摘 要:以國內(nèi)某混凝土加勁梁自錨懸索橋為研究背景,在總結(jié)前人研究成果的基礎上,采用Midas Civil程序建立 “脊骨梁”式有限元模型,對混凝土加勁梁自錨懸索橋的動力特性進行系統(tǒng)分析,獲得了橋梁自振頻率與相應振型,并與相同跨徑與尺寸參數(shù)的地錨式懸索橋的動力特性進行了對比。研究結(jié)果表明混凝土加勁梁自錨懸索橋的低階自振周期較地錨式懸索橋短,一階振型為加勁梁縱向漂移,后續(xù)階次振型密集分布,并有明顯振型分組現(xiàn)象,分析結(jié)果可為類似橋梁的設計與分析提供參考。
關鍵詞:混凝土加勁梁自錨懸索橋;動力特性;有限元方法;自振頻率;振型
懸索橋是由主纜、加勁主梁、橋塔、吊索(桿)、主纜鞍座、主纜錨固結(jié)構(gòu)等多類構(gòu)件共同組成的纜索承重結(jié)構(gòu)。與傳統(tǒng)地錨懸索橋不同,自錨懸索橋不設錨碇,主纜錨固于加勁梁端部,除同時兼具傳統(tǒng)地錨懸索橋與斜拉橋的眾多優(yōu)點外,還具有外形美觀、結(jié)構(gòu)新穎、對地質(zhì)條件適應性強等優(yōu)點[ 1 ]。
對于自錨懸索橋,準確的動力特性(自振頻率與振型)分析是開展抗風、抗震與車致振動研究的基礎。目前,研究橋梁動力特性的方法有:解析算法、近似法、經(jīng)驗法以及數(shù)值法等[ 2 ]。其中,數(shù)值法由于能夠基于有限元計算理論使用,已成為最常用、計算精度最高的方法。國內(nèi)外多位學者[ 3-8 ]采用理論推導、有限元分析方法研究自錨懸索橋的動力特定,得到了一些有用的結(jié)論。
本文以國內(nèi)某主跨162m的混凝土加勁梁自錨懸索橋為研究對象,采用有限元方法對其動力特性進行詳細分析,并與等跨地錨體系懸索橋的動力特定參數(shù)對比,揭示該型橋的動力特性特點,為今后類似橋型的設計與計算提供參考依據(jù)。
1 工程概況
自錨懸索橋跨徑組合66m +162m +66m,采用橋塔-加勁梁分離、縱向半漂浮三跨連續(xù)體系,中跨主纜矢跨比1/6,橋梁主、邊跨均為懸吊體系;加勁梁采用分離式雙箱雙室截面,梁高為2.24m,加勁梁頂板全寬32.0m,梁頂設雙向1.5%橫坡,標準梁段頂、底板分別厚0.25m和0.22m,中腹板厚0.35m,同箱室腹板間距為4.15m。為了盡可能減輕加勁梁重量,兩分離箱室間僅設頂板,加勁梁按全預應力要求設計,主纜錨固區(qū)同時設橫、豎向預應力以改善該區(qū)域的受力性能,同時減小局部應力集中。橋塔采用雙柱型矩形截面構(gòu)造,分離基礎,基礎為鉆孔灌注群樁。橋梁布置如圖1與圖2所示。
2 有限元分析模型
采用Midas Civil有限元程序建立自錨懸索橋模型。為了能夠精確反映橋梁的動力響應,采用“脊骨梁”單元模擬π型混凝土加勁主梁,根據(jù)吊索間距對主梁進行離散,主梁的豎向、橫向、扭轉(zhuǎn)剛度和質(zhì)量都集中在離散節(jié)點上。
橋塔的單根塔柱、橫梁以及承臺均采用“脊骨梁”單元模擬,節(jié)點位置根據(jù)實際施工節(jié)段劃分。采用非線性索單元模擬主纜與吊索,采用梁單元模擬剛性吊桿,主纜在與吊索相交位置(索夾中心)劃分節(jié)點,吊索一端與主纜共用節(jié)點,另一端與加勁主梁之間采用剛臂連接。
為了獲得結(jié)構(gòu)的初始剛度,首先對其進行初始平衡狀態(tài)分析,在初始平衡狀態(tài)的基礎上再進行動力特性分析。將橋塔與輔助墩底部節(jié)點固結(jié),輔助墩與加勁主梁之間、橋塔與加勁主梁之間采用彈性連接模擬支座對主梁的實際限位情況;全橋共劃分單元348個,包含節(jié)點371個。計算模型渲染如圖3所示。
3 自錨式懸索橋動力特性分析
動力特性是評價橋梁結(jié)構(gòu)剛度的重要指標之一,也是進行橋梁抗震分析與設計的基礎。由于自錨式懸索橋的主纜錨固于主梁兩端,其巨大的內(nèi)力使加勁主梁全截面承壓,進而使該型橋的自由振動特性與加勁梁不受軸力的地錨懸索橋有別。
本節(jié)以主跨162m的混凝土加勁梁自錨懸索橋為工程實例分析其動力特性,同時構(gòu)建一座跨徑組合與結(jié)構(gòu)參數(shù)均相同的地錨懸索橋用于對比分析,表1中給出了兩種體系懸索橋的1~15階自振頻率與對應振型。
由表1與圖4提供的自振頻率周期與對應振型可以看出,混凝土加勁梁自錨式懸索橋的動力特性存在以下幾種特點:
1)混凝土加勁梁自錨式懸索橋的1階自振周期較長。以本橋為例,加勁梁1階縱向漂移振型的周期為3.175s,與其它橋型1階周期相比表現(xiàn)出了懸索結(jié)構(gòu)柔性大的特點。然而由于地錨式懸索橋的加勁梁縱向不受約束,同跨地錨式懸索橋的縱向漂移振型的周期長達7.692s。對比兩種體系懸索橋其它階次的自振頻率與振型,發(fā)現(xiàn)自錨體系橋梁的自振頻率普遍比地錨體系橋梁略低。
2)混凝土加勁梁自錨式懸索橋的振型分布密集。由以往研究文獻可知,振型分布密集是地錨體系橋梁的典型特點,這說明混凝土加勁主梁自錨式懸索橋擁有與傳統(tǒng)懸索橋相同的特點;在0.315Hz~2.011Hz范圍內(nèi)分布22階振型,說明本橋的多階振型在較窄頻帶上都可能被激發(fā),故對混凝土加勁主梁自錨式懸索橋的地震響應進行反應譜分析時,宜使用CQC(完全二次組合)法進行組合以保證分析結(jié)果的精度,而不宜使用SSRS(平方和開方組合)法;對該類橋梁進行地震響應分析時還應關注高階振型的影響。
3)實際工程中,通常在自錨式懸索橋加勁主梁上設置的支座并不約束主梁的縱向位移,故該型橋梁的1階振型為加勁主梁縱向漂移;對于中、小跨徑自錨懸索橋,橋塔通常設計為雙柱式,雙向抗彎剛度均偏小,故塔柱振動階次出現(xiàn)較早且因雙向抗彎剛度接近而導致塔柱振型樣式較多。
4)對于本橋,由于采用雙肢邊箱梁的π型橫截面,加勁梁的抗扭剛度相對于箱梁小,故其扭轉(zhuǎn)振動振型出現(xiàn)較早;主纜振動出現(xiàn)在10階之后,初始以吊索面(主纜與吊索平面)外振動為主,直至20階之后才出現(xiàn)主纜豎向振動振型,這說明主纜與吊索的初始內(nèi)力對其動力特性影響顯著。
4 結(jié)語
采用有限元方法對主跨162m的混凝土加勁梁自錨式懸索橋動力特性進行分析,得到如下結(jié)論:
1)自錨體系懸索橋仍具有地錨體系懸索橋的動力響應特點,即自振周期較長、振型分布密集以及明顯的振型分組現(xiàn)象,這也說明雖然自錨體系懸索橋的主纜給加勁主梁施加了巨大的軸力,但其仍具有傳統(tǒng)吊橋柔性較大的特征,在進行反應譜分析時應該選取數(shù)量較大的振型進行組合,組合方法宜采用CQC法。
2)在梁底支座或限位裝置不約束加勁梁縱向位移的情況下,混凝土加勁主梁自錨式懸索橋的基礎振型為縱向漂移,這對減弱橋梁的地震響應有利,但加勁主梁縱向漂移過大可能會導致塔梁碰撞,進而引起落梁或伸縮縫損壞等震害。
3)吊索面(主纜與吊索平面)外振動出現(xiàn)在10階之后,而主纜振動振型則在20階之后才出現(xiàn),這說明自錨式懸索橋?qū)儆诘湫偷睦|索承重橋,主纜與吊索的初始剛度對其動力特性影響顯著。
參考文獻:
[1] 張哲,竇鵬,石磊等.自錨式懸索橋的發(fā)展綜述[J].世界橋梁:2003,(1): 5-9.
[2] 陳仁福.大跨懸索橋理論[M].成都:西南交通大學出版社,1994.
[3] Ho-Kyung Kima, Myeong-Jae Lee,Sung-Pil Chang.Determination of Hanger Installation Procedure for a Self-Anchored Suspension Bridge[J].Engineering Structures,2006,28(2).959-976.
[4] 劉春城,張哲,石磊,杜蓬娟.混凝土自錨式懸索橋豎向自由振動的理論研究[J].工程力學,2005,22(4):126-129.
[5] 李枝軍,李愛群,韓曉林.潤揚大橋懸索橋動力特性分析與實測變異性研究[J].土木工程學報,2010,43(4):92-98.
[6] 尹立國.混凝土自錨式懸索橋動力性能研究[D].西安,長安大學碩士學位論文,2012.
[7] 孫全勝,苗建偉.某雙塔三跨自錨式人行懸索橋靜動力行為分析[J].中外公路,2015,35(3): 147-151.
[8] Jie Dai, Jin Di,F(xiàn)engjiang Qin, et al.Initial Equilibrium State Analysis for Concrete Self-Anchored Suspension Bridge under Dead Load[J].Advanced Materials Research,2013,838-841:1112-1117.
作者簡介:申峰(1981-),男,從事橋梁與隧道工程方面的設計與研究工作。