合影像可清晰地顯示左室流出道、升主動(dòng)脈及主動(dòng)脈瓣,術(shù)中圖像的融合誤差為3.4 mm。Krishnaswamy等[27]也報(bào)道了術(shù)中CT重建的主動(dòng)脈根部結(jié)構(gòu)與血管造影的個(gè)案,該技術(shù)能更準(zhǔn)確地顯示冠狀動(dòng)脈開口位置以及瓣環(huán)角度,對(duì)瓣膜的準(zhǔn)確放置起到有效的指導(dǎo)作用。MRI由于可以反映組織特征,其影像融合技術(shù)也在心臟再同步化和室性心動(dòng)過速的介入治療中開展了初步應(yīng)用。
3D打印技術(shù)近年來在心血管疾病的診療中得到了快速發(fā)展,該技術(shù)生成的實(shí)體器官模型已應(yīng)用于多種先天性心臟病和瓣膜病。借助3D模型可直觀地進(jìn)行術(shù)前分析以及TAVI瓣膜的模擬釋放,對(duì)于植入瓣膜的選擇和手術(shù)的成功實(shí)施有重要意義。Jung等[28]在手術(shù)前后分別進(jìn)行了患者主動(dòng)脈根部結(jié)構(gòu)的3D打印,利用模型數(shù)據(jù)指導(dǎo)瓣膜選擇,順利完成手術(shù)。Ripley等[29]利用CT產(chǎn)生的容積數(shù)據(jù)個(gè)體化建立了16例主動(dòng)脈瓣狹窄患者主動(dòng)脈根部的3D模型,通過將模型與擬植入瓣膜擬合,準(zhǔn)確地預(yù)測(cè)了術(shù)后瓣周漏發(fā)生的位置。打印技術(shù)和打印材料的進(jìn)步使功能性3D打印成為可能,該技術(shù)不光可以反映人體解剖結(jié)構(gòu),還能輔助模擬組織的功能特征。Maragiannis等[30]利用兩種材料融合3D打印,建立了8例患者主動(dòng)脈根部的功能性3D模型。該模型以CT容積數(shù)據(jù)為基礎(chǔ),利用硬度不同的材料將鈣化與非鈣化結(jié)構(gòu)打印于同一模型中。該研究團(tuán)隊(duì)將模型接入模擬人體循環(huán)系統(tǒng)的血流回路后,利用超聲心動(dòng)圖對(duì)其血流動(dòng)力學(xué)參數(shù)進(jìn)行測(cè)量,發(fā)現(xiàn)基于模型測(cè)量的壓差、主動(dòng)脈瓣峰值流速以及瓣膜面積與人體測(cè)得的參數(shù)具有高度一致性。3D超聲心動(dòng)圖和MRI成像憑借其無輻射的優(yōu)勢(shì)也有望在今后成為可靠的3D打印數(shù)據(jù)來源。
影像學(xué)對(duì)TAVI的成功實(shí)施起到了關(guān)鍵作用,靈活應(yīng)用不同的影像學(xué)手段,綜合評(píng)估患者的狀況,合理選擇手術(shù)方式可以有效減少術(shù)后并發(fā)癥。此外,清晰顯示瓣膜的狹窄程度、主動(dòng)脈瓣環(huán)及主動(dòng)脈根部的解剖結(jié)構(gòu)以及手術(shù)入路是手術(shù)成功的保證。超聲心動(dòng)圖作為一線影像學(xué)檢查手段,不但能準(zhǔn)確評(píng)估瓣膜的受損情況,還能測(cè)量患者心室功能,明確左室及周圍結(jié)構(gòu)。經(jīng)食管超聲心動(dòng)圖可作為聲窗受限或特殊情況下的補(bǔ)充。MSCT可對(duì)主動(dòng)脈瓣環(huán)及其周圍結(jié)構(gòu)進(jìn)行更準(zhǔn)確的評(píng)估,對(duì)鈣化的高敏感度使其在術(shù)前的決策及手術(shù)的預(yù)后判斷中均能發(fā)揮重要作用。心臟MRI成像借助其多參數(shù)、無電離輻射的優(yōu)勢(shì)可綜合評(píng)估患者的瓣膜、血流、心室功能以及主動(dòng)脈結(jié)構(gòu)。其特有的纖維化評(píng)估技術(shù)可以作為預(yù)后判斷及危險(xiǎn)分層的有效手段。隨著循證醫(yī)學(xué)證據(jù)的積累和技術(shù)的進(jìn)步,影像學(xué)勢(shì)必會(huì)推動(dòng)TAVI向更加安全、更加有效的方向發(fā)展。
[1] 中國醫(yī)師協(xié)會(huì)心血管內(nèi)科醫(yī)師分會(huì)結(jié)構(gòu)性心臟病專業(yè)委員會(huì), 中華醫(yī)學(xué)會(huì)心血管病學(xué)分會(huì)結(jié)構(gòu)性心臟病學(xué)組. 經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù)中國專家共識(shí)[J].中國介入心臟病學(xué)雜志, 2015, 23: 661-667.
[2] Buellesfeld L, Stortecky S, Kalesan B, et al. Aortic root dimensions among patients with severe aortic stenosis undergoing transcatheter aortic valve replacement[J].JACC Cardiovasc Interv,2013,6:72-83.
[3] Koos R, Altiok E, Mahnken AH, et al. Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography:implications for transcatheter aortic valve implantation[J].Int J Cardiol, 2012,158:353-358.
[4] Tamborini G, Fusini L, Muratori M, et al. Feasibility and accuracy of three-dimensional transthoracic echocardiography vs. multidetector computed tomography in the evaluation of aortic valve annulus in patient candidates to transcatheter aortic valve implantation[J].Eur Heart J Cardiovasc Imaging,2014,15:1316-1323.
