李富貴,趙 洪
(中國(guó)運(yùn)載火箭技術(shù)研究院,北京 100076)
?
有限試驗(yàn)狀態(tài)下面對(duì)稱飛行器氣動(dòng)建模方法①
李富貴,趙洪
(中國(guó)運(yùn)載火箭技術(shù)研究院,北京100076)
為在有限的風(fēng)洞試驗(yàn)狀態(tài)下完成面對(duì)稱飛行器的氣動(dòng)建模,提出了一套風(fēng)洞試驗(yàn)方案及試驗(yàn)數(shù)據(jù)應(yīng)用和擴(kuò)展方法。利用該方法可抑制控制引起的氣動(dòng)非線性問題,同時(shí)可在少量試驗(yàn)狀態(tài)下完成氣動(dòng)建模。首先建立了氣動(dòng)模型,分析了BTT控制下傳統(tǒng)方法引起的氣動(dòng)建模偏差,針對(duì)該問題提出了氣動(dòng)建模的改進(jìn)方法。分析總結(jié)出面對(duì)稱飛行器具有幾何對(duì)稱性、鏡像對(duì)稱性、氣動(dòng)可疊加性和相似性等氣動(dòng)特點(diǎn)。依據(jù)上述特點(diǎn),篩選出氣動(dòng)建模時(shí)所需進(jìn)行風(fēng)洞試驗(yàn)的基本態(tài),通過風(fēng)洞試驗(yàn),獲得基本態(tài)試驗(yàn)數(shù)據(jù)后,基于氣動(dòng)規(guī)律,利用擴(kuò)展方法,可擴(kuò)展得到全飛行包絡(luò)下的氣動(dòng)參數(shù)。在數(shù)據(jù)擴(kuò)展時(shí),充分考慮了建模的精確性,提出了基于每片舵的“零舵狀態(tài)+舵增量狀態(tài)”的擴(kuò)展方法,以充分降低非線性造成的建模偏差。最后,結(jié)合某面對(duì)稱飛行器的吹風(fēng)試驗(yàn)結(jié)果,驗(yàn)證了文中提出方法的有效性。
面對(duì)稱飛行器;風(fēng)洞試驗(yàn);數(shù)據(jù)擴(kuò)展;有限狀態(tài)
為對(duì)飛行器的氣動(dòng)進(jìn)行準(zhǔn)確建模,風(fēng)洞試驗(yàn)的重要性不言而喻[1]。對(duì)于研制成本和研制周期受限的飛行器來說,盡量減少風(fēng)洞試驗(yàn)狀態(tài),提高數(shù)據(jù)拓展使用有效性,在最少的試驗(yàn)狀態(tài)下,建立起較準(zhǔn)確的模型顯得非常必要[2]。當(dāng)前,出現(xiàn)了越來越多的面對(duì)稱飛行器,對(duì)這類飛行器進(jìn)行建模時(shí)要比軸對(duì)稱飛行器更加復(fù)雜。受吊耳等附件的影響,即使設(shè)計(jì)為軸對(duì)稱的飛行器也存在上下氣動(dòng)不對(duì)稱的問題,在對(duì)這類飛行器建模時(shí),也需按面對(duì)稱飛行器的方式處理。
傳統(tǒng)飛行器進(jìn)行三通道控制時(shí)[3],由制導(dǎo)律可得每個(gè)通道的控制指令,進(jìn)而由控制律可得每個(gè)通道的等效舵偏指令,使用舵等效分解法,可得每個(gè)舵面的偏轉(zhuǎn)指令,經(jīng)舵機(jī)動(dòng)力學(xué)后,可得每個(gè)舵面的實(shí)際偏轉(zhuǎn)角,利用舵等效合成法,可得三通道等效合成舵偏值,然后利用該值進(jìn)行氣動(dòng)擴(kuò)展計(jì)算。當(dāng)舵偏轉(zhuǎn)較大時(shí),上述過程會(huì)出現(xiàn)較嚴(yán)重的非線性失真,致使氣動(dòng)建模出現(xiàn)較大誤差。
