寶 俐,董金龍,李 汛,段增強*( 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點實驗室 (中國科學院南京土壤研究所),南京 20008;2 中國科學院大學,北京 00049)
CO2濃度升高和氮素供應對黃瓜葉片光合色素的影響①
寶 俐1, 2,董金龍1, 2,李 汛1,段增強1*
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點實驗室 (中國科學院南京土壤研究所),南京 210008;2 中國科學院大學,北京 100049)
本文通過N供應濃度[2(低N),7(中N)和14(高N)mmol/L]和CO2濃度[400 (C1),625 (C2),1 200 (C4)μmol/mol] 處理的水培試驗一,以及硝銨比[14/0(N1),13/1(N2),11/3(N3)和 8/6(N4)]和CO2濃度[400 (C1),800 (C3),1 200 (C4) μmol/mol]處理的水培試驗二,共同研究黃瓜葉片光合色素對CO2升高、N供應濃度和形態(tài)的響應。研究結(jié)果表明:苗期時,低、中和高N下,C4處理使得植物干物質(zhì)都明顯增加;而初果期干物質(zhì)提高程度下降,植株生長速率降低。中等CO2濃度(C3)顯著增加植物在各硝銨比處理的干物質(zhì)量,但最高CO2濃度(C4)有提高N3處理的干物質(zhì)量的趨勢。苗期時,在低N和中N供應時C4處理顯著降低葉片葉綠素a、葉綠素b和胡蘿卜素含量;但高N時,C3處理提高總色素含量,C4處理提高葉綠素b含量;初果期時CO2濃度處理對色素含量無顯著影響;N2硝銨比處理,中等CO2濃度(C3)下葉片的3種色素含量最高。因此當苗期N素供應濃度較低時,CO2濃度升高會顯著降低葉片3種色素的含量,這主要可能與苗期植物生長速率顯著提高產(chǎn)生的稀釋作用有關(guān)。當N濃度為14 mmol/L時,CO2濃度適當提高顯著促進色素合成,其合成速率大于植物生長速率,導致色素含量提高,提高光合能力;初果期時,CO2濃度升高的促進作用降低緩和了色素濃度的下降。適當提高 NH4+-N供應比例也能達到提高色素含量的效果,但 CO2濃度不宜過高。故而植物光合色素含量可能受到CO2濃度升高導致的植物干物質(zhì)增加速率和光合色素合成速率改變的雙重調(diào)節(jié)。中N和高N供應時,葉綠素a/b 在苗期隨著CO2濃度的升高而降低,在初果期僅在高N時有顯著降低。而在硝銨比試驗中,植株種植稀疏時,C4處理提高葉綠素a/b。因此,CO2濃度升高下的植物捕光能力的提高,可通過適當降低葉片光照強度和提高N供應濃度來實現(xiàn)。從實際生產(chǎn)角度出發(fā),使用中等濃度CO2施肥,提高N肥供應濃度和NH4+-N比例,結(jié)合植株的適當密植更有利于光合色素含量提高,優(yōu)化其組成,從而有利于黃瓜生物量的提高。
CO2施肥;硝銨比;生長速率;色素合成速率;密植
