陳佑寧,張君才,楊小玲
(咸陽師范學(xué)院化學(xué)與化工學(xué)院,陜西咸陽 712000)
?
原子轉(zhuǎn)移自由基聚合技術(shù)及其在分離材料制備中的應(yīng)用研究進(jìn)展*
陳佑寧,張君才,楊小玲
(咸陽師范學(xué)院化學(xué)與化工學(xué)院,陜西咸陽 712000)
對(duì)原子轉(zhuǎn)移自由基聚合(ATRP)的基本原理、引發(fā)體系及單體進(jìn)行了全面的綜述。結(jié)合最新的研究成果,介紹了ATRP在分離材料制備方面的最新研究進(jìn)展。
原子轉(zhuǎn)移自由基聚合,分離材料,研究進(jìn)展
原子轉(zhuǎn)移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是1995年分別由Wang J S[1]、Sawamoto M[2]以及Percec V[3]獨(dú)立提出并報(bào)道的一種可控自由基活性聚合新技術(shù)。與其它傳統(tǒng)的自由基聚合相比,ATRP反應(yīng)條件較為溫和,適用單體廣泛,對(duì)雜質(zhì)不太敏感,分子設(shè)計(jì)能力較強(qiáng),是合成具有特定結(jié)構(gòu)和性能聚合物的重要手段。近年來,原子轉(zhuǎn)移自由基聚合技術(shù)逐步應(yīng)用到分離材料的制備中。本文主要就ATRP的發(fā)展歷程及其在分離材料制備中應(yīng)用研究最新進(jìn)展進(jìn)行介紹。
ATRP的概念源于有機(jī)化學(xué)中的過渡金屬催化原子轉(zhuǎn)移自由基加成(Atom Transfer Radical Addition,ATRA),ATRA是有機(jī)化學(xué)中形成C-C鍵的有效方法(圖1)。
圖1 原子轉(zhuǎn)移自由基加成反應(yīng)
圖2 連續(xù)的原子轉(zhuǎn)移自由基加成反應(yīng)
為了證實(shí)這一設(shè)想,Matyjaszwski和王錦山博士以α-氯代苯乙烯為引發(fā)劑,氯化亞銅與2,2′-聯(lián)二吡啶的絡(luò)合物為催化劑,在130℃條件下進(jìn)行了苯乙烯本體聚合,不僅得到了窄分子量分布的聚苯乙烯,而且聚合物的實(shí)測(cè)分子量與理論計(jì)算值非常接近。當(dāng)加入第二單體丙烯酸甲酯時(shí),成功地實(shí)現(xiàn)了嵌段共聚,具有明顯的活性聚合特征。據(jù)此,他們提出了原子轉(zhuǎn)移自由基聚合這一全新的概念。
根據(jù)Matyjaszwski和王錦山提出的概念,典型的原子轉(zhuǎn)移自由基聚合的基本原理如圖3所示。
圖3 ATRP反應(yīng)機(jī)理
Matyjaszewski等人對(duì)ATRP 引發(fā)體系的研究表明,所有α位上含有誘導(dǎo)共軛基團(tuán)的鹵代烷都能引發(fā)ATRP 反應(yīng)[1-2,5]。目前已報(bào)道的比較典型的ATRP 引發(fā)劑主要有α鹵代苯基化合物、α鹵代羰基化合物、α鹵代腈基化合物和多鹵化物,如α-氯代苯乙烷、芐基氯、α-氯丙酸乙酯、α-氯乙腈、四氯化碳等。
第一代ATRP技術(shù)引發(fā)體系的催化劑為CuX(X=Cl、Br)。Sawamoto和Teyssie等人分別采用Ru和Ni的配位化合物為催化劑成功地進(jìn)行了MMA的ATRP反應(yīng),后來又發(fā)現(xiàn)以鹵化亞鐵為催化劑的ATRP反應(yīng)[6-7]。這些催化劑的研究成功,為開發(fā)高效、無公害的引發(fā)體系奠定了基礎(chǔ)。
配位劑是ATRP 引發(fā)體系中的一個(gè)重要組成部分,具有穩(wěn)定過渡金屬和增加催化劑溶解性能的作用。常用的配位劑有聯(lián)二吡啶、油溶性長(zhǎng)鏈烷基取代的聯(lián)二吡啶,Haddleton等人采用2-吡啶醛縮亞胺為配位劑,實(shí)現(xiàn)了ATRP的均相反應(yīng)[8];程廣樓等人將鄰菲咯啉用于苯乙烯和甲基丙烯酸甲酯等單體的ATRP聚合,大大提高了催化劑鹵化銅的催化活性和選擇性[9]。
