王燕,張莎莎,王蕾,劉雪芳,張恩,李娜,高云歡,張義明,李麗敏,王家鑫
?
肥大細(xì)胞對(duì)重組口蹄疫病毒VP1-VP4應(yīng)答的蛋白質(zhì)表達(dá)譜檢測(cè)
王燕,張莎莎,王蕾,劉雪芳,張恩,李娜,高云歡,張義明,李麗敏,王家鑫
河北農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)院免疫學(xué)實(shí)驗(yàn)室,河北保定 071000
為揭示肥大細(xì)胞抗口蹄疫病毒VP1-VP4蛋白的天然免疫作用,以重組口蹄疫病毒VP1-VP4蛋白刺激小鼠腹腔肥大細(xì)胞 (Peritoneal mast cells, PMCs),用高通量ELISA芯片檢測(cè)PMCs的蛋白質(zhì)表達(dá)譜。結(jié)果顯示,VP1-VP4蛋白刺激的PMCs (VP1-VP4組) 表達(dá)CCL19、L-selectin、CCL17和TNF-α的水平極顯著低于對(duì)照組 (PMCs) (0.001),而VP1-VP4蛋白刺激經(jīng)甘露糖受體(Mannose receptor, MR) 抑制劑預(yù)處理的PMCs (MR組) 表達(dá)CCL19、IL-15、IL-9、G-CSF和Galectin-1的水平則極顯著高于對(duì)照組 (0.01),IL-10表達(dá)水平也有顯著升高 (0.05)。MR組與VP1-VP4組相比,PMCs表達(dá)IL-10、IL-17、CCL20、IL-15、IL-9、L-selectin、CCL17、TNF-α和CCL19的水平極顯著升高 (0.01),CCL21和G-CSF的表達(dá)也顯著高于VP1-VP4組 (0.05)。生物信息學(xué)差異表達(dá)分析結(jié)果顯示,與對(duì)照組相比,VP1-VP4組PMCs表達(dá)的L-selectin和CCL17為下調(diào)性差異表達(dá)蛋白(Log(ratio)≤–1)。MR組與VP1-VP4相比,PMCs表達(dá)的CCL20、CCL19、L-selectin和IL-15為上調(diào)性差異表達(dá)蛋白 (Log(ratio)≥1)。這表明,PMCs可自發(fā)分泌CCL19、L-selectin、CCL17和TNF-α,而VP1-VP4則對(duì)PMCs的天然免疫功能具有抑制作用。由于阻斷MR后PMCs的蛋白質(zhì)表達(dá)水平顯著升高,所以VP1-VP4對(duì)小鼠PMCs的免疫抑制作用可能是由MR介導(dǎo)的。
肥大細(xì)胞,甘露糖受體,口蹄疫病毒,天然免疫,差異表達(dá)
近年來,關(guān)于肥大細(xì)胞在抗細(xì)菌和抗寄生蟲感染中的作用報(bào)道很多,但對(duì)其抗病毒作用的研究相對(duì)較少[1-3]。肥大細(xì)胞吞噬能力很弱,主要通過細(xì)胞膜表面的模式識(shí)別受體與Fc受體識(shí)別病原體,從而啟動(dòng)天然免疫應(yīng)答[4]。研究發(fā)現(xiàn),肥大細(xì)胞可通過TLR3識(shí)別新城疫病毒,并釋放MIP-1β、KC和RANTES,促進(jìn)CD8+T細(xì)胞向感染部位遷移[5]。Al-Afif等發(fā)現(xiàn),用少量的呼吸道合胞體病毒感染肥大細(xì)胞即可誘導(dǎo)其產(chǎn)生Ⅰ型干擾素、CXCL10、CCL4和CCL5[6]。Fukuda等發(fā)現(xiàn),肥大細(xì)胞以RIG-I樣受體 (RLR) 和MDA5受體識(shí)別水皰性口炎病毒,誘導(dǎo)其產(chǎn)生IFN-α和IFN-β,從而發(fā)揮抗病毒作用,但是TLR3與此作用無關(guān),而且RLR和MDA5受體識(shí)別水皰性口炎病毒并不引起肥大細(xì)胞脫顆 粒[7]。在登革病毒感染早期,肥大細(xì)胞迅速脫顆粒,隨后病毒通過RLR和MDA5受體激活肥大細(xì)胞,產(chǎn)生TNF-α、IFN-α、CCL5、CXCL12和CX3CL1,從而發(fā)揮其免疫監(jiān)視作用[8]。有報(bào)道將肥大細(xì)胞脫顆粒成分加入流感病毒疫苗后免疫小鼠,可使小鼠抵抗致死量的流感病毒攻 擊[9]。因此,肥大細(xì)胞成為抗感染免疫研究的新熱點(diǎn)??谔阋卟《?(Foot-and-mouth disease virus,F(xiàn)MDV) 有7種血清型,主要通過呼吸道和消化道感染動(dòng)物,但目前對(duì)肥大細(xì)胞在抗FMDV感染免疫中的作用尚不清楚。