植物葉片中的光合色素是一類含 N化合物,葉片色素含量較低時,通常表現(xiàn)為葉片的黃化,這也是缺N的重要標志之一[1]。近年來,CO2濃度的升高對植物生長的影響廣受關(guān)注, 其中大量研究表明 CO2濃度的升高會導致植物N含量的下降[2-3]。由于N濃度與色素含量高度相關(guān),較多研究證實 CO2濃度升高會導致色素含量的下降[4-7];但也有研究表明 CO2濃度升高并不影響葉片色素含量[8-10]。由于CO2濃度升高對光合色素合成過程的研究較少,加之色素合成過程受到光照強度、植物種類等因素的影響[11-12],CO2濃度升高對光合色素含量及組成的影響程度的研究結(jié)果各有不同。另一方面,現(xiàn)有對色素含量變化原因的解釋還眾說紛紜:對于并不肥沃的森林土壤,研究學者多認為 CO2濃度升高在提高植物生產(chǎn)率的同時造成土壤有效N含量下降,產(chǎn)生進一步N限制現(xiàn)象[13]。因此植物因為供N不足而極易導致色素含量下降;也有研究認為色素等物質(zhì)含量的下降是由于碳水化合物的過量積累產(chǎn)生的稀釋作用所導致的[14]。
雖然已經(jīng)基本明確 N含量的變化是導致光合色素含量變化的原因之一,而且適當提高NH-N供應也有助于提高葉片色素含量[15],但這方面的實際應用研究并不多見。由于我國設施蔬菜種植面積的不斷擴大,設施 CO2施肥研究也不斷深入[16-17],但 CO2施肥對設施生產(chǎn)中黃瓜的光合色素變化還較少有報道。同時我國設施栽培中大量施用 N肥,卻無法有效提高作物光合效率的現(xiàn)狀日益嚴峻[18]。如何通過合理的N肥用量和銨硝比控制,配合CO2施肥從而獲得更高的蔬菜產(chǎn)量成為研究熱點。本文旨在研究黃瓜葉片光合色素對 CO2升高、N供應濃度和形態(tài)的響應,探討光合色素含量變化的原因及如何進行合理的N肥和CO2施肥以提高葉片光合色素含量并優(yōu)化其組成,從而提高黃瓜的光合生產(chǎn)效率和產(chǎn)量。
1.1 試驗設計
試驗一:CO2設3個濃度水平,為400(對照,大氣CO2濃度,C1)、625(C2)、1 200 (C4) μmol/mol;NO-N濃度設3個水平,分別為2(低N)、7(中N)和14(高N)mmol/L。試驗二:CO2設3個濃度水平,為400(C1),800(C3),1 200 (C4) μmol/mol;硝銨比設4個水平,分別為 14/0(N1)、13/1(N2)、11/3(N3) 和8/6(N4)。
試驗在中國科學院南京土壤研究所溫室內(nèi) 3個開頂式生長箱(OTCs)進行。CO2濃度的控制使用自主設計的 CO2自動控制系統(tǒng):系統(tǒng)將 99.99% 純度的CO2氣體通過與空氣混合配氣形成3 000 μmol/molCO2氣體通入開頂式生長箱,然后由一臺紅外 CO2檢測器檢測生長箱內(nèi)氣體濃度,達到預設濃度即由電磁閥控制停止氣體通入,低于預設濃度時即再次通入氣體。CO2濃度控制精度可以保證在 90% 時間內(nèi)達到 ±50 μmol/mol。試驗皆為兩因素隨機區(qū)組設計;試驗每個處理設有6個重復。
1.2 試驗方法
將黃瓜種子(江蘇南京金豐種苗有限公司購買)用 10% 的次氯酸鈉消毒 15 min,完全清洗后置于25℃ 恒溫培養(yǎng)室中催芽,種子露白播種于裝有培養(yǎng)基質(zhì)的育苗盤內(nèi)。黃瓜苗長到兩葉一心時,定植于容量為1 L的PVC栽培罐中。定植后第二天開始進行CO2施肥,從8:00開始到18:00結(jié)束。栽培罐中裝有改良的山崎黃瓜營養(yǎng)液,微量元素使用Arnon營養(yǎng)液通用配方[19]。前兩周使用1/2營養(yǎng)液,以后使用全營養(yǎng)液栽培。為保證根系氧氣充足供應,栽培罐內(nèi)每日進行通氣處理,6:00—18:00,每小時通氣30 min;18:00至次日6:00,每兩小時通氣30 min。