考慮前述問題,結(jié)合面對(duì)稱飛行器的氣動(dòng)特點(diǎn),本文構(gòu)造了一種吹風(fēng)試驗(yàn)狀態(tài)量少,但能較準(zhǔn)確反映飛行器氣動(dòng)特性的風(fēng)洞試驗(yàn)方案?;谠撛囼?yàn)方案,提出了與之匹配的試驗(yàn)數(shù)據(jù)應(yīng)用與擴(kuò)展方法。利用該方法可在較少的吹風(fēng)試驗(yàn)狀態(tài)下,較精確地構(gòu)建出飛行器氣動(dòng)模型。該方案的核心是首先通過吹風(fēng)試驗(yàn)獲得必須的基本態(tài)試驗(yàn)數(shù)據(jù),然后依據(jù)飛行器氣動(dòng)特點(diǎn),對(duì)基本態(tài)氣動(dòng)數(shù)據(jù)進(jìn)行擴(kuò)展,以獲得全狀態(tài)的氣動(dòng)參數(shù)。文中通過某面對(duì)稱飛行器風(fēng)洞試驗(yàn)數(shù)據(jù)的應(yīng)用和拓展,驗(yàn)證了方案的正確性、算法的合理性和有效性。
首先定義相關(guān)坐標(biāo)系和重要角度[4],文后的坐標(biāo)原點(diǎn)均取在導(dǎo)彈質(zhì)心o處。彈體坐標(biāo)系oxbybzb:oxb軸與彈體縱軸重合,指向頭部為正;oyb軸在彈體縱向?qū)ΨQ面內(nèi)與oxb軸垂直,指向上為正;ozb軸垂直于oxbyb平面,方向按右手直角坐標(biāo)系確定。全攻角彈體坐標(biāo)系oxnynzn:oxn軸與彈體縱軸重合,oxnyn平面為全攻角面,oyn向上為正,ozn與oxn和oyn構(gòu)成右手直角坐標(biāo)系。吹風(fēng)坐標(biāo)系oxwywzw:oxw軸與風(fēng)洞來流方向一致,oyw在鉛垂平面向上為正,ozw與oxw和oyw構(gòu)成右手直角坐標(biāo)系。定義全攻角αT為來流oxw與彈軸oxb間的夾角,氣動(dòng)滾轉(zhuǎn)角Φ為全攻角坐標(biāo)系oxnynzn繞oxn軸旋轉(zhuǎn)Φ角,即可得到彈體坐標(biāo)系。
攻角、側(cè)滑角和全攻角與氣動(dòng)滾轉(zhuǎn)角的轉(zhuǎn)換關(guān)系見式(1)。其中,αT的定義域?yàn)閇0,90°],Φ的定義域?yàn)閇-180°,180°]。
(1)
飛行器氣動(dòng)建模時(shí),需獲得氣動(dòng)力系數(shù)分量和力矩系數(shù)分量[5],在彈體系下分別對(duì)應(yīng)軸向力系數(shù)CA,法向力系數(shù)CN,側(cè)向力系數(shù)CZ,滾轉(zhuǎn)力矩系數(shù)mx,偏航力矩系數(shù)my,俯仰力矩系數(shù)mz,這些氣動(dòng)系數(shù)是馬赫數(shù)Ma、全攻角αT、氣動(dòng)滾轉(zhuǎn)角Φ和舵偏角δ的函數(shù),通常飛行器有四片舵,可把它們稱作δ1、δ2、δ3、δ4。此時(shí),氣動(dòng)力和氣動(dòng)力矩系數(shù)可用函數(shù)f(Ma,αT,Φ,δ1,δ2,δ3,δ4)描述。由于資源、時(shí)間等限制,只能選擇有限的特征點(diǎn)進(jìn)行試驗(yàn),特征點(diǎn)的選擇是關(guān)鍵問題。圖1給出了等效舵偏角的定義圖(從飛行器尾部向前看)。其中,δ1、δ2、δ3、δ4為彈上四片舵,而δa、δe、δr代表了控制過程中等效的副翼、升降舵和方向舵。
對(duì)于面對(duì)稱飛行器,通常采用BTT控制,在BTT控制過程中會(huì)引起氣動(dòng)非線性問題[6],這對(duì)氣動(dòng)建模提出了新的要求。圖2給出了BTT控制系統(tǒng)框圖,BTT控制時(shí),首先根據(jù)導(dǎo)彈和目標(biāo)當(dāng)前的位置和速度通過制導(dǎo)律生成三通道駕駛儀指令,三通道駕駛儀根據(jù)導(dǎo)彈當(dāng)前狀態(tài)和駕駛儀指令,生成對(duì)應(yīng)的三通道等效舵偏角指令。使用舵等效分解的方法,把三通道等效舵偏角指令可分解成四通道的物理舵偏轉(zhuǎn)指令如式(2)所示,據(jù)此控制四片舵偏轉(zhuǎn),控制導(dǎo)彈飛行。在仿真時(shí),普遍采用的方式是得到四通道等效舵偏后,經(jīng)過舵機(jī)模型后,得到四通道實(shí)際偏轉(zhuǎn)舵偏;然后,再使用舵等效合成的方法,把四通道舵等效合成為三通道等效舵如式(3)所示;最后,再使用合成后的三通道等效舵計(jì)算導(dǎo)彈所受的氣動(dòng)力和氣動(dòng)力矩。