口蹄疫是嚴(yán)重危害動(dòng)物健康的急性傳染病,目前仍無有效的防治措施[10-11]。滅活口蹄疫疫苗起效慢,免疫保護(hù)期短,不能防止感染的發(fā)生,甚至還促使部分被感染牛形成持續(xù)感染[12-13],且不同血清型口蹄疫疫苗彼此不能產(chǎn)生交叉免疫保護(hù)。口蹄疫基因工程疫苗不僅在臨床上未能產(chǎn)生優(yōu)于滅活疫苗的效果,而且還不時(shí)引起動(dòng)物過敏或死亡[14-16]。因此,研制安全有效的口蹄疫疫苗仍是一項(xiàng)迫在眉睫的任務(wù)[17-18]。FMDV衣殼由VP1–VP4四種結(jié)構(gòu)蛋白組成,研究發(fā)現(xiàn),VP1既可刺激機(jī)體產(chǎn)生中和抗體,又可刺激機(jī)體產(chǎn)生對(duì)7種血清型FMDV具有交叉保護(hù)作用的CD8+T細(xì)胞應(yīng)答[19];VP4則可被多種單體型MHC分子識(shí)別[20],故VP1和VP4被視為研制通用型口蹄疫疫苗的理想后備抗原。分布于皮膚和粘膜中的肥大細(xì)胞是機(jī)體抗感染免疫的第一線免疫細(xì)胞[1]。因此,我們通過基因重組制備VP1-VP4融合蛋白,以此加載肥大細(xì)胞,檢測(cè)其所產(chǎn)生的細(xì)胞因子、趨化因子和生長(zhǎng)因子等蛋白質(zhì)功能分子,以揭示肥大細(xì)胞抗FMDV的天然免疫作用。
1.1 材料
10?12周齡的BALB/c小鼠購自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司 (合格證編號(hào):11400700089374),飼養(yǎng)于獨(dú)立通氣籠 (IVC) 中。大腸桿菌DH5α感受態(tài)細(xì)胞、BL21 (DE3) 感受態(tài)細(xì)胞和離心柱型質(zhì)粒提取試劑盒購自天根生化科技公司。限制性內(nèi)切酶HⅠ、Ⅰ和Ⅰ購自TaKaRa公司,小鼠抗6×His單克隆抗體和AP標(biāo)記的羊抗鼠IgG購自Abcam公司,Percoll分層液購自Pharmacia公司,DMEM培養(yǎng)液和opti-MEMⅠ低血清培養(yǎng)液購自Gibco公司,胎牛血清購自HyClone公司,PMCs培養(yǎng)液為含5%胎牛血清的DMEM完全培養(yǎng)液。甘露糖受體 (MR) 抑制劑購自Sigma公司,小鼠高通量ELISA芯片購自RayBiotech公司。含VP1基因全長(zhǎng)的重組質(zhì)粒pET32a-VP1和含VP4基因全長(zhǎng)的pBluescript II SK(+)-VP4由本實(shí)驗(yàn)室構(gòu)建[21]。
1.2 重組質(zhì)粒pET32a--的構(gòu)建與鑒定
對(duì)重組質(zhì)粒pET32a-(核酸序列中含Ⅰ和HⅠ酶切位點(diǎn)) 和pBluescriptⅡ SK (+)-(核酸序列中含HⅠ和Ⅰ酶切位點(diǎn)) 進(jìn)行HⅠ和Ⅰ雙酶 切[21],回收目的片段,在16 ℃下連接過夜,用連接產(chǎn)物轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,挑取單克隆菌落接種于Amp-LB培養(yǎng)液中,37 ℃振蕩培養(yǎng)12?16 h,抽提重組質(zhì)粒并進(jìn)行Ⅰ和Ⅰ雙酶切鑒定,將鑒定為陽性克隆的重組菌送生工生物工程 (上海) 股份有限公司測(cè)序,并利用Blast軟件進(jìn)行同源性比較。