每日下午17:00左右,營養(yǎng)液消耗大于100 ml時,用配制的各處理營養(yǎng)液補足,每周更換一次營養(yǎng)液。期間每天使用0.1 mmol/L的NaOH和0.05 mmol/L 的 H2SO4調(diào)節(jié)pH至6.50。全生長期由溫濕度自動記錄儀(L95-82,杭州路格科技有限公司)每30 min記錄一次溫濕度數(shù)據(jù);光照記錄儀(L99-LX,杭州路格科技有限公司)每10 min自動記錄一次光照數(shù)據(jù)。
試驗一在2013年4—6月進行。每個栽培罐定植兩株幼苗。營養(yǎng)液大量元素組成見表1。黃瓜定植后16天和50天分別采收一次植株。3個OTCs生長箱內(nèi)的溫度分別為 (23.6±5.0)℃、(24.1±5.0)℃ 和(24.1±5.2) ℃;濕度分別為71.4%±20.1%、73.4%± 18.5% 和 74.1%±18.4%。全生長期光照強度皆為(4 010±6 590) lx(平均值±標準差)。
試驗二在2014年2—4月進行。每個栽培罐定植一株幼苗。營養(yǎng)液大量元素組成見表2。黃瓜植株定植51天后采收全部植株。3個OTCs生長箱內(nèi)的溫度分別為 (18.9±6.6)℃、(19.0±6.4) ℃和(18.9± 6.8) ℃;濕度為68.7%±21.5%、68.3%±21.0% 和67.5%±21.2%;光照強度皆為 (9 580±16 530) lx(平均值±標準差)。
表1 三種NO3--N處理的營養(yǎng)液大量元素組成(mmol/L)Table1 Components of macro-elements of three nitrate nutrient solutions
表2 四種硝銨比處理的營養(yǎng)液大量元素組成(mmol/L)Table2 Components of macro-elements of four N nutrient solutions
1.3 測定方法
收獲的植物樣品分成根、莖、葉和果實,一部分在100℃殺青15 min,70℃ 烘干至恒重,稱其干重。另外取部分混合新鮮葉片冷凍干燥,研磨儲存?zhèn)溆?。植物葉片葉綠素a、葉綠素b和胡蘿卜素含量通過95%乙醇提取,使用微孔板分光光度計(Epoch, USA)測定[20]。
1.4 數(shù)據(jù)分析
試驗數(shù)據(jù)用Microsoft Excel 2007和IBM SPSS19統(tǒng)計軟件進行統(tǒng)計分析,Tukey法進行多重比較。
2.1 干物質(zhì)對CO2、N供應的響應
苗期時,低、中和高N下植物在C4處理后干物質(zhì)分別增加了54.5%,63.6% 和77.2%(表3,圖1A)。而初果期后,僅低N和高N時,C4處理對干物質(zhì)有顯著提高。C3處理使得植物干物質(zhì)在N1、N2、N3和N4硝銨比下顯著增加且干物質(zhì)量最高,且在N3硝銨比時,C4處理的干物質(zhì)量較C3處理仍有增加但不顯著。
表3 試驗各指標方差分析結(jié)果Table3 Results of ANOVA of indexes in two experiments
圖1 黃瓜的全株干重Fig. 1 Dry weight of the entire cucumber (Cucumis sativus L.)
