金濤,胡宇,劉超
缺血預(yù)適應(yīng)對(duì)肝臟熱缺血再灌注損傷保護(hù)作用的機(jī)制研究
金濤1,胡宇2△,劉超3
目的探討缺血預(yù)適應(yīng)對(duì)肝臟熱缺血再灌注損傷保護(hù)作用的分子機(jī)制。方法90只成年清潔級(jí)SD大鼠隨機(jī)均分為3組,A組為假手術(shù)組,B、C組建立SD大鼠肝臟熱缺血再灌注損傷模型,并對(duì)C組大鼠進(jìn)行缺血預(yù)適應(yīng)干預(yù)。于缺血再灌注后0、2、6、12、24 h采集血標(biāo)本測(cè)定丙氨酸轉(zhuǎn)氨酶(ALT)、天冬氨酸轉(zhuǎn)氨酶(AST),采用酶聯(lián)免疫吸附(ELISA)技術(shù)檢測(cè)肝細(xì)胞中腫瘤壞死因子(TNF)-α及白細(xì)胞介素(IL)-1β水平;采集肝組織標(biāo)本測(cè)定丙二醛(MDA)和超氧化物歧化酶(SOD),流式細(xì)胞儀測(cè)定肝細(xì)胞線粒體膜電位。結(jié)果B、C組大鼠的血清轉(zhuǎn)氨酶、TNF-α、IL-1β及MDA水平均明顯高于A組(P<0.05);B、C組大鼠的凝血酶原活動(dòng)度和膽堿酯酶低于A組(P<0.05);B、C組大鼠肝臟SOD水平明顯低于A組;C組大鼠各項(xiàng)指標(biāo)均優(yōu)于B組(P<0.05)。缺血再灌注發(fā)生后肝細(xì)胞線粒體膜電位水平在0 h后即達(dá)到最低值,此后呈逐漸上升趨勢(shì)(P<0.05),并且C組的肝細(xì)胞線粒體膜電位水平在各時(shí)段均高于B組(P<0.05)。結(jié)論缺血預(yù)適應(yīng)對(duì)肝細(xì)胞熱缺血再灌注損傷具有一定的保護(hù)作用,缺血預(yù)適應(yīng)可以通過(guò)減少炎癥因子TNF-α及IL-1β的釋放,提高SOD拮抗自由基的活性,減輕線粒體損傷等途徑發(fā)揮其保護(hù)作用。
丙氨酸轉(zhuǎn)氨酶;天冬氨酸氨基轉(zhuǎn)移酶類(lèi);再灌注損傷;氧化性應(yīng)激;線粒體;缺血預(yù)適應(yīng)
肝臟缺血再灌注損傷(I/R)是肝臟疾病外科治療過(guò)程中常見(jiàn)的病理變化[1-3]。由于肝臟功能十分復(fù)雜,外科手術(shù)難度較大。肝破裂失血性休克以及肝切除手術(shù)、肝臟血流阻斷手術(shù)等肝臟外科手術(shù)不可避免地造成了肝臟的缺血再灌注損傷,其損傷主要累及肝實(shí)質(zhì)細(xì)胞[4]。缺血預(yù)適應(yīng)(IPC)是通過(guò)預(yù)先反復(fù)短暫的缺血處理促使組織器官細(xì)胞能夠較長(zhǎng)時(shí)間耐受缺血狀態(tài),從而減輕組織器官缺血再灌注損傷的方法。缺血預(yù)適應(yīng)的概念是由Murry等在1986年最先提出,此后有學(xué)者通過(guò)研究證實(shí)了缺血預(yù)適應(yīng)能夠?qū)π募∪毖獡p傷起到保護(hù)作用[5]。研究顯示,缺血預(yù)適應(yīng)在大腦、肝臟、腎臟、肺、小腸、骨骼肌等多個(gè)組織器官都普遍存在,并且各組織器官之間存在交叉缺血耐受現(xiàn)象[6]。本研究旨在探討缺血預(yù)適應(yīng)對(duì)肝臟熱缺血再灌注損傷保護(hù)性作用的分子機(jī)制,為臨床治療肝臟熱缺血再灌注損傷提供理論依據(jù)。
1.1 動(dòng)物分組及模型的建立選取成年清潔級(jí)SD大鼠(天津醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物科學(xué)部提供,動(dòng)物合格證號(hào):醫(yī)動(dòng)字第008號(hào))90只,鼠齡8~12周,體質(zhì)量(260±18)g(200~300 g),雌雄不限。飼養(yǎng)條件:將大鼠置于屏障環(huán)境,標(biāo)準(zhǔn)飼料喂養(yǎng),允許大鼠自由飲水和攝食。應(yīng)用隨機(jī)數(shù)字表法將大鼠隨機(jī)分成3組,每組30只。SD大鼠術(shù)前12 h禁食、不限水。動(dòng)物用異氟烷(深圳市瑞沃德生命科技有限公司)麻醉滿意后,消毒腹部皮膚,取上腹正中切口切開(kāi)腹壁,分離大鼠肝十二指腸韌帶,使用動(dòng)物用顯微外科手術(shù)器械(深圳市瑞沃德生命科技有限公司)夾閉肝固有動(dòng)脈和門(mén)靜脈主干,30 min后松開(kāi)動(dòng)脈夾恢復(fù)血供,縫合腹壁傷口,建立大鼠肝臟熱缺血再灌注損傷模型。