1.3 重組VP1-VP4蛋白的原核表達(dá)、純化與鑒定
將重組質(zhì)粒pET32a--轉(zhuǎn)化BL21 (DE3) 感受態(tài)細(xì)胞,挑取單克隆接種于Amp-LB培養(yǎng)液中,按照質(zhì)粒提取試劑盒說明書的方法抽提質(zhì)粒,將雙酶切鑒定正確的重組菌按1∶100的比例接種于Amp-LB液體培養(yǎng)液,37 ℃振蕩培養(yǎng)至600=0.8?1.0。加入IPTG,30 ℃振搖,誘導(dǎo)培養(yǎng)5 h。離心菌液,棄上清,用PBS重 懸,加入5×SDS上樣緩沖液,充分混勻后 12 000 r/min離心2 min,取上清液進(jìn)行12% SDS-PAGE凝膠電泳。用蒸餾水洗滌3次凝膠,切除濃縮膠部分,放入4 ℃的含1 mmol/L DTT的0.25 mol/L KCl溶液中,4 ℃顯色10 min至電泳條帶清晰,切下目的條帶,裝入盛有PB緩沖液透析袋中洗脫,然后倒轉(zhuǎn)電極電泳5 min,收集透析袋中的目的蛋白,進(jìn)行SDS-PAGE,考馬斯亮染色,或以小鼠抗His單克隆抗體為一抗,堿性磷酸酶標(biāo)記的羊抗鼠IgG為二抗做Western blotting鑒定。若鑒定結(jié)果和預(yù)期相符,則以此方法為工作模式制備重組VP1-VP4蛋白,用微量核酸蛋白檢測(cè)儀測(cè)定其濃度,計(jì)算出VP1-VP4蛋白的含量,置–20 ℃冰箱中保存?zhèn)溆谩?/p>
1.4 小鼠腹腔肥大細(xì)胞的收集
以頸椎脫臼法處死小鼠,腹腔注射3 mL PMCs培養(yǎng)液,輕按腹部數(shù)次,收集腹腔液,室溫下1 700 r/min離心5 min,棄上清。用70% Percoll分層液重懸細(xì)胞沉淀,然后滴加PMCs培養(yǎng)液,3 000 r/min離心15 min,棄上清,用PMCs培養(yǎng)液重懸細(xì)胞沉淀,1 700 r/min離心 5 min,棄上清[22],用PMCs培養(yǎng)液重懸沉淀細(xì)胞后進(jìn)行計(jì)數(shù)和活力檢測(cè)。將分離收集的PMCs制成涂片,按常規(guī)進(jìn)行甲苯胺藍(lán)染色,快速水洗,分色,在普通光學(xué)顯微鏡下進(jìn)行純度鑒定。
1.5 不同處理PMCs的蛋白質(zhì)表達(dá)譜檢測(cè)
將收集的PMCs按每孔2×105個(gè)/mL鋪于12孔細(xì)胞板中,放于5% CO2培養(yǎng)箱培養(yǎng)3 h,然后改用opti-MEM低血清培養(yǎng)液培養(yǎng)4 h。將細(xì)胞板分為3區(qū),每區(qū)3孔,第1區(qū)以15 μg/mL劑量VP1-VP4蛋白加載 (VP1-VP4組);第2區(qū)先用MR抑制劑甘露聚糖處理1 h,再以 15 μg/mL劑量加載VP1-VP4蛋白 (MR組);第3區(qū)不做任何處理,為空白對(duì)照組。于加載VP1-VP4蛋白24 h后收集上清液,用高通量ELISA芯片檢測(cè)各組PMCs的蛋白質(zhì)表達(dá)譜,然后用化學(xué)發(fā)光檢測(cè)儀掃描芯片,將獲取的圖像信息用軟件AlphaView SA3.4.0轉(zhuǎn)換為灰度值。
1.6 統(tǒng)計(jì)學(xué)處理
2.1 重組質(zhì)粒pET32a--的構(gòu)建與鑒定
已知基因全長(zhǎng)為639 bp,基因全長(zhǎng)為207 bp,但由于的50–56 bp為核酸內(nèi)切酶Ⅰ的作用靶點(diǎn),所以瓊脂糖電泳后可現(xiàn)3條帶,依次為pET32a載體片段、基因和部分、180 bp的剩余片段 (圖1A),這表明重組已成功插入載體中。對(duì)重組質(zhì)粒的序列進(jìn)行比對(duì)發(fā)現(xiàn),插入序列與GenBank中登錄號(hào)為AY333431的FMDV O isolate O/NY00的和序列完全一致。
圖1 重組VP1-VP4蛋白的鑒定
2.2 重組VP1-VP4蛋白的原核表達(dá)、純化和鑒定