2.2 色素含量對CO2和N供應濃度的響應
苗期時,在低N和中N供應時C4處理顯著降低葉片葉綠素a、葉綠素b和胡蘿卜素含量(圖2)。但在高N時,C4處理提高葉綠素b含量,C3處理提高總色素含量。初果期時,提高 N供應濃度有利于色素含量的提高,但 CO2濃度升高有降低色素含量的趨勢(并不顯著,圖3)。
2.3 色素含量對CO2和硝銨比變化的響應
對比3個CO2濃度水平,C3處理使得葉片在N2硝銨比下具有最高的3種色素含量(圖4,表3);在N3硝銨比下,C4處理有提高葉綠素a和胡蘿卜素含量的趨勢。N4時,色素含量受CO2濃度影響并不顯著。C1處理時,N4硝銨比處理的葉片較其他3個N處理具有更高的色素含量。
2.4 色素組成對CO2、N供應的響應
中N和高N供應時,葉綠素a/b 在苗期隨著CO2濃度的升高而降低;在初果期其僅在高 N時有顯著降低(圖5,表3)。而在硝銨比試驗中,C4處理提高葉綠素a/b,僅在N3時表現(xiàn)得并不顯著。
CO2是光合作用的底物,其濃度的升高促進植物的光合作用,提高作物的生產(chǎn)效率和產(chǎn)量[3],這種響應受到 N素供應的正調(diào)控[21],本研究中黃瓜的干物質(zhì)積累結(jié)果與此相符。CO2濃度升高增加干物質(zhì)量的原因在于在單位時間內(nèi),CO2濃度升高促進了植物生長速率的提高。作為一種氣肥CO2的生長刺激作用與化學肥料類似,在促進植物快速生長的同時會稀釋植物體內(nèi)礦質(zhì)元素等物質(zhì)的含量[22-23]。這種現(xiàn)象的本質(zhì)是:植物在環(huán)境有益刺激下光合碳同化效率大于該物質(zhì)吸收或者合成的效率?,F(xiàn)有研究廣泛重視的植物體內(nèi)礦質(zhì)元素含量下降即是例證。雖然元素含量下降與元素種類、元素吸收和元素功能都有聯(lián)系,但光合產(chǎn)物大量合成產(chǎn)生的“稀釋效應”仍然是重要的原因之一[14,24]。
圖2 苗期不同CO2和NO-N供應濃度下黃瓜葉片的葉綠素a、葉綠素b、胡蘿卜素和總色素含量Fig. 2 Chlorophyll a, b, carotenoids and total pigments in leaves of cucumber grown under various CO2concentrations and nitrate supplyrates at seedling stage
圖3 初果期不同CO2和NO-N供應濃度下黃瓜葉片的葉綠素a、葉綠素b、胡蘿卜素和總色素含量Fig. 3 Chlorophyll a, b, carotenoids and total pigments of leaves of cucumber grown under various CO2concentrations and nitrate supply rates at initial fruit stage
圖4 初果期不同CO2和硝銨比供應下黃瓜葉片的葉綠素a、葉綠素b、胡蘿卜素和總色素含量Fig. 4 Chlorophyll a, b, carotenoids and total pigments of leaves of cucumber grown under various CO2concentrations and nitrate/ammomium ratios at initial fruit stage
本研究中葉片光合色素含量的下降與“稀釋效應”密切相關(guān)。光合色素的合成強烈依賴N素供應[1,12],N的吸收成為色素合成的決定因素(本文葉片N含量與總色素含量呈極顯著正相關(guān)(P<0.01),且變化趨勢一致,未給出數(shù)據(jù))。當植物N素供應較低時,CO2濃度升高在加劇 N含量下降的同時降低色素合成。由于植物處在苗期,營養(yǎng)生長旺盛,植物 N含量的下降往往不能同等程度地限制CO2的固定效率[7]。因此低 N供應的苗期,光合碳固定對色素含量的“稀釋效應”最顯著(圖2)。當植物處于生殖生長期時,CO2作用時間延長,CO2刺激效應下降,植物生長速率下降,相應的“稀釋效應”也下降(圖3)。另一方面在最高的NH-N供應處理下,植物產(chǎn)生了銨毒害,從而抑制黃瓜干物質(zhì)的增加,降低黃瓜生長速率,“稀釋效應”下降劇烈,從而也并不降低色素含量(圖4)。
光合色素含量下降除了受到“稀釋效應”的影響,植物N代謝及色素合成下降也可能是原因之一。當N素供應充足時,色素含量并不下降,CO2濃度升高反而顯著促進葉綠素b的合成(圖2)。CO2濃度升高能夠提高植物葉面積,增加葉片重疊度而不利于光照接收,可能反饋刺激葉綠素b的合成[25-26]。NHN的提高也能夠促進CO2濃度升高下的植物N代謝,從而有利于色素的合成[27-28]。本研究發(fā)現(xiàn),正常 CO2濃度下植株正常生長時,NHN供應提高有降低色素含量的趨勢,但在高 CO2濃度時,NHN供應能夠提高色素含量(圖4),提高CO2濃度與提高NHN比例配合更有利于色素含量提高;另外,適當提高CO2濃度至800 μmol/mol最有利于N素和光合色素合成(圖4)。由于CO2濃度升高產(chǎn)生的光合適應現(xiàn)象,最高的CO2濃度(1 200 μmol/mol)不利于植物生長和養(yǎng)分代謝[29-30]。在高 CO2作用時間長的初果期,植物 N限制極為強烈[13,31],光合色素合成會下降,若非光合碳固定下降,此時色素濃度可能會顯著降低(圖3)。再者本研究試驗二每個栽培罐僅有一棵植株,相對試驗一減少,因此供 N強度相對更大,光合色素合成能力更強烈。但此時處于生殖生長期的植株生長速率也相對較低,綜合導致了葉綠素a、葉綠素b和胡蘿卜素合成量與植物生物量變化相近。在 N供應強度高時,雖然光合產(chǎn)物的“稀釋效應”仍然降低色素含量,但 CO2濃度升高對光合色素合成的促進作用可能成為主導因素。
本研究中,光合色素的組成也有顯著的變化(圖5),其中葉綠素a/b是重要的捕光能力衡量指標,其變化受到光照和N有效性兩個因素的影響[32-33]。CO2濃度升高一方面促進植物葉面積增加,降低葉片可獲得光照,相對促進葉綠素 b合成,進而降低葉綠素a/b[34];另一方面CO2濃度升高也降低N濃度,增加葉綠素a/b[12]。試驗一中N素供應相對較高時,葉綠素a/b有明顯下降,表明在N素供應較高時,CO2升高對葉面積增加的促進效果更為顯著,更顯著降低葉綠素a/b,提高植物捕光能力;而試驗二中,由于僅有一株植物,葉片遮光程度影響較小,而 CO2濃度升高對 N素濃度的下降程度影響顯著,因此提高葉綠素a/b的值。因為此時植物間距小,植物葉片接受到的高光強與高CO2濃度協(xié)同作用,光合物質(zhì)合成更多,植物可能降低葉綠素b合成,降低捕光能力,進行反饋調(diào)節(jié),從而減少過多光合物質(zhì)積累的危害[12,29]??傊?,從生產(chǎn)角度考慮,CO2濃度升高后植物適當密植,同時提高 N供應濃度更有利于獲得更高的生產(chǎn)效率。