A組為假手術(shù)組,大鼠開(kāi)腹后找到并分離大鼠肝十二指腸韌帶,但不阻斷肝臟肝門(mén)血液供應(yīng),30 min后縫合腹壁傷口。B組為熱缺血再灌注組,分離大鼠肝十二指腸韌帶,阻斷肝臟肝門(mén)血液供應(yīng)30 min。C組為缺血預(yù)適應(yīng)組,分離大鼠肝十二指腸韌帶,夾閉肝固有動(dòng)脈和門(mén)靜脈主干15 min后松開(kāi)動(dòng)脈夾恢復(fù)血供,20 min后再次夾閉肝固有動(dòng)脈和門(mén)靜脈主干30 min后松開(kāi)動(dòng)脈夾恢復(fù)血供,縫合腹壁傷口。術(shù)后繼續(xù)燈照加溫復(fù)蘇。48 h內(nèi)喂10%葡萄糖水,單籠喂養(yǎng),其后正常進(jìn)食。
1.2 標(biāo)本采集及檢測(cè)方法觀察肝臟顏色由紅色變?yōu)榘咨僮優(yōu)榧t色即認(rèn)為肝臟經(jīng)歷缺血再灌注損傷,即造模成功。全部實(shí)驗(yàn)大鼠均造模成功。造模成功大鼠再灌注損傷發(fā)生后0、2、6、12、24 h時(shí),將模型大鼠經(jīng)乙醚麻醉滿意后,切開(kāi)腹壁,選擇大鼠下腔靜脈穿刺抽取靜脈血,并切取肝臟左、中葉肝組織待檢測(cè)。血液標(biāo)本經(jīng)4 000 r/min離心后,收集血清,用貝克曼庫(kù)爾特AU5800自動(dòng)生化分析儀檢測(cè)血清丙氨酸轉(zhuǎn)氨酶(ALT)、天冬氨酸轉(zhuǎn)氨酶(AST)、凝血酶原活動(dòng)度(PTA)和膽堿酯酶(cholinesterase),其余血清標(biāo)本用于酶聯(lián)免疫吸附試驗(yàn)(ELISA)法定量測(cè)定腫瘤壞死因子(TNF)-α及白細(xì)胞介素(IL)-1β含量。各時(shí)間點(diǎn)分別切取肝臟組織標(biāo)本100 mg,經(jīng)過(guò)低溫研磨成為肝組織勻漿液,經(jīng)過(guò)低溫3 000 r/min離心后,收集上清用于測(cè)定丙二醛(MDA)和超氧化物歧化酶(SOD)的含量;各時(shí)間點(diǎn)分別切取肝臟組織標(biāo)本100 mg經(jīng)0.9%生理鹽水洗凈后用于制備肝細(xì)胞懸液,再利用熒光探針經(jīng)過(guò)JC-1熒光染色對(duì)肝細(xì)胞內(nèi)線粒體進(jìn)行染色標(biāo)記后進(jìn)行流式細(xì)胞儀測(cè)定,線粒體膜電位經(jīng)過(guò)流式細(xì)胞儀測(cè)定后形成反映JC-1熒光染色強(qiáng)度變化的流式圖,JC-1在線粒體內(nèi)形成的聚合物在流式細(xì)胞檢測(cè)中主要表現(xiàn)為紅色熒光染色。當(dāng)線粒體膜電位去極化發(fā)生異常改變時(shí)線粒體以綠色熒光染色為主。通過(guò)對(duì)比染色呈現(xiàn)紅色熒光線粒體與綠色熒光線粒體的熒光強(qiáng)度來(lái)反映肝細(xì)胞中線粒體的膜電位情況。
1.3 統(tǒng)計(jì)學(xué)方法采用SPSS 20.0進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料采用表示;多組間比較采用重復(fù)測(cè)量設(shè)計(jì)方差分析,多重比較采用LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.13 組間血清轉(zhuǎn)氨酶水平的比較同一組內(nèi)不同時(shí)點(diǎn)比較,B、C組ALT、AST水平在缺血再灌注損傷后隨時(shí)間均呈逐漸降低趨勢(shì)(均P<0.05),A組不同時(shí)點(diǎn)間差異無(wú)統(tǒng)計(jì)學(xué)意義。同一時(shí)點(diǎn)各組間比較,B、C組ALT、AST水平均高于A組,C組低于B組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表1、2。
2.23 組間凝血酶原活動(dòng)度和膽堿酯酶水平的比較同一組內(nèi)不同時(shí)點(diǎn)比較,B組和C組大鼠凝血酶原活動(dòng)度和膽堿酯酶在缺血再灌注后呈先降后增的趨勢(shì),在6 h時(shí)達(dá)到低谷,至12 h逐漸回升;A組不同時(shí)點(diǎn)間差異無(wú)統(tǒng)計(jì)學(xué)意義。同一時(shí)點(diǎn)各組間比較,除缺血再灌注后0 h外,其余時(shí)點(diǎn)B、C組凝血酶原活動(dòng)度和膽堿酯酶水平均低于A組,C組高于B組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表3、4。