將IPTG加入重組菌液中,振搖誘導(dǎo)5 h,然后進(jìn)行12% SDS-PAGE電泳,考馬斯亮藍(lán)染色,與未經(jīng)誘導(dǎo)的重組菌 (圖1B) 相比,在 49 kDa處可見與預(yù)期目的蛋白大小一致的條帶 (圖1B)。對(duì)電洗脫純化后的VP1-VP4蛋白進(jìn)行Western blotting,可見在49 kDa處出現(xiàn)一特異性條帶 (圖1C)。這表明重組VP1-VP4蛋白被成功制備。
2.3 小鼠腹腔肥大細(xì)胞的分離與鑒定
對(duì)用Percoll分層液分離得到的PMCs進(jìn)行甲苯胺藍(lán)染色,可見胞質(zhì)呈紫紅色,細(xì)胞膜輪廓清晰完整,無脫顆?,F(xiàn)象 (圖2A),基本處于未活化狀態(tài),純度為97%。全自動(dòng)細(xì)胞活力檢測(cè)顯示細(xì)胞活力為98%。用VP1-VP4蛋白刺激PMCs可引起脫顆粒,此時(shí)細(xì)胞質(zhì)著色變淺 (圖2B),表明VP1-VP4蛋白可被PMCs識(shí)別,并引起活化。
圖2 小鼠腹腔肥大細(xì)胞的鑒定(400×)
2.4 不同處理PMCs的蛋白質(zhì)表達(dá)譜檢測(cè)
與對(duì)照組相比,VP1-VP4組PMCs的CCL19、L-selectin、CCL17和TNF-α表達(dá)水平下降極為顯著 (**0.01)。出乎意料的是,用MR抑制劑處理的PMCs不僅蛋白質(zhì)表達(dá)水平?jīng)]有下降,其所表達(dá)的CCL19、IL-15、IL-9、G-CSF和Galectin-1反而還極顯著升高 (**0.01),IL-10也升高明顯 (*0.05)。MR組與VP1-VP4組相比,PMCs表達(dá)IL-10、IL-17、CCL20、IL-15、IL-9、L-selectin、CCL17、TNF-α和CCL19的水平升高極為顯著 (**0.01),CCL21、G-CSF也升高顯著 (*0.05) (圖3)。
圖3 不同處理組PMCs分泌的主要蛋白質(zhì)表達(dá)水平
2.5 不同處理PMCs的蛋白質(zhì)表達(dá)
根據(jù)生物信息學(xué)差異表達(dá)分析原理,表達(dá)水平增高一倍,即Log(ratio)≥1為差異表達(dá)上調(diào);表達(dá)水平下降一半,即Log(ratio)≤–1為差異表達(dá)下調(diào)[23]。與對(duì)照組相比,VP1-VP4組PMCs表達(dá)的L-selectin和CCL17為下調(diào)的差異表達(dá)。MR組與VP1-VP4相比,PMCs表達(dá)的CCL20、L-selectin、IL-15和CCL19為上調(diào)的差異表達(dá)。對(duì)不同處理組PMCs蛋白質(zhì)表達(dá)量Log() 值進(jìn)行聚類分析,將結(jié)果以熱圖 (Heat map) 表示。從該圖可以看出,VP1-VP4組與對(duì)照組相比,PMCs表達(dá)的蛋白質(zhì)水平呈下調(diào) (綠色) 變化,而抑制MR的PMCs與對(duì)照組相比,PMCs分泌的蛋白質(zhì)有1/3呈上調(diào)表達(dá) (紅色),與VP1-VP4組相比,抑制MR的PMCs分泌的蛋白質(zhì)有2/3呈上調(diào)表達(dá) (紅色) (圖4)。
圖4 不同處理組PMCs蛋白質(zhì)表達(dá)譜
盡管近年來對(duì)肥大細(xì)胞在抗病毒感染中的作用研究取得了一定進(jìn)展[6-7],但對(duì)肥大細(xì)胞在抗FMDV感染中的作用仍不清楚。由于滅活FMDV疫苗的免疫誘導(dǎo)期長(zhǎng),7種血清型的滅活疫苗之間不能交叉保護(hù),并且基于VP1蛋白的各種基因工程疫苗也只發(fā)揮短期免疫保護(hù)作用,所以深入研究機(jī)體抗FMDV的免疫應(yīng)答機(jī)制,以篩選出最佳疫苗抗原就成為抗FMDV感染免疫研究的重要課題。大量研究證明,疫苗的有效免疫保護(hù)作用依賴中和抗體、活化的T細(xì)胞和免疫記憶[24]。