圖5 黃瓜葉片的葉綠素a/b的變化Fig. 5 Chlorophyll a/b of leaves of cucumber (Cucumis sativus L.)
植物光合色素含量可能受 CO2濃度升高導致的植物生長速率和光合色素合成速率改變的雙重調(diào)節(jié)。當 N素供應濃度較低時,CO2濃度升高會明顯降低葉片葉綠素a、葉綠素b和胡蘿卜素的含量。這主要是植物生長速率顯著提高產(chǎn)生的稀釋作用導致。當N
素供應濃度較高時,CO2濃度適當提高同時會顯著促進色素合成,且這一速率可能大于植物生長速率,導致色素含量提高。CO2濃度升高下可以通過適當降低作物間距,增加總N供應濃度和NH4+-N比例,提高植物葉片含 N量和植物捕光能力,以期獲得更高的作物產(chǎn)量;同時需要控制 CO2濃度過高產(chǎn)生的反饋抑制現(xiàn)象。
[1] Marschner P. Marschner's mineral nutrition of higher plants[M]. 3rd Edition. London: Academic Press, 2012:135-248
[2] Cotrufo M F, Ineson P, Scott A Y. Elevated CO2reduces the nitrogen concentration of plant tissues[J]. Global Change Biology, 1998, 4(1): 43-54
[3] Leakey A D B, Ainsworth E A, Bernacchi C J, et al. Elevated CO2effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE[J]. Journal of Experimental Botany, 2009, 60(10): 2 859-2 876
[4] Bindi M, Hacour A, Vandermeiren K, et al. Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations[J]. European Journal of Agronomy, 2002, 17(4): 319-335
[5] Houpis J L, Surano K A, Cowles S, et al. Chlorophyll and carotenoid concentrations in two varieties of Pinus ponderosa seedlings subjected to long-term elevated carbon dioxide[J]. Tree Physiology, 1988, 4(2): 187-193
[6] Murray M B, Smith R I, Friend A, et al. Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Piceasitchensis)[J]. Tree Physiology, 2000, 20(7): 421-434
[7] Wullschleger S, Norby R, Hendrix D. Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment[J]. Tree Physiology, 1992, 10(1): 21-31
[8] Donnelly A, Craigon J, Black C R, et al. Does elevated CO2ameliorate the impact of O3on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?[J]. Physiologia Plantarum, 2001, 111(4): 501-511
[9] Donnelly A, Jones M B, Burke J I, et al. Elevated CO2provides protection from O3induced photosynthetic damage and chlorophyll loss in flag leaves of spring wheat (Triticum aestivum L., cv. ‘Minaret')[J]. Agriculture,Ecosystems & Environment, 2000, 80(1/2): 159-168
[10] Koti S, Reddy K R, Kakani V, et al. Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development[J]. Environmental and Experimental Botany,2007, 60(1): 1-10
[11] Danesi E D G, Rangel-Yagui C O, Carvalho J C M, et al. Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis[J]. Biomass Bioenergy, 2004, 26(4): 329-335
[12] Kitajima K, Hogan K P. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light[J]. Plant Cell & Environment,2003, 26(6): 857-865
[13] Luo Y, Su B, Currie W S, et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J]. Bioscience, 2004, 54(8): 731-739
[14] Gifford R, Barrett D, Lutze J. The effects of elevated [CO2]on the C:N and C:P mass ratios of plant tissues[J]. Plant & Soil, 2000, 224(1): 1-14