(a)δa>0 (b)δe>0 (c)δr>0
圖2 BTT控制系統(tǒng)框圖
(2)
(3)
而問題就出現(xiàn)在前述采用等效舵計(jì)算氣動(dòng)力和氣動(dòng)力矩的步驟上。實(shí)際作用在飛行器上的氣動(dòng)力是由四片舵偏轉(zhuǎn)產(chǎn)生的,當(dāng)δ1、δ2、δ3、δ4偏轉(zhuǎn)很大時(shí),氣動(dòng)特性已處于嚴(yán)重的非線性區(qū),但通過式(3)得到的等效舵偏δa、δe、δr仍可能很小,仍處于氣動(dòng)線性區(qū),這在氣動(dòng)計(jì)算中會(huì)帶來很大誤差,下面舉例說明。假設(shè)考慮氣動(dòng)非線性時(shí),氣動(dòng)力與舵偏的關(guān)系如式(4)所示。
(4)
如先由每片舵偏等效計(jì)算得等效舵偏,再由等效舵偏計(jì)算氣動(dòng)力,則由式(4)可得三通道的氣動(dòng)力如式(5)所示。
(5)
如先使用每片舵偏計(jì)算得單獨(dú)的氣動(dòng)力,再疊加成合成氣動(dòng)力,則由式(3)和式(4)可得,三通道的氣動(dòng)力如式(6)所示。
當(dāng)δa=10、δe=10且δr=10時(shí),對(duì)應(yīng)δ1=30、δ2=10、δ3=-10、δ4=10,此時(shí)δ1很大,會(huì)導(dǎo)致氣動(dòng)特性存在嚴(yán)重的非線性。表1給出了采用式(5)和式(6)計(jì)算得的結(jié)果。從中可知,采用等效舵計(jì)算氣動(dòng)力時(shí),非線性會(huì)導(dǎo)致計(jì)算出現(xiàn)很大的偏差。由表1可知,采用每片舵計(jì)算完氣動(dòng)力和力矩后再疊加,可在建模時(shí)充分考慮氣動(dòng)非線性的影響,這對(duì)風(fēng)洞試驗(yàn)方案和數(shù)據(jù)的拓展應(yīng)用有重要影響。
表1 氣動(dòng)力計(jì)算結(jié)果對(duì)比
3.1幾何對(duì)稱性
面對(duì)稱飛行器具有幾何對(duì)稱性。從彈體尾部沿縱軸向前看,面對(duì)稱飛行器左右對(duì)稱,上下不對(duì)稱。于是風(fēng)洞試驗(yàn)時(shí),必須同時(shí)吹正負(fù)攻角的狀態(tài),側(cè)滑角可只吹單側(cè),未吹風(fēng)的狀態(tài)利用幾何對(duì)稱等效得到。
3.2鏡像對(duì)稱性
面對(duì)稱飛行器具有鏡像對(duì)稱性。如圖3所示,正舵正迎角鏡像對(duì)稱于負(fù)舵負(fù)迎角狀態(tài),正舵負(fù)迎角鏡像對(duì)稱于負(fù)舵正迎角狀態(tài),對(duì)應(yīng)的舵面迎角大小相等,方向相反,舵產(chǎn)生的力和力矩大小相等、方向相反。由此吹風(fēng)時(shí),可只吹單側(cè)舵(正或負(fù))的狀態(tài),未吹風(fēng)狀態(tài)利用鏡像對(duì)稱等效得到。
3.3氣動(dòng)可疊加性
面對(duì)稱飛行器氣動(dòng)具有可疊加性??砂褜?duì)氣動(dòng)的貢獻(xiàn)分解為舵面的貢獻(xiàn)和飛行器其他部件的貢獻(xiàn)。因此可把舵面對(duì)氣動(dòng)的貢獻(xiàn)分解為每片舵的單獨(dú)貢獻(xiàn)。
3.4相似性