FMDV的VP1可誘導(dǎo)動(dòng)物產(chǎn)生中和抗體,并且O型FMDV的VP1可誘導(dǎo)具有交叉免疫保護(hù)作用的CD8+T細(xì)胞應(yīng)答,故被視為研制通用型口蹄疫疫苗的理想后備抗原[19]。Van Lierop等研究發(fā)現(xiàn),F(xiàn)MDV的VP4具有可被至少4種單體型MHC識(shí)別的T細(xì)胞抗原表位[20],故也被認(rèn)為是研制通用型疫苗的理想后備抗原。因此,我們?cè)O(shè)想,將整個(gè)VP1蛋白與整個(gè)VP4蛋白連接在一起,有可能刺激動(dòng)物產(chǎn)生高水平的中和抗體,有效激活T細(xì)胞,從而產(chǎn)生廣譜免疫保護(hù)作用。為防止可能的移碼發(fā)生,VP1與VP4之間未插入連接物。分布于皮膚和粘膜中的肥大細(xì)胞是機(jī)體抗感染免疫的第一線細(xì)胞[1]。因此,我們用重組VP1-VP4刺激PMCs,以揭示其在抗FMDV感染中的潛在作用。結(jié)果顯示,與不加任何刺激的PMCs相比,負(fù)載VP1-VP4蛋白的PMCs表達(dá)CCL19、CCL17、L-selectin和TNF-α的水平顯著下降,這表明PMCs可自發(fā)分泌趨化因子和炎癥因子,而VP1-VP4蛋白則對(duì)PMCs具有免疫抑制作用。由于肥大細(xì)胞是發(fā)揮抗感染作用最迅速的免疫細(xì)胞,并可決定樹突狀細(xì)胞的抗原提呈方向[25],所以重組VP1-VP4對(duì)PMCs的抑制可能是FMDV形成急性感染的一種機(jī)制。
肥大細(xì)胞表達(dá)TLR、NLR、RLR、MR和清道夫受體 (Scavenger receptor,SR),藉此識(shí)別各種病原體相關(guān)分子模式,從而啟動(dòng)炎癥反應(yīng)和抗病毒免疫應(yīng)答[26-27]。我們最近發(fā)現(xiàn),大鼠肥大細(xì)胞系P815通過MR識(shí)別VP1-VP4可啟動(dòng)TNF-α分泌,而通過SR識(shí)別VP1-VP4則引起肥大細(xì)胞脫顆粒[28]。為進(jìn)一步研究肥大細(xì)胞抗FMDV的天然免疫作用機(jī)制,我們用VP1-VP4分別加載經(jīng)MR抑制劑預(yù)處理的PMCs和未作處理的PMCs,比較二者的細(xì)胞因子、趨化因子和生長(zhǎng)因子等蛋白質(zhì)功能分子的表達(dá)譜,結(jié)果發(fā)現(xiàn),抑制PMCs的MR不僅沒有降低CCL20、L-selectin、CCL17、TNF-α、IL-15、CCL19和CCL21等功能分子的表達(dá),反而還顯著升高。差異表達(dá)分析顯示,CCL20、L-selectin、IL-15和CCL19為上調(diào)性差異表達(dá)。這表明,F(xiàn)MDV對(duì)機(jī)體的免疫抑制作用可能是通過MR介導(dǎo)的,該發(fā)現(xiàn)對(duì)于設(shè)計(jì)口蹄疫疫苗佐劑具有一定的指導(dǎo)意義。由于這些免疫分子在營(yíng)造局部免疫應(yīng)答環(huán)境中發(fā)揮重要的決定作用,故可作為評(píng)價(jià)疫苗的技術(shù)指標(biāo)[29]。
上述結(jié)果表明,肥大細(xì)胞是對(duì)FMDV發(fā)揮免疫監(jiān)視作用的天然免疫細(xì)胞,在抗感染早期發(fā)揮主要作用。同時(shí)本文也揭示了FMDV通過肥大細(xì)胞MR抑制機(jī)體免疫功能的現(xiàn)象,因此,將后備抗原VP1-VP4研制成通用型口蹄疫疫苗尚需進(jìn)一步研究模式識(shí)別所啟動(dòng)的天然免疫應(yīng)答。
[1] Johnzon CF, R?nnberg E, Pejler G. The role of mast cells in bacterial infection. Am J Pathol, 2016, 186(1): 4–14.