2.33 組間血清TNF-α及IL-1β水平的比較同一組內(nèi)不同時(shí)點(diǎn)比較,B組和C組大鼠血清TNF-α及IL-1β水平在缺血再灌注后呈先升后降的趨勢(shì),TNF-α在6 h時(shí)達(dá)到頂峰,至12 h逐漸回落;IL-1β在12 h時(shí)達(dá)頂峰,至24 h開(kāi)始回落;A組不同時(shí)點(diǎn)間差異無(wú)統(tǒng)計(jì)學(xué)意義。同一時(shí)點(diǎn)各組間比較,缺血再灌注后0 h和2 h時(shí),B、C組血清TNF-α高于A組,B、C組間差異無(wú)統(tǒng)計(jì)學(xué)意義,3組IL-1β差異無(wú)統(tǒng)計(jì)學(xué)意義;其余時(shí)點(diǎn)B、C組血清TNF-α及IL-1β水平均高于A組,C組低于B組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表5、6。
2.43 組間肝細(xì)胞SOD及MDA水平的比較同一組內(nèi)不同時(shí)點(diǎn)比較,B組和C組大鼠肝細(xì)胞SOD水平在缺血再灌注后2 h時(shí)達(dá)到頂峰,至6 h逐漸回落;B、C組MDA呈逐漸增高趨勢(shì)。A組不同時(shí)點(diǎn)間差異均無(wú)統(tǒng)計(jì)學(xué)意義。同一時(shí)點(diǎn)各組間比較,缺血再灌注后6 h和12 h,B、C組肝細(xì)胞SOD水平均低于A組,C組高于B組;缺血再灌注后各時(shí)點(diǎn)B、C組MDA水平均高于A組,C組低于B組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見(jiàn)表7、8。
2.5 各組肝細(xì)胞線粒體膜電位的變化B、C組大鼠肝細(xì)胞線粒體膜電位水平在缺血再灌注后0 h即達(dá)到最低值,此后逐漸上升,在各時(shí)間點(diǎn)B、C組的肝細(xì)胞線粒體膜電位水平均低于A組,并且C組的肝細(xì)胞線粒體膜電位水平在各時(shí)段均高于B組(P<0.05),見(jiàn)表9。
Tab.1The changes of serum levels of ALT in three groups of rats表1 各組大鼠血清ALT水平變化情況(n=6,U/L)
Tab.1The changes of serum levels of ALT in three groups of rats表1 各組大鼠血清ALT水平變化情況(n=6,U/L)
*P<0.05,**P<0.01;F1為同一時(shí)點(diǎn)各組間的比較,F(xiàn)2為同一組內(nèi)不同時(shí)點(diǎn)的比較;a與A組比較,b與B組比較,P<0.05;表2~9同
組別A組B組C組F2 0.29 53.48**68.14**F1 0 h 60.4±7.1 857.3±90.2a 779.1±82.6ab 184.52**2 h 67.3±5.6 831.2±84.7a 748.5±69.3ab 282.71**6 h 68.4±6.3 672.4±79.3a 558.4±69.8ab 165.51**12 h 68.1±6.7 393.5±58.4a 301.6±47.4ab 88.84**24 h 70.1±7.1 351.1±57.6a 211.2±42.8ab 68.33**
Tab.2The changes of serum levels of AST in three groups of rats表2 各組大鼠血清AST水平變化情況(n=6,U/L)
Tab.2The changes of serum levels of AST in three groups of rats表2 各組大鼠血清AST水平變化情況(n=6,U/L)
組別A組B組C組F2 0.19 61.45**69.22**F1 0 h 90.3±8.1 958.6±100.1a 891.4±80.0ab 220.17**2 h 97.5±7.9 937.1±88.3a 813.8±72.3ab 263.43**6 h 98.1±8.3 626.8±76.3a 436.4±65.6ab 126.61**12 h 101.7±9.1 457.5±56.8a 305.4±42.5ab 112.15**24 h 94.8±8.1 376.3±59.3a 231.5±36.3ab 72.80**