與其它活性聚合相比,ATRP具有最寬的單體選擇范圍,目前已經(jīng)報(bào)道的可進(jìn)行ATRP的單體有三大類:(1)苯乙烯及取代苯乙烯,如對(duì)氯苯乙烯、對(duì)氯甲基苯乙烯、間甲基苯乙烯等;(2)(甲基)丙烯酸酯,如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯等;(3)帶有功能基團(tuán)的(甲基)丙烯酸酯,如(甲基)丙烯酸-2-羥乙酯、(甲基)丙烯腈、4-乙烯基吡啶等。
研究發(fā)現(xiàn),在ATRP技術(shù)中,通過控制單體轉(zhuǎn)化率、聚合反應(yīng)時(shí)間,可以精確控制固體表面聚合物分子刷的分子鏈長(zhǎng),也可在固體表面制備嵌段共聚物分子刷。采用ATRP技術(shù),已經(jīng)在有機(jī)和無機(jī)材料等許多固體基底表面上修飾了聚合物分子刷,合成了許多功能材料。目前,ATRP技術(shù)對(duì)分離材料的研究大多集中在對(duì)色譜固定相、聚合物膜和多糖類基體的修飾方面。
4.1ATRP技術(shù)在吸附膜制備中的應(yīng)用
應(yīng)用ATRP制備高容量吸附膜[10]、刺激響應(yīng)膜[11]和新型抗污染膜[12]的研究報(bào)道很多。Husson等人利用SI-ATRP技術(shù)分別將聚(2-二甲基氨基甲基丙烯酸乙酯)[13]和聚丙烯酸[14]接枝在再生纖維素表面制備了弱陰離子交換膜和陽離子交換膜,將聚(3-磺酸丙酯)修飾在大孔膜表面制備了強(qiáng)陽離子交換膜[15],采用SI-ATRP將聚(2-乙烯基吡啶)接枝在膜的表面可以使PVDF微孔膜轉(zhuǎn)變?yōu)殡x子交換膜[16]。由于采用ATRP技術(shù),膜表面功能基團(tuán)密度高,得到的膜均具有較高的吸附容量。
4.2ATRP技術(shù)在色譜固定相制備中的應(yīng)用
ATRP技術(shù)在開發(fā)高性能色譜固定相方面也取得了顯著進(jìn)展。以硅膠為基體,采用ATRP技術(shù)制備的陽離子交換色譜固定相對(duì)蛋白質(zhì)的吸附容量比傳統(tǒng)方法顯著提高[17],制備的反相和親水色譜固定相具有優(yōu)異的抗水解性能[18];將丙烯酸十八烷基酯、衍生化苯丙胺酸單體用ATRP高密度地接枝在硅膠表面,制備的固定相對(duì)稠環(huán)芳烴顯示出選擇性[19];用ATRP將聚(N-異丙基丙烯酰胺)接枝在硅膠[20]、膜[21]、聚苯乙烯[22]基質(zhì)上,組分的保留行為隨溫度變化呈現(xiàn)特殊選擇性;將N-異丙基丙烯酰胺和 N-叔丁基丙烯酰胺共聚物接枝在聚甲基丙烯酸縮水甘油酯微球上,制備了用于分離和純化蛋白質(zhì)的固定相[23]。
4.3ATRP技術(shù)在吸附劑制備中的應(yīng)用
在吸附劑的開發(fā)方面,采用ATRP的研究剛起步。用聚丙烯腈接枝到N-氯磺酰胺化的聚苯乙烯表面,再與羥胺反應(yīng),制備了對(duì)汞有特異性的吸附劑(圖4)[24];將聚甲基丙烯酸縮水甘油酯接枝于聚苯乙烯微球表面,再與乙二胺反應(yīng),制備了吸附Cu(Ⅱ)、Pb(Ⅱ)、Cr(Ⅵ)和As(Ⅴ)的吸附劑(圖5)[25]。我們課題組用SI-ATRP 法制備了四唑螯合樹脂[26]和亞氨基二乙酸型螯合樹脂[27],證明SI-ATRP是高容量螯合樹脂制備的新方法。因此,利用已有功能單體或?qū)ふ倚滦凸δ軉误w,結(jié)合ATRP技術(shù),開展新型吸附劑的制備技術(shù)以及表面單體接枝量與吸附容量關(guān)系的研究,對(duì)制備高性能吸附劑具有重要意義。
圖4 聚丙烯腈接枝氯磺酰胺化聚苯乙烯的合成
圖5 ATRP和胺化反應(yīng)結(jié)合制備胺基樹脂
“活性”自由基聚合結(jié)合了活性聚合與自由基聚合各自的優(yōu)勢(shì),自發(fā)現(xiàn)以來進(jìn)行了廣泛的研究。ATRP技術(shù)作為一種操作簡(jiǎn)便、極具工業(yè)化前景的“活性”自由基聚合方法,更是備受關(guān)注。ATRP技術(shù)提供了一種合成結(jié)構(gòu)可控、且易于功能化共聚物的有效方法。預(yù)期ATRP技術(shù)將更加廣泛地用于分子設(shè)計(jì)中,在學(xué)術(shù)及工業(yè)應(yīng)用中前景廣闊。
[1] Wang J S,Matyjaszewski K. Controlled/“riving”radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society,1995,117:5614-5615.