[15] Sandoval-Villa M, Guertal E A, Wood C W. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and nighttime nutrient solution strength[J]. Journal of Plant Nutrition, 2000, 23(5): 649-661
[16] Jin C, Du S, Wang Y, et al. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production[J]. Journal of Plant Nutrition and Soil Science,2009, 172(3): 418-424
[17] 喻景權(quán). “十一五” 我國設施蔬菜生產(chǎn)和科技進展及其展望[J]. 中國蔬菜, 2011(2): 11-23
[18] 陸扣萍, 閔炬, 施衛(wèi)明, 等. 填閑作物甜玉米對太湖地區(qū)設施菜地土壤硝態(tài)氮殘留及淋失的影響. 土壤學報,2013, 50(2): 109-117
[19] 郭世榮. 無土栽培學[M]. 北京: 中國農(nóng)業(yè)出版社, 2003:98
[20] Hartmut K. Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents[J]. Biochemical Society transactions, 1983, 11: 591-592
[21] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background[J]. Plant Cell & Environment, 1999,22(6): 583-621
[22] Davis D R. Declining fruit and vegetable nutrient composition: What is the evidence?[J]. Hort Science, 2009,44(1): 15-19
[23] Taub D R, Wang X. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses[J]. Journal of Integrative Plant Biology, 2008, 50(11): 1 365-1 374
[24] Duval B, Blankinship J, Dijkstra P, et al. CO2effects on plant nutrient concentration depend on plant functional group and available nitrogen: A meta-analysis[J]. Plant Ecology, 2012, 213(3): 505-521
[25] Hikosaka K, Terashima I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant Cell & Environment,1995, 18(6): 605-618
[26] Pal M, Rao L S, Jain V, et al. Effects of elevated CO2and nitrogen on wheat growth and photosynthesis[J]. Biologia Plantarum, 2005, 49(3): 467-470
[27] Bloom A J, Burger M, Asensio J S R, et al. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis[J]. Science, 2010, 328(5980): 899-903
[28] Bloom A J, Smart D R, Nguyen D T, et al. Nitrogen assimilation and growth of wheat under elevated carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3): 1 730-1 735
[29] Cruz J L, Alves A A C, LeCain D R, et al. Effect of elevated CO2concentration and nitrate: Ammonium ratios on gas exchange and growth of cassava (Manihotesculenta Crantz)[J]. Plant & Soil, 2014, 374(1-2): 33-43
[30] Kirschbaum M U. Does enhanced photosynthesis enhance growth? Lessons learned from CO2enrichment studies[J]. Plant Physiology, 2011, 155(1): 117-124
[31] McGrath J M, Lobell D B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2concentrations[J]. Plant Cell & Environment, 2013, 36(3): 697-705
[32] Jinwen L, Jingping Y, Pinpin F, et al. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field [J]. Field Crop Research, 2009, 114(3): 426-432
[33] Marschall M, Proctor M C. Are bryophytes shade plants?Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids[J]. Annals of Botany, 2004, 94(4): 593-603