Tab.3The changes of prothrombin activities in three groups of rats表3 各組大鼠凝血酶原活動(dòng)度水平變化情況(n=6,%)
Tab.3The changes of prothrombin activities in three groups of rats表3 各組大鼠凝血酶原活動(dòng)度水平變化情況(n=6,%)
組別A組B組C組F2 0.35 45.93**101.52**F1 0 h 0.91±0.22 0.86±0.14a 0.84±0.17a 150.07**2 h 0.87±0.19 0.53±0.10a 0.69±0.19ab 192.33**6 h 0.83±0.12 0.33±0.05a 0.60±0.15ab 121.67**12 h 0.80±0.11 0.49±0.08a 0.66±0.17ab 72.18**24 h 0.78±0.14 0.59±0.13a 0.71±0.15ab 55.94**
Tab.4The changes of cholinesterase levels in three groups of rats表4 各組大鼠膽堿酯酶水平變化情況(n=6,U/L)
Tab.4The changes of cholinesterase levels in three groups of rats表4 各組大鼠膽堿酯酶水平變化情況(n=6,U/L)
組別A組B組C組F2 0.51 121.62**215.37**F1 0 h 8 118.4±2 347.7 8 142.5±2 157.6a 8 028.7±2 239.5ab 153.8**2 h 8 036.8±1 994.5 5 841.2±1 795.2a 6 654.3±1 450.4ab 235.1**6 h 7 986.8±2 143.5 1 449.5±475.7a 3 901.9±1 255.4ab 163.8**12 h 7 902.9±1 945.3 4 128.5±1 828.7a 5 052.1±1 657.5ab 96.4**24 h 8 085.4±2 214.3 5 336.1±2 127.3a 6 052.5±2 034.2ab 64.7**
進(jìn)行復(fù)雜肝臟手術(shù)的過(guò)程中需要對(duì)肝臟血流流入通道以及血液流出通道進(jìn)行阻斷,或進(jìn)行選擇性半肝血流阻斷等多種外科措施,以減少或避免術(shù)中出血、保證手術(shù)的順利進(jìn)行,但對(duì)肝臟血流進(jìn)行阻斷與恢復(fù)最終必然會(huì)導(dǎo)致肝臟發(fā)生熱缺血再灌注損傷[6-8]。肝臟的熱缺血再灌注損傷容易造成患者在手術(shù)后繼發(fā)肝功能降低、肝臟淤血等一系列嚴(yán)重并發(fā)癥[9-11]。由于肝臟組織結(jié)構(gòu)十分復(fù)雜,目前尚缺乏有效降低或預(yù)防缺血再灌注損傷的手段。關(guān)于缺血再灌注損傷發(fā)生機(jī)制的研究一直是該領(lǐng)域的研究熱點(diǎn),迄今尚無(wú)定論。
多數(shù)觀點(diǎn)認(rèn)為肝臟缺血再灌注過(guò)程通常包括兩個(gè)階段:第一階段是以肝臟駐留的肝巨噬細(xì)胞活化為主要特征。激活后的肝巨噬細(xì)胞釋放出大量具有強(qiáng)氧化應(yīng)激作用的活性氧自由基,通過(guò)氧化應(yīng)激作用造成肝細(xì)胞的急性損傷。氧自由基攻擊肝細(xì)胞內(nèi)的蛋白酶類(lèi)、肝細(xì)胞骨架、膜系統(tǒng)等,造成線粒體功能降低和細(xì)胞能量代謝的異常,損傷肝細(xì)胞;肝細(xì)胞缺血再灌注過(guò)程第二階段是活化的肝巨噬細(xì)胞促進(jìn)機(jī)體釋放大量的炎癥因子,包括TNF-α、IL-1β、干擾素、前列腺素、血小板活化因子和白細(xì)胞介素等,從而激活炎癥反應(yīng),對(duì)肝細(xì)胞造成更大的損傷[12-13]。
Tab.5The changes of the serum TNF-α levels in three groups of rats表5 各組大鼠血清TNF-α水平變化情況(n=6,μg/L)