[2] Hughes MR, McNagny KM. Mast Cells: Methods and Protocols. 2nd ed. New York: Humana Press, 2015: 93–119.
[3] Cao ZR, Yan WJ, Wang B, et al. Pattern recognition and activation effect of mast cellsinfected byS2. Chin J Cell Mol Immunol, 2013, 29(11): 1137–1140 (in Chinese). 曹志然, 閆偉嬌, 王蓓, 等. 肥大細(xì)胞對(duì)布魯菌S2株的模式識(shí)別及活化效應(yīng)的體外研究. 細(xì)胞與分子免疫學(xué)雜志, 2013, 29(11): 1137–1140.
[4] Pinke KH, de Lima HG, Cunha FQ, et al. Mast cells phagocyteand produce nitric oxide by mechanisms involving TLR2 and Dectin-1. Immunobiology, 2016, 221(2): 220–227.
[5] Orinska Z, Bulanova E, Budagian V, et al. TLR3-induced activation of mast cells modulates CD8+T-cell recruitment. Blood, 2005, 106(3): 978–987.
[6] Al-Afif A, Alyazidi R, Oldford SA, et al. Respiratory syncytial virus infection of primary human mast cells induces the selective production of type I interferons, CXCL10, and CCL4. J Allergy Clin Immunol, 2015, 136(5): 1346– 1354.e1.
[7] Fukuda M, Ushio H, Kawasaki J, et al. Expression and functional characterization of retinoic acid-inducible gene-I-like receptors of mast cells in response to viral infection. J Innate Immun, 2013, 5(2): 163–173.
[8] St John AL, Rathore AP, Yap H, et al. Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci USA, 2011, 108(22): 9190–9195.
[9] St John AL, Chan CY, Staats HF, et al. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nat Mater, 2012, 11(3): 250–257.
[10] Saeed A, Kanwal S, Arshad M, et al. Foot-and-mouth disease: overview of motives of disease spread and efficacy of available vaccines. J Anim Sci Technol, 2015, 57: 10.
[11] Habiela M, Seago J, Perez-Martin E, et al. Laboratory animal models to study foot-and- mouth disease: a review with emphasis on natural and vaccine-induced immunity. J Gen Virol, 2014, 95(Pt 11): 2329–2345.