[34] Dale M, Causton D. Use of the chlorophyll a/b ratio as a bioassay for the light environment of a plant[J]. Functional Ecology, 1992, 6(2): 190-196
Effects of Elevated CO2, N Concentration and N Forms on Photosynthetic Pigments Concentration and Composition
BAO Li1,2, DONG Jinlong1,2, LI Xun1, DUAN Zengqiang1*
(1 State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science, Chinese Academy of Sciences), Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China)
This study consisted of two experiments to study the leaf photosynthetic pigment concentrations of cucumber. The first one studied the effects of elevated CO2and nitrate concentration under three nitrate concentrations [2(low N),7(moderate N) and 14(high N) mmol/L] and three CO2concentrations [400 (C1), 625 (C2) and 1 200 (C4) μmol/mol]. The second one studied the effects of elevated CO2and N forms under three CO2concentrations [400 (C1), 800(C3) and 1200 (C4) μmol/mol]and four ratios of nitrate to ammonium concentrations [14/0(N1), 13/1(N2), 11/3 (N3) and 8/6(N4)]. The results showed that: at the seedling stage, C4 treatment enhanced the biomass of all the three N supplies and this effect decreased at the initial fruit stage. The biomass of C3 treatment increased and was the highest among the CO2treatments. At the seedling stage, the chlorophyll a, b and carotenoids concentrations of the low and moderate N increased under C3 treatment, while high N increased the chlorophyll b and total pigment concentrations. Three pigment concentrations of N2 treatment were the highest under C3 treatment, while their concentrations in N3 treatment were the highest under C4 treatment among the CO2treatments. Thus, at the seedling stage,elevated CO2decreased three pigment concentrations of low N due to “dilution effect” caused by the high growth rate. But when N concentration was 14 mmol/L, elevated CO2increased the pigment synthesis and this rate was higher than the growth rate,which resulted in higher pigment concentrations. This effect also existed with high ammonium supply. The pigment concentration was generally controlled by the growth rate and pigments synthesis rate simultaneously. Under moderate and high N, chlorophyll a/b at the seedling stage increased under high CO2, but only that of the high N decreased at the initial fruit stage. Moreover, C4 treatment enhanced chlorophyll a/b, which may be enhanced by high light density and low N concentration. Practically, the cucumber cultivation under elevated CO2should combine with high N concentration, high ammonium supply rates and high plant density.
CO2fertilization; Nitrate to ammonium ratio; Growth rate; Pigment synthesis rate; High plant density
S627;Q945.18
10.13758/j.cnki.tr.2016.04.005
國家自然科學基金項目(41101272)和國家科技支撐計劃項目(2014BAD14B04)資助。
(zqduan@issas.ac.cn)
寶俐(1992—),女,江蘇揚州人,碩士研究生,主要從事植物營養(yǎng)與土壤生態(tài)研究。E-mail: baoli@issas.ac.cn