Tab.5The changes of the serum TNF-α levels in three groups of rats表5 各組大鼠血清TNF-α水平變化情況(n=6,μg/L)
組別A組B組C組F2 0.34 12.37**11.22**F1 0 h 0.60±0.15 1.67±0.34a 1.49±0.22a 20.09**2 h 0.74±0.21 1.84±0.61a 1.62±0.39a 20.09**6 h 0.78±0.23 4.68±1.32a 3.25±0.97ab 25.61**12 h 0.75±0.24 3.45±1.12a 2.24±0.75ab 17.56**24 h 0.78±0.25 2.43±0.88a 1.61±0.57ab 10.55**
Tab.6The changes of the serum IL-1β levels in three groups of rats表6 各組大鼠血清IL-1β水平變化情況(n=6,μg/L)
Tab.6The changes of the serum IL-1β levels in three groups of rats表6 各組大鼠血清IL-1β水平變化情況(n=6,μg/L)
組別A組B組C組F2 0.49 14.82**12.71**F1 0 h 0.11±0.03 0.14±0.05 0.12±0.03 0.42 2 h 0.13±0.05 0.17±0.08 0.15±0.06 0.58 6 h 0.15±0.07 1.08±0.33a 0.74±0.26ab 21.97**12 h 0.17±0.08 1.45±0.58a 0.95±0.33ab 16.58**24 h 0.16±0.07 0.83±0.28a 0.54±0.21ab 15.95**
Tab.7The changes of the serum SOD levels in three groups of rats表7 各組大鼠血清SOD水平變化情況(n=6,U/mg)
組別A組B組C組F10.40 0 h 24.32±4.15 19.59±2.14 20.80±2.75 2 h 24.32±4.15 22.11±3.88 23.46±3.96 F2 2.64 11.78**3.12*0.47 6 h 28.65±4.32 18.43±2.53a 22.95±3.29ab 13.16**12 h 25.58±4.23 13.22±2.05a 19.53±2.83ab 18.70**24 h 22.14±5.13 20.85±2.41 22.51±1.61 0.39
Tab.8The changes of the serum MDA levels in three groups of rats表8 各組大鼠血清MDA水平變化情況(n=6,μmol/g)
Tab.8The changes of the serum MDA levels in three groups of rats表8 各組大鼠血清MDA水平變化情況(n=6,μmol/g)
組別A組B組C組F2 1.63 65.38**29.67**F1 0 h 4.04±0.13 4.56±0.29a 4.21±0.17ab 26.70**2 h 4.13±0.25 5.07±0.38a 4.65±0.26ab 14.54**6 h 4.18±0.27 5.98±0.23a 4.74±0.22ab 87.68**12 h 4.22±0.29 7.36±0.41a 5.95±0.33ab 123.29**24 h 4.46±0.31 7.83±0.48a 5.54±0.31ab 126.13**
Tab.9The changes of the mitochondrial membrane potential levels in three groups of rats表9 各組大鼠線粒體膜電位變化情況(n=6,a.u)
Tab.9The changes of the mitochondrial membrane potential levels in three groups of rats表9 各組大鼠線粒體膜電位變化情況(n=6,a.u)
組別A組B組C組F1 0 h 0.28±0.07 0.12±0.04a 0.16±0.03ab 16.53**2 h 0.29±0.05 0.14±0.03a 0.18±0.04ab 21.72**6 h 0.28±0.07 0.16±0.05a 0.20±0.05ab 6.79**12 h 0.30±0.04 0.18±0.02a 0.22±0.03ab 23.17**24 h 0.31±0.08 0.22±0.05a 0.24±0.04ab 3.83*F2 0.39 4.79*5.87*