面對(duì)稱飛行器氣動(dòng)具有相似性。當(dāng)每片舵偏轉(zhuǎn)相同的角度時(shí),每片舵對(duì)氣動(dòng)的貢獻(xiàn)值相同。因試驗(yàn)中不可能對(duì)δ1、δ2、δ3、δ4狀態(tài)的任意組合都進(jìn)行試驗(yàn),基于可疊加性和相似性假設(shè),在吹風(fēng)中,可令δ1、δ2、δ3、δ4偏轉(zhuǎn)角度相同,而方向出現(xiàn)組合,構(gòu)造出δ1=δ2=δ3=δ4=δa(δa狀態(tài)),δ1=-δ2=-δ3=δ4=δe(δe狀態(tài)),δ1=δ2=-δ3=-δ4=δr(δr狀態(tài))3個(gè)大狀態(tài),這樣會(huì)大大縮減吹風(fēng)狀態(tài)。
圖3 鏡像對(duì)稱特性
利用面對(duì)稱飛行器的幾何對(duì)稱性、鏡像對(duì)稱性、氣動(dòng)可疊加性和相似性,可構(gòu)造一種吹風(fēng)狀態(tài)少,但能較準(zhǔn)確描述飛行器特性的風(fēng)洞試驗(yàn)方案,如表2所示。其中舵只吹非正等效狀態(tài),氣動(dòng)滾轉(zhuǎn)角需試驗(yàn)0°~90°和-180°~-90°的狀態(tài),相匹配的全攻角只試驗(yàn)非負(fù)狀態(tài)。風(fēng)洞試驗(yàn)狀態(tài)的特征值根據(jù)飛行器的飛行條件及氣動(dòng)特性決定。從表2知,總試驗(yàn)狀態(tài)為NΦNMaNαT(Nδa+Nδe+Nδr),其中Nx代表變量x的吹風(fēng)狀態(tài)數(shù)。
表2 風(fēng)洞試驗(yàn)狀態(tài)
根據(jù)前面設(shè)計(jì)的風(fēng)洞試驗(yàn)方案,對(duì)面對(duì)稱飛行器進(jìn)行風(fēng)洞試驗(yàn),便可得到相應(yīng)氣動(dòng)數(shù)據(jù)。圖4給出了相應(yīng)的風(fēng)洞試驗(yàn)數(shù)據(jù)使用基本思路,依據(jù)可疊加性,任一狀態(tài)的氣動(dòng)值f(Ma,αT,Φ,δ1,δ2,δ3,δ4)可分解為零舵狀態(tài)f(Ma,αT,Φ,δ1=0,δ2=0,δ3=0,δ4=0)的值加上每片舵增量狀態(tài)Δf(Ma,αT,Φ,δ1,δ2,δ3,δ4)值。
4.1零舵狀態(tài)氣動(dòng)系數(shù)計(jì)算
氣動(dòng)系數(shù)隨氣動(dòng)滾轉(zhuǎn)角的變化規(guī)律類似三角曲線,在對(duì)氣動(dòng)滾轉(zhuǎn)角拓展時(shí)使用三次多項(xiàng)式[2]插值方法求取。而氣動(dòng)系數(shù)隨馬赫數(shù)、全攻角和舵偏角的變化規(guī)律可用線性插值方法拓展。零舵狀態(tài)的氣動(dòng)系數(shù)即使用舵為零時(shí)的氣動(dòng)數(shù)進(jìn)行拓展,主要考慮氣動(dòng)滾轉(zhuǎn)角、馬赫數(shù)和全攻角對(duì)氣動(dòng)數(shù)據(jù)的影響,如式(7)所示。其中,Φi代表吹風(fēng)節(jié)點(diǎn)上的氣動(dòng)滾轉(zhuǎn)角值,hΦi(Φi,Ma,αT,δ=0)表示在每個(gè)氣動(dòng)滾轉(zhuǎn)角吹風(fēng)節(jié)點(diǎn)Φi上使用δ1=δ2=δ3=δ4=0的吹風(fēng)試驗(yàn)數(shù)據(jù),對(duì)Ma、αT進(jìn)行線形插值,求得得到中間值hmi。gΦ表示使用拉格朗日三次多項(xiàng)式,利用中間值hmi對(duì)狀態(tài)Φ插值,求得最終值。
(7)
圖4 風(fēng)洞試驗(yàn)數(shù)據(jù)拓展思想
4.2舵增量狀態(tài)氣動(dòng)系數(shù)