[2] Kato M,Kamigaito M,Sawamoto M. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride Dichloro-tris(triphenylphosphine) ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System Possibility of Living Radical Polymerization[J].Macromolecules,1995,28(5):1721-1723.
[3] Percec V,Barboiu B. “Living”Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and cul(bpy)Cl[J]. Macromolecules,1995,28(23):7970-7972.
[4] Matyjaszewski K. Macromolecular engineering:from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties[J]. progress in polymer science,2005,30:858-86.
[5] Wang J S,Matyjaszewski K. Controlled/“Living” Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(Ⅰ)/Cu(Ⅱ) Redox Process [J]. Macromolecules,1995,28(23):7901-7910.
[6] Ando T,Kato M,Kamigaito M,et al. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex:Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions[J].Macromolecules,1996,29:1070.
[7] Granel C,Dubois P,Jerome R,et al. Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(Ⅱ) Complex and Different Activated Alkyl Halides[J].Macromolecules,1996,29:8576.
[8] Haddleton D M,Jasieczek C B,Hannon M J,et al. Atom Transfer Radical Polymerization of Methyl Methacrylate Initiated by Alkyl Bromide and 2-Pyridinecarbaldehyde Imine Copper(I) Complexes[J]. Macromolecules,1997,30:2190.
[9] 程廣樓,胡春圃,應(yīng)圣康. 一種用于烯烴聚合過程的新型高效催化劑[J].合成橡膠工業(yè),1997,20(2):116.
[10] Disabb-Miller M L,Johnson Z D,Hickner M A. Ion motion in anionand proton-conducting triblock copolymers[J]. Macromolecules,2013,46:949-956.
[11] Chu L Y,Li Y,Zhu J H,et al.Negatively thermoresponsivemembranes with functional gates driven by zipper-type hydrogen-bonding interactions[J]. Angewandte Chemie International Edition,2005,44:2124-2127.
[12] Wu Z Q,Chen H,Liu X L,et al.Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization[J]. Langmuir,2009,25:2900-2906.