ALT主要存在于肝細(xì)胞漿內(nèi),其細(xì)胞內(nèi)濃度高于血清中1 000~3 000倍,是反映肝臟細(xì)胞功能最敏感的指標(biāo)。AST主要存在于肝細(xì)胞線粒體內(nèi),當(dāng)肝臟發(fā)生嚴(yán)重壞死或破壞時(shí),才能引起AST在血清中濃度偏高。此外,血清膽堿酯酶等凝血因子均由肝細(xì)胞合成而分泌入血,當(dāng)肝功受損時(shí),上述物質(zhì)的合成均減少,凝血酶原活動(dòng)度能較好地反映上述凝血因子的變化。故而,同時(shí)測(cè)定血清膽堿酯酶和血漿凝血酶原活動(dòng)度,能準(zhǔn)確地反映肝臟的合成功能。本研究結(jié)果顯示,與A組相比,肝細(xì)胞在熱缺血再灌注損傷后ALT、AST均顯著升高,其凝血酶原活動(dòng)度和膽堿酯酶均有降低,而且在損傷發(fā)生的早期即可顯著變化,提示肝細(xì)胞損傷在缺血再灌注后即可迅速發(fā)生,ALT及AST在同一組內(nèi)不同時(shí)點(diǎn)比較,B、C組ALT、AST水平在缺血再灌注損傷后隨時(shí)間均呈逐漸降低趨勢(shì)。同一時(shí)點(diǎn)各組間比較,B、C組ALT、AST水平均高于A組,C組低于B組。ALT及AST隨時(shí)間變化的趨勢(shì)反映出損傷發(fā)生后一段時(shí)間機(jī)體自身修復(fù)機(jī)制的啟動(dòng)[14]。缺血預(yù)適應(yīng)大鼠血清轉(zhuǎn)氨酶水平在各時(shí)段均低于熱缺血再灌注組。本結(jié)果提示缺血預(yù)適應(yīng)過(guò)程對(duì)于肝細(xì)胞發(fā)生缺血再灌注損傷具有一定保護(hù)作用。
TNF-α和IL-1β是迄今研究發(fā)現(xiàn)在肝細(xì)胞發(fā)生缺血再灌注損傷過(guò)程中發(fā)揮主要作用的兩個(gè)細(xì)胞因子。SOD能夠拮抗缺血再灌注損傷所導(dǎo)致的氧化應(yīng)激過(guò)程,保護(hù)肝細(xì)胞免于受到氧自由基的攻擊。SOD活性的高低間接體現(xiàn)了機(jī)體清除活性氧的能力。本研究結(jié)果提示缺血預(yù)適應(yīng)能夠調(diào)節(jié)缺血再灌注后肝細(xì)胞損傷過(guò)程中炎癥因子TNF-α、IL-1β等的釋放,減輕肝臟組織的炎性損傷;同時(shí)通過(guò)測(cè)定肝細(xì)胞中SOD的活性,反映出在肝細(xì)胞缺血再灌注過(guò)程中SOD能夠拮抗活性氧自由基,減輕氧化應(yīng)激損傷,缺血預(yù)適應(yīng)過(guò)程有助于該作用的發(fā)揮。
肝細(xì)胞發(fā)生缺血再灌注后出現(xiàn)缺血缺氧,導(dǎo)致細(xì)胞能量代謝異常,三磷酸腺苷分解代謝過(guò)程加劇,拮抗氧化應(yīng)激的同時(shí)也導(dǎo)致細(xì)胞內(nèi)源性抗氧化劑的消耗,此外活化的肝巨噬細(xì)胞、中性粒細(xì)胞、單核吞噬細(xì)胞等在缺氧狀態(tài)下細(xì)胞膜的NADPH氧化酶受到刺激進(jìn)一步加劇了氧自由基的聚集。氧自由基的另一個(gè)重要來(lái)源是線粒體,肝細(xì)胞缺血再灌注損傷過(guò)程可導(dǎo)致線粒體膜電位喪失,進(jìn)而導(dǎo)致呼吸鏈功能障礙[5,9]。本研究結(jié)果顯示B、C組大鼠肝細(xì)胞線粒體膜電位水平在缺血再灌注后0 h即達(dá)到最低值且低于A組,此后至24 h逐漸上升,在各時(shí)間點(diǎn)B、C組的肝細(xì)胞線粒體膜電位水平均低于A組,并且C組的肝細(xì)胞線粒體膜電位水平在各時(shí)段均高于B組。本結(jié)果提示肝細(xì)胞線粒體膜電位在缺血再灌注發(fā)生后迅速降低,缺血預(yù)適應(yīng)過(guò)程有助于減輕缺血再灌注損傷對(duì)線粒體的破壞作用。
[1]Gonul Y,Ozsoy M,Kocak A,et al.Antioxidant,antiapoptotic and inflammatory effects of interleukin-18 binding protein on kidney damage induced by hepatic ischemia reperfusion[J].Am J Med Sci,2006,351(6):607-615.doi:10.1016/j.amjms.2016.02.017.