按彈體系對(duì)氣動(dòng)系數(shù)可進(jìn)行分類處理,可有效減少工作量。CA和mx沿xb軸,用fx表示,CN和mz沿yb軸,用fy表示,CZ和my沿zb軸,用fz表示。舵間耦合小時(shí),可略去耦合的影響。此時(shí),δ1、δ2、δ3、δ4對(duì)fx、fy和fz的貢獻(xiàn),可分別由對(duì)應(yīng)的δa、δe和δr狀態(tài)的試驗(yàn)數(shù)據(jù)求得。如考慮舵間耦合,則需利用正交方向的等效舵的數(shù)據(jù)進(jìn)行計(jì)算,方法與上述一致。每片舵和其對(duì)應(yīng)的等效舵的大小相同,對(duì)氣動(dòng)力和氣動(dòng)力矩的貢獻(xiàn)值如式(8a)~式(8c)所示。方便起見,把δi(i=1,2,3,4)對(duì)應(yīng)的δa、δe和δr狀態(tài)的等效舵分別記為δdai、δdei和δdri。
(8a)
(8b)
(8c)
舵增量狀態(tài)的氣動(dòng)數(shù)據(jù)即由舵單獨(dú)產(chǎn)生的氣動(dòng)力和氣動(dòng)力矩??捎墒?9)計(jì)算得每片舵對(duì)各通道的氣動(dòng)力和氣動(dòng)力矩貢獻(xiàn)值。
(9)
i=1,2,3,4
而四片舵對(duì)每個(gè)通道氣動(dòng)力和力矩的貢獻(xiàn)值等于每片舵在該通道的貢獻(xiàn)之和的疊加,見式(10)。
(10)
4.3氣動(dòng)系數(shù)對(duì)Φ角拓展
由于只對(duì)0≤Φ≤90°和-180°≤Φ≤-90°狀態(tài)進(jìn)行了試驗(yàn),需利用幾何對(duì)稱性,對(duì)剩余Φ狀態(tài)進(jìn)行數(shù)據(jù)拓展。-90°≤Φ≤0和90°≤Φ≤180°的狀態(tài)分別使用0≤Φ≤90°和-180°≤Φ≤-90°狀態(tài)的數(shù)據(jù)進(jìn)行拓展。拓展時(shí),應(yīng)使氣動(dòng)力和氣動(dòng)力矩系數(shù)的物理意義與不同的Φ角相對(duì)應(yīng),如式(11a)和式(11b)所示。
i=1,2,3,4
(11a)
i=1,2,3,4
(11b)
4.4氣動(dòng)系數(shù)正舵狀態(tài)拓展
風(fēng)洞試驗(yàn)中,只對(duì)非負(fù)舵狀態(tài)進(jìn)行了風(fēng)洞試驗(yàn),正舵狀態(tài)的數(shù)據(jù)需利用鏡像對(duì)稱性利用負(fù)舵狀態(tài)的數(shù)據(jù)進(jìn)行擴(kuò)展。由于α、β與αT和Φ一一對(duì)應(yīng),方便起見,對(duì)正舵狀態(tài)的氣動(dòng)系數(shù)進(jìn)行擴(kuò)展時(shí),使用α和β替代αT和Φ,由鏡像對(duì)稱性可得,升降等效舵δdei>0對(duì)應(yīng)的法向力和升降力矩可由式(12)獲得,方向等效舵δdri>0對(duì)應(yīng)的側(cè)向力和偏航力矩可由式(13)獲得,副翼等效舵δdai>0對(duì)應(yīng)的軸向力和滾轉(zhuǎn)力矩可由式(14)獲得。
(12)
(13)
(14)
以某飛行器為例,按照前述思想進(jìn)行風(fēng)洞試驗(yàn),可得到試驗(yàn)數(shù)據(jù),并采用前述思想,可對(duì)數(shù)據(jù)進(jìn)行擴(kuò)展。以CN為例,圖5給出了在Ma、αT、δ一定的條件下,CN隨Φ角的變化曲線,圖中關(guān)于Φ的吹風(fēng)節(jié)點(diǎn)只有10個(gè),使用前面算法利用節(jié)點(diǎn)數(shù)據(jù),可得到任意Φ狀態(tài)下的氣動(dòng)值,同時(shí)也看出CN隨Φ的變化規(guī)律接近于余弦曲線,使用拉格朗日三次多項(xiàng)式插值是合理的。