[5] Smith LA, Dworakowski R, Bhan A, et al. Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation[J].J Am Soc Echocardiogr,2013,26:359-369.
[6] Khalique OK, Kodali SK, Paradis JM, et al. Aortic annular sizing using a novel 3-dimensional echocardiographic method:use and comparison with cardiac computed tomography[J].Circ Cardiovasc Imaging,2014,7:155-163.
[7] Oguri A, Yamamoto M, Mouillet G, et al. Clinical outcomes and safety of transfemoral aortic valve implantation under general versus local anesthesia:subanalysis of the French Aortic National CoreValve and Edwards 2 registry[J].Circ Cardiovasc Interv,2014,7:602-610.
[8] Nguyen V, Cimadevilla C, Estellat C, et al. Haemodynamic and anatomic progression of aortic stenosis[J].Heart,2015,101:943-947.
[9] Rosenhek R, Klaar U, Schemper M, et al. Mild and moderate aortic stenosis. Natural history and risk stratification by echocardiography[J].Eur Heart J,2004,25:199-205.
[10] Messika-Zeitoun D, Aubry MC, Detaint D, et al. Evaluation and clinical implications of aortic valve calcification measured by electron-beam computed tomography[J].Circulation,2004,110:356-362.
[11] Abdel-Wahab M, Zahn R, Horack M, et al. Aortic regurgitation after transcatheter aortic valve implantation:incidence and early outcome. Results from the German transcatheter aortic valve interventions registry[J].Heart,2011,97:899-906.
[12] John D, Buellesfeld L, Yuecel S, et al. Correlation of device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis[J].JACC Cardiovasc Interv,2010,3:233-243.
[13] Koos R, Mahnken AH, Dohmen G, et al. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation[J].Int J Cardiol,2011,150:142-145.
[14] Koh EY, Lam KY, Bindraban NR, et al. Aortic valve calcification as a predictor of location and severity of paravalvular regurgitation after transcatheter aortic valve implantation[J].Interact Cardiovasc Thorac Surg,2015,20:345-350.
[15] Jabbour A, Ismail TF, Moat N, et al. Multimodality imaging in transcatheter aortic valve implantation and post-procedural aortic regurgitation:comparison among cardiovascular magnetic resonance,cardiac computed tomography, and echocardiography[J].J Am Coll Cardiol,2011,58:2165-2173.
[16] Bernhardt P, Rodewald C, Seeger J, et al. Non-contrast-enhanced magnetic resonance angiography is equal to contrast-enhanced multislice computed tomography for correct aortic sizing before transcatheter aortic valve implantation[J].Clin Res Cardiol,2016,105:273-278.
[17] Dweck MR, Joshi S, Murigu T, et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis[J].J Am Coll Cardiol,2011,58:1271-1279.
[18] Barone-Rochette G, Pierard S, De Meester de Ravenstein C, et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement[J].J Am Coll Cardiol,2014,64:144-154.
[19] Weidemann F, Herrmann S, Stork S, et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis[J].Circulation,2009,120:577-584.
[20] Stuckey DJ, McSweeney SJ, Thin MZ, et al. T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy[J].Circ Cardiovasc Imaging,2014,7:240-249.
[21] Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume[J].Circ Cardiovasc Imaging,2013,6:373-383.
[22] Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans[J].Circulation,2010,122:138-144.
[23] Flett AS, Sado DM, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis:an equilibrium contrast cardiovascular magnetic resonance study[J].Eur Heart J Cardiovasc Imaging,2012,13:819-826.
[24] Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality[J].Circulation,2012,126:1206-1216.
[25] Biaggi P, Fernandez-Golfin C, Hahn R, et al. Hybrid imaging during transcatheter structural heart interventions[J].Curr Cardiovasc Imaging Rep,2015,8:33.
[26] Arujuna AV, Housden RJ, Ma Y, et al. Novel system for real-time integration of 3-D echocardiography and fluoroscopy for image-guided cardiac interventions:preclinical validation and clinical feasibility evaluation[J].IEEE J Transl Eng Health Med,2014,2:1900110.
[27] Krishnaswamy A, Tuzcu EM, Kapadia SR. Integration of MDCT and fluoroscopy using C-arm computed tomography to guide structural cardiac interventions in the cardiac catheterization laboratory[J].Catheter Cardiovasc Interv,2015,85:139-147.
[28] Jung JI, Koh YS, Chang K. 3D printing model before and after transcatheter aortic valve implantation for a better understanding of the anatomy of aortic root[J].Korean Circ J,2016,46:588-589.
[29] Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement[J].J Cardiovasc Comput Tomogr,2016,10:28-36.
[30] Maragiannis D, Jackson MS, Igo SR, et al. Replicating patient-specific severe aortic valve stenosis with functional 3D modeling[J].Circ Cardiovasc Imaging,2015,8:e003626.
Clinical Application and Development of Medical Imaging in Transcatheter Aortic Valve Implantation
CUI Chen,ZHAO Shihua
(DepartmentofMRI,FuwaiHospital,NationalCenterforCardiovascularDiseases,PekingUnionMedicalCollege,ChineseAcademyofMedicalSciences,Beijing100037,China)
帶雙孔房間隔限流器造瘺對(duì)犬肺動(dòng)脈高壓模型作用機(jī)制的研究(14ZR1406700)
崔辰(1988—),在讀博士,主要從事心血管影像學(xué)臨床研究。Email:cuichen@fuwaihospital.org
趙世華(1962—),教授,主任醫(yī)師,博士,主要從事心血管影像診斷及結(jié)構(gòu)性心臟病介入治療研究。Email:cjrzhaoshihua2009@163.com
2016-08-30