[2]Zhai Y,Busuttil RW,Kupiec-Weglinski JW.Liver ischemia and reperfusion injury:new insights into mechanisms of innateadaptiveimmune-mediatedtissueinflammation[J].AmJ Transplant,2011,11(8):1563-1569.doi:10.1111/j.1600-6143. 2011.03579.x.
[3]Jaeschke H,Woolbright BL.Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species[J].Transplant Rev(Orlando),2012,26(2):103-114.doi:10. 1016/j.trre.2011.10.006.
[4]Nace GW,Huang H,Klune JR,et al.Cellular-specific role of tolllike receptor 4 in hepatic ischemia-reperfusion injury in mice[J]. Hepatology,2013,58(1):374-387.doi:10.1002/hep.26346.
[5]Yang M,Antoine DJ,Weemhoff JL,et al.Biomarkers distinguish apoptoticandnecroticcelldeathduringhepaticischemia/ reperfusion injury in mice[J].Liver Transpl,2014,20(11):1372-1382.doi:10.1002/lt.23958.
[6]Ma XM,Liu M,Liu YY,et al.Ischemic preconditioning protects against ischemic brain injury[J].Neural Regen Res,2016,11(5): 765-770.doi:10.4103/1673-5374.182703.
[7]Mendes-Braz M,Elias-Miró M,Jiménez-Castro MB,et al.The current state of knowledge of hepatic ischemia-reperfusion injury based on its study in experimental models[J].J Biomed Biotechnol,2012,2012:298657.doi:10.1155/2012/298657.
[8]Park MS,Joo SH,Kim BS,et al.Remote preconditioning on rat hepaticischemia-reperfusioninjurydownregulatedbaxand cleaved caspase-3 expression[J].Transplant Proc,2016,48(4): 1247-1250.doi:10.1016/j.transproceed.2015.12.125.
[9]Bellanti F,Mirabella L,Mitarotonda D,et al.Propofol but not sevoflurane prevents mitochondrial dysfunction and oxidative stress by limiting HIF-1α activation in hepatic ischemia/reperfusion injury[J].Free Radic Biol Med,2016,96:323-333.doi:10.1016/j. freeradbiomed.2016.05.002.
[10]Chaves JC,Neto FS,Ikejiri AT,et al.Period of hyperbaric oxygen delivery leads to different degrees of hepatic ischemia/reperfusion injury in rats[J].Transplant Proc,2016,48(2):516-520.doi: 10.1016/j.transproceed.2015.11.035.