[12] Stenfeldt C, Eschbaumer M, Pacheco JM, et al. Pathogenesis of primary foot-and-mouth disease virus infection in the nasopharynx of vaccinated and non-vaccinated cattle. PLoS ONE, 2015, 10(11): e0143666.
[13] Elnekave E, Zamir L, Hamd F, et al. Risk factors for foot and mouth disease outbreaks in grazing beef cattle herds. Prev Vet Med, 2015, 120(2): 236–240.
[14] Li GZ, Wu LK, Mo RGGW, et al. Safety trial of foot-and-mouth disease vaccines of types O, A, and Asia I administration in sheep. J Anim Sci Vet Med, 2015, 32(4): 45–46 (in Chinese). 李國(guó)中, 烏蘭扣, 莫日根高娃, 等. 羊兩種三型口蹄疫疫苗免疫注射的安全性試驗(yàn). 畜牧獸醫(yī)雜志, 2015, 34(2): 45–46.
[15] Li YF, Miao SH, Zhu LX. Porcine immune response to foot-and-mouth disease vaccine and prevention measures. Chin Anim Hus Vet Med Abstr, 2013, 29(10): 108 (in Chinese).李艷粉, 苗紹華, 朱麗仙. 豬口蹄疫疫苗的免疫反應(yīng)及防治措施. 中國(guó)畜牧獸醫(yī)文摘, 2013, 29(10): 108.
[16] Rodriguez LL, Gay CG. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev Vaccines, 2011, 10(3): 377–387.
[17] Ruiz V, Mozgovoj MV, Dus Santos MJ, et al. Plant-produced viral bovine vaccines: what happened during the last 10 years? Plant Biotechnol J, 2015, 13(8): 1071–1077.
[18] Ludi A, Rodriguez L. Novel approaches to foot-and-mouth disease vaccine development. Dev Biol (Basel), 2013, 135: 107–116.
[19] Guzman E, Taylor G, Charleston B, et al. Induction of a cross-reactive CD8+T cell response following foot-and-mouth disease virus vaccination. J Virol, 2010, 84(23): 12375–12384.
[20] Van Lierop MJ, Nilsson PR, Wagenaar JP, et al. The influence of MHC polymorphism on the selection of T-cell determinants of FMDV in cattle. Immunology, 1995, 84(1): 79–85.
[21] Li N, Li LM, An PL, et al. T lymphocyte activation by dendritic cells pulsed with VP1-VP4 fusion protein of foot-and-mouth disease virus. Chin J Vet Sci, 2012, 32(6): 818–822 (in Chinese). 李娜, 李麗敏, 安鵬麗, 等. 負(fù)載口蹄疫病毒VP1-VP4融合蛋白質(zhì)的樹突狀細(xì)胞對(duì)T細(xì)胞的活化效應(yīng). 中國(guó)獸醫(yī)學(xué)報(bào), 2012, 32(6): 818–822.
[22] Kovarova M. Isolation and characterization of mast cells in mouse models of allergic diseases//Allen IC, ED. Mouse Models of Allergic Disease. New York: Humana Press, 2013, 1032: 109–119.
[23] Sun ZQ, Xu YY. Medical Statistics. 4th ed. Beijing: People's Medical Publishing House, 2014: 472 (in Chinese). 孫振球, 徐勇勇. 醫(yī)學(xué)統(tǒng)計(jì)學(xué). 4版. 北京: 人民衛(wèi)生出版社, 2014: 472.
[24] Pennock ND, Kedl JD, Kedl RM. T cell vaccinology: beyond the reflection of infectious responses. Trends Immunol, 2016, 37(3): 170–180.
[25] Dawicki W, Jawdat DW, Xu N, et al. Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol, 2010, 184(4): 2116–2123.
[26] St John AL, Abraham SN. Innate immunity and its regulation by mast cells. J Immunol, 2013, 190(9): 4458–4463.
[27] Vukman KV, Ravidà A, Aldridge AM, et al. Mannose receptor and macrophage galactose-type lectin are involved inmast cell interaction. J Leukoc Biol, 2013, 94(3): 439–448.