[13] Worthley C H,Constantopoulos K T,Ginic-Markovic M,et al. Surface modification of commercial cellu-lose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface bio-fouling resistance[J]. Journal of Membrane Science,2011,385-386:30-39.
[14] Bhut B V,Husson S M. Dramatic performance improvement of weak anion exchange membranes for chromatographic bioseparations [J]. Journal of Membrane Science,2009,337:215-223.
[15] Singh N,Wang J,Ulbricht M,et al. Surface-initiated atom transfer radical polymerization:a new method for the preparation of polymeric membrane adsorbers[J]. Journal of Membrane Science,2008,309:64-72.
[16] Chenette H C S,Robinson J R,Hobley E,et al. Development of high-productivity,strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes[J]. Journal of Membrane Science,2012. http:∥dx.doi.org/10.1016/j.memsci.2012.07.040.
[17] Singh N,Husson S M,Zdyrko B,et al.Surface modification of micro-porous PVDF membranes by ATRP[J]. Journal of Membrane Science,2005,262:81-90.
[18] Mallik A K,Rahman M M,Czaun M,et al. Facile synthesis of high-density poly(octadecyl acrylate)-grafted silica for reversed-phase high-performance liquid chromatography by surface-initiated atom transfer radical polymerization[J]. Journal of Chromatography A,2008,1187 :119-127.
[19] Czaun M,Rahman M M,Takafuji M,et al. Molecular shape recognition-structure correlation in a phenylalanine-based polymer-silica composite by surface-initiated atom transfer radical polymerization[J]. Polymer,2008,49 :5410-5416.
[20] Nagase K,Kobayashi J,Kikuchi A,et al. Influence of Graft Interface Polarity on Hydration/Dehydration of Grafted Thermoresponsive Polymer Brushes and Steroid Separation Using All-Aqueous Chromatography[J]. Langmuir,2008,24:10981-10987.
[21] Lokuge I,Wang X J,Bohn P W. Temperature-Controlled Flow Switching in Nanocapillary Array Membranes Mediated by Poly(N-isopropylacrylamide) Polymer Brushes Grafted by Atom Transfer Radical Polymerization[J].Langmuir,2007,23:305-311.
[22] Mizutani A,Nagase K,Kikuchi A,et al. Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography[J]. Journal of Chromatography A,2010,1217:522-529.
[23] Mizutani A,Nagase K,Kikuchi A,et al. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides[J]. Journal of Chromatography A,2010,1217:5978-5985.
[24] Zong G X,Chen H,Qu R J,et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP,and use of the resin in mercury removal after modification[J]. Journal of Hazardous Materials,2011,186 :614-621.
[25] Niu L,Deng S B,Yu G,et al. Efficient removal of Cu(Ⅱ),Pb(Ⅱ),Cr(Ⅵ) and As(Ⅴ) from aqueous solution using an aminated resin prepared by surface-initiated atom transfer radical polymerization[J]. Chemical Engineering Journal,2010,165 :751-757.
[26] Chen Y N,He M F,Wang C Z,et al. A novel polyvinyltetrazole-grafted resin with high capacity for adsorption of Pb(Ⅱ),Cu(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions[J]. Journal of Materials Chemistry A,2014,2:10444-10453.
[27] 王琴會(huì),王超展,衛(wèi)引茂. 基于原子轉(zhuǎn)移自由基聚合制備新型螯合樹脂及其吸附性能[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2012,33(11):2579-2584.
Recent Development of Atom Transfer Radical Polymerization and its Application in Preparation of Separation Materials
CHEN You-ning,ZHANG Jun-cai,YANG Xiao-ling
(College of Chemistry and Chemical Engineering,Xianyang Normal College,Xianyang 712000,Shaanxi,China)
The latest advances in principle,catalyst system and monomer of atom transfer radical polymerization(ATRP) were reviewed. The recent application of ATRP in preparation of separation materials was introduced.
atom transfer radical polymerization,separation materials,research progress
陜西省教育廳專項(xiàng)科研計(jì)劃項(xiàng)目(15JK1782)資助
O 631;O 647.3
專論與綜述