[11]Abogresha NM,Greish SM,Abdelaziz EZ,et al.Remote effect of kidney ischemia-reperfusion injury on pancreas:role of oxidative stress and mitochondrial apoptosis[J].Arch Med Sci,2016,12(2): 252-262.doi:10.5114/aoms.2015.48130.
[12]Yang Y,Zhang S,F(xiàn)an C,et al.Protective role of silent information regulator 1 against hepatic ischemia:effects on oxidative stress injury,inflammatory response,and MAPKs[J].Expert Opin Ther Targets,2016,20(5):519-531.doi:10.1517/14728222.2016. 1153067.
[13]Go KL,Lee S,Zendejas I,et al.Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury[J].Biomed Res Int,2015,2015.doi:10.1155/2015/183469.
[14]Strifler G,Tuboly E,Szél E,et al.Inhaled methane limits the mitochondrialelectrontransportchaindysfunctionduring experimental liver ischemia-reperfusion injury[J].PLoS One,2016,11(1):e0146363.doi:10.1371/journal.pone.0146363.
(2016-06-03收稿2016-08-05修回)
(本文編輯魏杰)
The pathogenesis of ischemic preconditioning to warm ischemia reperfusion injury of hepatocytes in rats
JIN Tao1,HU Yu2△,LIU Chao3
1 Department of ICU,Tianjin Nankai Hospital,Tianjin 300100,China;2 Department of Anesthesiology,People's Liberation Army No.452 Hospital;3 Department of Cardiology,Tianjin Chest Hospital△
ObjectiveTo explore the pathogenesis of ischemic preconditioning to warm ischemia reperfusion injury of hepatocytes in rats.MethodsNinety SD rats were randomly divided into three experimental groups:sham operation group(group A),warm hepatic ischemia/reperfusion group(group B and group C).Group C was given ischemic preconditioning treatment.Serum levels of alanine aminotransferase(ALT)and aspartate aminotransferase(AST)were detected 0 h,2 h,6 h,12 h and 24 h after ischemia reperfusion injury.Levels of TNF-α and IL-1β were tested detected by ELISA.Levels of malondialdehyde(MDA)and superoxide dismutase(SOD)of hepatocytes were detected at the same time points. Mitochondrial membrane potential was examined to assess ischemia reperfusion injury of hepatocytes in rats using chart of intensity of JC-1 in mitochondria.ResultsThe serum levels of ALT,TNF-α,IL-1β,and MDA were significantly higher in hepatic warm ischemia reperfusion group and ischemic preconditioning group than those in sham operation group(P<0.05). Values of prothrombin activity and cholinesterase were significantly lower in liver warm ischemia reperfusion group and ischemic preconditioning group than those of sham operation group(P<0.05).The SOD level of liver was significantly lower in warm ischemia reperfusion group and ischemic preconditioning group than that in sham operation group.The indexes were better in ischemic preconditioning group than those of warm ischemia reperfusion group(P<0.05).The mitochondrial membrane potential level of liver cells reached the lowest value 0 hours after ischemia and reperfusion,and then increased gradually within 24 hours(P<0.05).And the level of mitochondrial membrane potential of liver cells was significantly higher in ischemic preconditioning group than that in warm ischemia reperfusion group(P<0.05).ConclusionIschemic preconditioning may play a protective role in warm ischemia-reperfusion injury in rats.Ischemic preconditioning may significantly decrease the levels of ALT,AST,TNF-α,IL-1β and MDA,and increase the SOD activity in hepatocytes.Thedamage of mitochondrial membrane potential is decreased after ischemic preconditioning,which might be the pathogenesis of ischemic preconditioning to warm ischemia reperfusion injury of hepatocytes in rats.
alanine transaminase;aspartate aminotransferases;reperfusion injury;oxidative stress;mitochondria;ischemic preconditioning
R657.3
A
10.11958/20160501
2013年中國(guó)博士后科學(xué)基金資助項(xiàng)目(2013M530880);2015年中國(guó)博士后科學(xué)基金資助項(xiàng)目(2015M581308)
1天津市南開(kāi)醫(yī)院重癥醫(yī)學(xué)科(郵編300100);2解放軍第452醫(yī)院麻醉科;3天津市胸科醫(yī)院心內(nèi)科
金濤(1973),男,副主任醫(yī)師,學(xué)士,主要從事危重癥醫(yī)學(xué)方面研究
△通訊作者E-mail:896221780@qq.com