圖6給出了在Ma、Φ一定的條件下,δe=-20°、0°、20°時(shí),CN隨αT角的變化曲線,依據(jù)前文算法利用負(fù)舵節(jié)點(diǎn)數(shù)據(jù),可得到正舵狀態(tài)下的氣動(dòng)值。由圖6可知,在舵角為-20°、攻角小于-5°時(shí),出現(xiàn)了非線性現(xiàn)象,表示舵迎角出現(xiàn)了飽和。這意味著在舵偏角為20°且攻角大于5°時(shí),也會(huì)出現(xiàn)非線性現(xiàn)象,圖6擴(kuò)展得到的正舵狀態(tài)的氣動(dòng)曲線正好印證了這一結(jié)論,由此也說明了利用鏡像對(duì)稱進(jìn)行氣動(dòng)擴(kuò)展的合理性。
圖5 CN隨Φ角變化曲線
圖6 在不同舵偏角下CN隨αT角變化
(1)總結(jié)出了一套風(fēng)洞試驗(yàn)狀態(tài)少、建模準(zhǔn)確性高的氣動(dòng)建模方案,可用于指導(dǎo)風(fēng)洞試驗(yàn)方案的制定和試驗(yàn)數(shù)據(jù)的拓展使用。
(2)總結(jié)出面對(duì)稱飛行器具有幾何對(duì)稱性、鏡像對(duì)稱性、相似性和可疊加性的氣動(dòng)特點(diǎn),據(jù)此提出風(fēng)洞試驗(yàn)時(shí),只需試驗(yàn)負(fù)等效舵偏狀態(tài)、0°~90°和-180°~-90°的氣動(dòng)滾轉(zhuǎn)角狀態(tài)和非負(fù)全攻角狀態(tài);然后,通過拓展方法可獲得全狀態(tài)的氣動(dòng)參數(shù),可大幅減少風(fēng)洞試驗(yàn)狀態(tài),降低試驗(yàn)成本,縮減試驗(yàn)周期。
(3)根據(jù)氣動(dòng)參數(shù)隨吹風(fēng)狀態(tài)量變化的特點(diǎn),文中提出的分狀態(tài)處理、逐級(jí)綜合的數(shù)據(jù)拓展使用方法,可顯著降低氣動(dòng)非線性拓展誤差、模型等效拓展誤差和控制耦合拓展誤差,具體表現(xiàn)為:在對(duì)氣動(dòng)滾轉(zhuǎn)角拓展時(shí),使用三次曲線擬合;在對(duì)馬赫數(shù)、全攻角、舵偏角拓展時(shí),使用“零舵狀態(tài)+舵增量狀態(tài)”的拓展方法;在對(duì)舵增量狀態(tài)拓展時(shí),使用基于每片舵的氣動(dòng)參數(shù)合成方法。試驗(yàn)驗(yàn)證結(jié)果表明,文中所提出的方法合理正確,工程上可行。
[1]孫寶彩.巡航飛行導(dǎo)彈BTT自動(dòng)駕駛儀設(shè)計(jì)方法研究[D].北京:北京理工大學(xué),2007.
[2]李富貴.最優(yōu)制導(dǎo)律、最優(yōu)估計(jì)在先進(jìn)空空導(dǎo)彈制導(dǎo)中的理論和工程應(yīng)用研究[D].北京:北京理工大學(xué),2014.
[3]Qi Z K,Xia Q L.Guided weapon control systems[M].Beijing:Beijing Institute of Technology Press,2004.
[4]Paul Zarchan.Tactical and strategic missile guidance[M] .Virginia:American Institute of Aeronautics and Astronautics,2004.
[5]P Zarchan,Edwin Greenberg,Joel Alpert.Improving the high altitude performance of tail-controlled endoatmospheric missiles[C]//AIAA Guidance,Navigation and Control Conference and Exhibit,2002.