[28] Li LM, Wang Y, Cui BB, et al. The effectiveness of mast cell pattern recognition of recombinant VP1-VP4 of foot-and-mouth disease virus. Chin J Anim Vet Sci, 2015, 46(9): 1644–1649 (in Chinese).李麗敏, 王燕, 崔貝貝, 等. 肥大細(xì)胞對(duì)重組口蹄疫病毒VP1-VP4蛋白的模式識(shí)別效應(yīng). 畜牧獸醫(yī)學(xué)報(bào), 2015, 46(9): 1644–1649.
[29] Moon TC, Befus AD, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol, 2014, 5: 569.
(本文責(zé)編 陳宏宇)
Protein expression profile of mast cells in response to recombinant VP1-VP4 of foot-and-mouth disease virus
Yan Wang, Shasha Zhang, Lei Wang, Xuefang Liu, En Zhang, Na Li, Yunhuan Gao, Yiming Zhang, Limin Li, and Jiaxin Wang
,,,071000,,
To reveal the innate immunity of mast cells against recombinant VP1-VP4 protein of foot-and-mouth disease virus (FMDV), mouse peritoneal mast cells (PMCs) were pulsed with recombinant VP1-VP4 protein. The supernatants harvested from PMCs cultures were applied to the high throughput ELISA array. Our results show that the expression levels of CCL19, L-selectin, CCL17, and TNF alpha released from PMCs pulsed with recombinant VP1-VP4 were significantly down-regulated compared with PMCs alone (0.001). Surprisingly, in comparison with PMCs alone, the expression levels of CCL19, IL-15, IL-9, G-CSF, and Galectin-1 in PMCs with the mannose receptor (MR) inhibitor were significantly up-regulated (0.01), and the expression level of IL-10 was also remarkably up-regulated (0.05). Importantly, the protein expression levels in PMCs treated with MR inhibitor were higher than PMCs pulsed with VP1-VP4, including IL-10, IL-17, CCL20, IL-15, IL-9, L-selectin, CCL17, TNF alpha, and CCL19 (0.01) as well as CCL21, and G-CSF (0.05). Differential expression analysis in bioinformatics shows that both L-selectin and CCL17 were recognized as differentially expressed protein molecules (Log(ratio)≤–1) when compared with PMCs alone. Furthermore, the up-regulation of the expression levels of CCL20, CCL19, L-selectin, and IL-15 in PMCs treated with MR inhibitor was defined as differential expression (Log(ratio)≥1). These data indicate that PMCs are capable of secreting CCL19, L-selectin, CCL17, and TNF alpha spontaneously and the recombinant VP1-VP4 has an inhibitive potential to PMCs during their performance of innate immune response. Given the protein expression levels from PMCs pre-treated with MR inhibitor were significantly increased, it can be deduced that immunosuppression of FMDV is presumably initiated by the VP1 recognition of MR on mast cells.
mast cells, mannose receptor, foot-and-mouth disease virus, innate immunity, differential expression
December 15, 2015; Accepted: April 15, 2016
Supported by:National Natural Science Foundation of China (No. 31402174), Comprehensive Reform Project of Veterinary Medicine in Universities, Hebei Province, Key Project of Hebei Education Department (No. ZD2015040).
Limin Li. Tel: +86-312-7528372; Fax: 86-312-7520275; E-mail: lilimin03@163.com Jiaxin Wang. Tel: +86-312-7528372; Fax: 86-312-7520275; E-mail: mastwang@163.com
國(guó)家自然科學(xué)基金(No. 31402174),河北省高等學(xué)校專業(yè)綜合改革項(xiàng)目,河北省教育廳重點(diǎn)項(xiàng)目 (No. ZD2015040) 資助。
網(wǎng)絡(luò)出版時(shí)間:2016-05-06 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160506.1637.002.html
王燕, 張莎莎, 王蕾, 等. 肥大細(xì)胞對(duì)重組口蹄疫病毒VP1-VP4應(yīng)答的蛋白質(zhì)表達(dá)譜檢測(cè). 生物工程學(xué)報(bào), 2016, 32(9): 1194–1203.
Wang Y, Zhang SS, Wang L, et al. Protein expression profile of mast cells in response to recombinant VP1-VP4 of foot-and-mouth disease virus. Chin J Biotech, 2016, 32(9): 1194–1203.