[6]Li F G,Xia Q L,Qi Z K.Flight test for identifying the control model and terminal strike with bank to turn maneuvering:study on the unmanned aerial vehicle platform[C]//Proc.of the International Conference on E-Product,E-Service and E-Entertainment,2010:58-62.
(編輯:呂耀輝)
Modeling a plane-symmetric flight vehicle under limited states
LI Fu-gui,ZHAO Hong
(China Academy of Launch Vehicle Technology,Beijing100076,China)
In order to construct a model of plane-symmetric flight vehicle under limited wind tunnel test states.A scheme of wind tunnel test and test data utilizing and expanding methods were proposed.With these methods the least states will be needed,and the aerodynamic nonlinear induced by the control system could be restrained.The aerodynamic model was constructed,and the shortage using equivalent fin was analyzed.Aerodynamic characteristic of plane-symmetric flight vehicle was summarized,such as geometric symmetry,mirror symmetry,addible peculiarity,and comparability.Then a small quantity of test state used for accurate model called foundational state was selected out. Using the test data of foundational state the aerodynamic parameters of all flight state can be brought out.The aerodynamic nonlinear induced by the synthesis and analysis of fins in the process of control was taken in to account,and a method called “zero state +deflection state”based each fin was presented to minimize the model error due to aerodynamic nonlinear.Then the availability of the methods was validated with the wind tunnel test result of a plane-symmetric flight vehicle.
plane-symmetric flight vehicle;wind tunnel test;data expansion;limited states
2015-05-03;
2015-07-17。
李富貴(1986—),男,博士,研究方向?yàn)轱w行器制導(dǎo)控制設(shè)計(jì)、總體設(shè)計(jì)。E-mail:lfg200410792@sina.com
V411
A
1006-2793(2016)03-0417-05
10.7673/j.issn.1006-2793.2016.03.024